COOKDBOOK

Instructions for Implementing the Software Tools Package
(As distributed by the Software Tools Users Group)

Prepared by:

Debbie Scherrer

Advanced Systems Research Group

Computer Science and Mathematics Department
Lawrence Berkeley Laboratory

Berkeley, CA 94720

January 1981

LBID 098

COOKBOOK Table of Contents

TABLE OF CONTENTS

Part 1

Summary of Tools and Library Routines
Introduction

File 2 - Copy (in Fortran)

File 3 - Ratfor bootstrap (in Fortran)

File 4 - Library Routines, Symbol Definitions, and
Temporary Versions of the Primitives

File 5 - Reading Command Line Arguments - Echo and Getarg
File 6 - The CAT tcol for testing File Access Primitives
File 7 - File Insertion - Incl

File 8 - Ratfor in ratfor

——————

In-Core Editing.

File 9

Text Formatting
File 10 - File Archiving

File 11

Text Editing - Randem IO Primitives

File 12 - The Remainder of the Basic Tools

File 13 - The Shell
File 14 - Documentation
File 15 - Additional Tocls (which have been included as

they were received; some may require additional
primitives)

File 16 - Spelling Dictionary

Part 2

Specifications for System-dependent Primitives

l.

TOOLS

ar
cat
ch

comm .
cpress
ert «a
crypt

date .
ac: s
detab

Adiff .
echo .
ed
edin .
entab

expand
R e
field

find .

format

includ
kwic .
lam
11 - 00
macro
mcol .
mv
os
pl
pr
ratfor
rev ..
IM s
roff .
sedit
sh ...
show .
sort .
spell
split
tail .
tee ..
L sew
tsort
uniqg .
unrot
wC

L

L]

-

-

Ll

-

-

L LI I

L I

. @

SUMMARY OF CONTENTS OF TAPE

5 8 B 8 ® P SO e e eSS E 0

" 8 8 8 8 8 S E S 4" s S EEES S

cessssssss COncatenate and print text files
sesssessenasnsessasses Change text patterns

.

LR I

cesssssssssssssssssss COmpress input files

L B

® 8 & 8 8 8 5 5 " S S B ST TE S SRS

++s+-2+s COnvert spaces to tabs and spaces

archive file maintainer

eeesee Print lines common to two files

cessssssssssssssCOpy files to terminal
... encrypt and decrypt standard input
seesssssssssss print the date and time
seieis 4 8 sesTes 8 eawsess GOSK Calculator
csesssssssssssas COnvert tabs to spaces
isolate differences between files
echo command line arguments
editor
in-core editor

" s 8 8 8 8 88

cesssssssessssssessss UNcompress input files
search blocks of lines for text patterns
sie § seseeene s s es manipulate fields of data

search a file for text patterns
format text

wsssswaaaseswsee Fil€ inclusion preprocessor
. prepare lines for keyword-in-context index

LR R I I I I T IR N I T I B IR I O A

® ® % 8 8 ® % BB S 8 S 88 s e BB eS8 print line 1engths

laminate files

ssesssss general-purpose macro pProcessor

cessssesssscsssssss Multicolumn formatting

cesssessssssssssnss MOVve (rename) a file

.. convert backspaces into multiple lines
... print specified lines/pages in a file

" 8 8 8 " 0 & 8 8 F S E 8RS E S print file
cessssssssessess Ratfor preprocessor
reverse lines
remove (delete) files
[see '"format']
cesssssssesssssssssssses Stream editor
cssssssssssss command line interpreter
show all characters in a file
esessess.es SOrt and/or merge text files
sesessssssssess lOCate spelling errors

LI L I I I I L L L B

® B 8 ®B P 8 S 8 E S S SRS

cessssssssssssssas Split file into pieces

cessssssess print last lines of a file

essssses COPY input to output and named files

LR IR R O DL I DL DL L T B

character transliteration
topologically sort symbols

«s... strip adjacent repeated lines from a file
cesssssssssssss Unrotate lines prepared by kwic

count lines,

words, and characters in files

Xref ceieeccescscsssssssss Make a cross reference of symbols

2-

SUBROUTINES AND PRIMITIVES

(* indicates that the implementation of the routine is
system—-dependent
indicates that the routine may, in some cases, be
system-dependent)

definitioONS ceecescscecssssesssss Standard Ratfor definitions

File Manipulation

FAMOVE scossessssssssssssesssssasss MOVE (rename) filel to file2
ROLOBE: werimia ¢ savaereres & & ssewms ¢ weweses s ¢ CLOSE (Adetach) a. file
*create create a new file (or overwrite an existing one)
*¥JettYDP ceeeessscssss. get type of file (character or binary)
*isatty eeeecees.. determine if file is a teletype/CRT device
#MKUNIQ ceevecscncsensenssnssesssse generate unique file name
*open ... open an existing file for reading, writing, or both
*LrEMOVE sesessessesccsssses remove a file from the file system

1/0
FCOPY iseisiv s sevaising ¢ pawveeies s snemww cOPpY Eile in to Eile out
*¥*fluSh veeceessnscseceasees flush output buffer for file 'fd’
GEtC cevveccesssessesssss read character from standard input
*getCh teveeeesnsecssscssasassesasss read character from file
$GOELIN. wevn « svwnvwe s s snensas s seeesen GOE Next line from £ile
*NCLE sesecesssessssssssssses determine current file position
FPLOMPE: v0vs o s ssivwnes s sneasss s cuseesss s PLOMPE User for dinput
PUEC teesscessssessssssss Write character to standard output
*pRteh eeneis s v eeemee s s Deeeeies s saeesss WELEE Ccharacter to file
putdeC .cceceececnseseceees Write integer n in field width >=w
putint write integer n onto file fd in field width >=w
#putlin seeeeeeccssccecsssssss Output a line onto a given file
putstre..... write str onto file £4 in field width >=w
*readf secccsecescceccssssscesssssess read from an opened file
¥XemMarK ccecccovsccecscsssesessssses Print single-line message
¥SEEK tesesccssncsccsccsccnsssassessse MOVe read/write pointer
*Writef ciceeatinesssscssesssssssssss Write to an opened file

Process Control

EEPBWIL wvraiein & saaeens § aeeeeess & meeees ¥ s pesees ORECUEE Stibtask

String Manipulation

addset seeseeseees put ¢ in array(j) if it fits, increment j
addstr add string s to str(j) if it fits, increment j
CLOWEY sisnissvaseesesansnsensasnsnsssssa £01Ad € to lower case
CONCAL cevecesncneeansrsssssss CONcatenate 2 strings together
CLOC cesesssanssnsssssssssssessesnnsses COPY String-to-string
ctoi convert string at in(i) to integer, increment i
ctomn translate ascii control character to mnemonic
CUPPEY .esssssesessssssssass COnvert character to upper case
equal «cceeeee.... compare strl to str2; return YES if equal
esc map array(i) into escaped character, if appropriate
FOlA wevesisiocasssnsanocanesss CONnVvert string to lower case
gctoi generalized character-to-integer conversion
getwrd . get neon-blank word from in(i) intc out, increment 1

-

gitoc ..+s...... generalized integer-to-character conversion
INAEX. wwins s swnsiasos s sasssasss Lind chavacter ¢ dn string str
itOC eceeeesnsaeseseee... convert integer to character string
1leNGLN cuvns cnmmmmenssanoesesssneeee CONPpUte length of string
LOWEE seessssssnssessnnnanessse CONVert string to lower case
MNEOC ceeevsssacsessasnssssssss aSCii mneumonic to character
SCOPY sesessssnssnsssnwenses COPY String at from(i) to to(j)
SALOP eceesssssssessasansssssss Grop characters from a string
SKipbl .eeeeeessssescsssessss Skip blanks and tabs at str(i)
SLARKE somes s paenens s seweeessss Lake chatacters from & string
StCOPY «seeeess CcOpYy string at from(i) to to(j); increment j
SEICMD cescsssnsansesnsnpoenisnnsennsssnsae COMpare 2 strings
strim «¢.ce..... trim trailing blanks and tabs from a string
SUbStr ...cecseccecccasscsses take a substring from a string
EYPE cevecccrecescscsencnsnnnes.. determine type of character
UPPEL cecsecccsssasssssssnsasss CONvert string to upper case

Pattern Matching
amatch look for pattern matching reqular expression
getpatencode regular expression for pattern matching
makpat encode regular expression for pattern matching
match secevceeceneceensnsesss. match pattern anywhere on line

Command Line Handling
*delarg eeeeecesesss. delete command line argument number 'n'
*getarg ececececccciscsesesssasasss get command line arguments
gfNArg .ccceesesssscscsscnsssecses get next filename argument
QUEKY sscecssscssssssssssess Print command usage information

Dynamic Storage Allocation
dsfree .ecceeecceseccecssss. free a block of dynamic storage
dsget ...etveseveceeseass. Obtain a block of dynamic storage
dSinit cesececcccscescccesescnsss initialize dynamic storage

Symbol Table Manipulation
delete sieevveecnnscanses. remove a symbol from symbol table
ENter ...ccvesccccssescsscssesss place symbol in symbol table
lookup get string associated with name from hash table
MKEabl seeeeeeccsescccssssccssnnsnaenss. Make a symbol table
IMEabl c.veevececcescscsncscnnssesecass Femove a symbol table
sctabl ¢cteeeeeecseseasss Scan all symbols in a symbol table

Date Manipulation
fmtdat ¢.ecececeeseseeseses convert date to character string
*JetnOW cecesccccscssnnscacssnsaass get current date and time
wkday get day-of-week corresponding to menth-day-year

Error Handling
cant print 'name: can't open' and terminate execution
error print single-line message and terminate execution

Miscellaneous
*endst . close all open files and terminate program execution
*initst .. initialize all standard files and common variables

3. ADDITIONAL TOOLS AND LIBRARY ROUTINES
As assortment of tools and library routines including:

1) Alternate versions of tools included earlier on
the tape

2) Tools requiring additional primitives
3) Experimental tools and routines

4) Other tools and routines not yet accepted as part
of the basic package

4. COMPLETE DOCUMENTATION FOR TOOLS AND LIBRARY ROUTINES

5. PRIMERS

edit ® 8 & 8 8 8 S S8 S SRS S S S SSESER S S eSS eS8 PN E e editor
LTALEOL seve e nomeoos s s soseane s swevsies s s FPALLOf PEEProcassor

6. SPELLING DICTIONARY

COOKBOOK Introduction

GUIDELINES FOR INSTAT.LING SOFTWARE TOOLS
Introduction

The purpose of this document is to provide a checkout scenario
for installing an enhanced version of the Addison-Wesley
Software Tools package developed by B. W. Kernighan and P. J.
Plauger in conjunction with their book "Software Tools".
Accompanying this document is a tape providing ratfor source
code and documentation for enhanced versions of the original
tools, as well as additional "useful tools and a UNIX-like
shell. (Unix is a registered trademark of Bell Labs...) This
ranual assumes you have read and understand the 'Software Tools'
book and are at least vaguely familiar with the UNIX operating
system concepts.

One of the purposes of the "Software Tools" experiment is to
provide users of a multitude of operating systems with a
portable set of common program development tools. These tools
are made 'portable' via two mechanisms:

1. All source is written in ratfor, a fortran preprocessor
language which is directly translatable into fortran.

2. Most system-dependent quantities are pushed down into
"primitive"™ function calls, which are left up to the person
in charge of bringing up the tools to implement.

This documentation is designed to assist the implementor of the
ratfor preprocessor and primitives to bring up her version with
as much ease as possible.

The first section of the manual contains step-by-step
instructions for dealing with each of the files on the tape.
The files have been arranged to allow you to develop your
primitives in a reasonable order, while bringing up some useful
tools at the same time. Along with a description of each of the
files is a list of the primitives you'll need to develop to
implement the file, a 1list of primitives you've already
developed which the tool will need, and suggestions for
implementation of the tocol.

The second section of this manual gives detailed specifications
for the design of your system-dependent primitives. Following
these specifications as closely as possible when you write your
primitives will help vyou bring up the tools with fewer
problems.

Implementation Issues
The most difficult problems facing the software tools
implementor are: character sets, passing cemmand argument
strings to a running program, random access to files, and (if

the shell is desired) execution of subtasks.

Character sets: The main purpose of the tools is to provide a

-5-

COOKBOOK Introduction

rational environment in which to do program development. We
feel that accomplishing this requires a 128 character set as a
minimum. However, the tools may be installed with a restricted
character set if there is no alternative. If this is the case,
we urge the implementor to at least develop some sort of escape
conventions.

Passing command line arguments: Every system has a different
(and invariably inadequate) way of accomplishing this. Often
arguments are 'gratuitously' folded to a single case. Some
systems even forbid "uninstalled" programs from reading their
own arguments. Since the ability to read command line arguments
is wvital to tool wutility, this problem will have to be faced
early. In the absolute worst case, the arguments can be
prompted for by the running program.

Random Access to Files: This capability is necessary only for
running the editor. If random access is not possible, an
in-core version of the editor is provided.

Execution of subtasks: The command 1line interpreter (the
'shell') will need to be able to spawn subtasks. Almost every
system has the ability to roll executing programs in and out;
however, many of them do not give the user easy access to this
capability. To run the shell the implementor must devise some
(perhaps devious) method of causing the execution of a desired
task.

Format of the tape

There are 16 files on the tape. File 1 contains this document,
which describes the remainder of the files.

If you look at the tape files you'll notice that most of the
source code contains archive headers and trailers (that is,
lines that begin with "#-h-" and "#-t-" respectively). We
maintain all our sources with the archiver, making each routine
a member of the source file. This file is in turn combined with
the documentation and common block files to make one large
working archive for each tool. Thus, each tool on the tape is
an archived file containing the documentation, common blocks,
and source code. These archives generally have the format:

main archive

tool.doc (documentation)
cblockl (common blocks)
cblock2
todl.x (source code)
rtnl (each routine is a
rtn2 sub=achive member)

Each archive header contains the file name, its size in
characters, and the last date and time the member was changed.
When you bring up the archiver on File 10, you can continue to

-

COOKBOCK Introduction
maintain your source in this format.

ACKNOWLEDGEMENTS

The tools distributed on this tape represent a compilation of
some of the most useful tools available from the University of
Arizona, Georgia Institute of Technology, and Lawrence Berkeley
Laboratory. I would like to especially thank Allen Akin (GT)
and David Hanson (U. of Arizona) for their help in preparing
these tools for distribution.

Depending upon the services your system provides, you can expect
to spend anywhere from one week to several months developing the
primitives for your tools. Good luck!

e

FILE 2 7/31/80 FILE 2

COPY (in Fortran)

LESCRIPTION

'Copy' represents the IO routines extracted from the ratfor
bootstrap for easier testing. Copy reads an input file,
converts the input characters to ascii strings via the
routine 'inmap', converts them back to local format via
'outmap', and copies them to an output file. (Don't worry
about the somewhat abstruse Fortran in which this tool is
written; this is the output from the ratfor preprocessor
and one generally never has to look at it.)

Copy also makes a simple call to "remark", a routine which
receives a hollerith character string and sends it to the
user's terminal.

CHANGES YOU MIGHT HAVE TO MAKE

The input file is defined as unit 5 and output as unit 6;
change these in the READ and WRITE statements if they are
different for vyour system. The end-of-file test is one
commonly used, but not supported on all systems.

On some systems, the routine 'putch' needs an extra blank
character at the beginning of each line when writing to
certain devices such as terminals or printers. If your
system has this 'feature', modify the write statement.

Look at the routine "remark". You'll most likely have to
change the WRITE statement to print hollerith characters in
whatever manner your system demands. Don't worry about
finding the end of the hollerith array; simply print 20 or
so characters. Later on, you will rewrite remark to handle
strings gracefully.

You should attempt to run the alphabet (upper and lower
cases if your system allows both), the digits, and all your
special characters through copy to make sure they emerge as
they should. If they don't, inspect the 'inmap'-'outmap'
routines, which convert from a fortran character in 1H
format to an integer representation of the ascii
characters.

After you can properly read from and write to the users
terminal, attempt to associate logical units 5 and 6 with
physical file names. If your command language supports
this, wuse it for now. Otherwise, rummage through your
Fortran manual for terms like ASSIGN or OPEN, and modify
copy accordingly for testing with disk files.

NEW PRIMITIVES TO WRITE

(inmap/outmap)

OTHER PRIMITIVES USED

FILE 2 7/31/80 FILE 2

None

ROUTINES NEEDED FROM OTHER TOOLS
None .

FILE 3 7/31/80 FILE 3
RATFOR BOOQOTSTRAP

DESCRIPTION
The ratfor bootstrap, in fortran. The bootstrap contains
most of the ratfor capabilities except for the ‘'include'.
You'll wuse this bootstrap version for creating some simple
tools and for developing vyour system primitives. The
complete ratfor compiler will come later, after you can
directly access files and perform more power ful IO.

Don't be overly concerned with the slowness of the
bootstrap, which uses Fortran I0. When you implement the
full ratfor, you will use your own, more efficient
primitives which will speed up the processing.

CHANGES YOU MIGHT HAVE TO MAKE
Whatever changes you might have to make are determined by
what your fortran compiler will or will not accept...

NEW PRIMITIVES TO WRITE
None

OTHER PRIMITIVES USED
There are dummy primitives provided in the bootstrap.

ROUTINES NEEDED FROM OTHER TOOLS

Combine the bootstrap with getch, putch, remark, inmap, and
outmap from File 1.

- J)=

FILE 4 7/31/79 FILE 4

SYMBOL DEFINITIONS, LIBRARY ROUTINES, AND
TEMPORARY PRIMITIVES

DESCRIPTION
The fourth file contains the general symbol definitions,
some generally useful 1library routines, and a set of
temporary primitives which you can use to assist in
developing your own primitives. They will be useful as a
test program for the bootstrap and as a teaching aid to
help you learn the ratfor language.

CHANGES YOU MIGHT HAVE TO MAKE
Take a look at the symbol definitions. Comments in it

point you to symbols that might have to change for your
system (e.g. FILENAMESIZE).

It is the "real" versions of the primitives that you will
have to implement on your system. The rest of this manual
is designed to simplify that procedure. However, right
now, Jjust try to get File 4 to run through the bootstrap
and your fortran compiler.

NEW PRIMITIVES TO WRITE

You'll have to change the version of "remark"™ on this file
to whatever you made it do on File 1.

OTHER PRIMITIVES USED
None

ROUTINES NEEDED FROM OTHER TOOLS
Use the 'inmap'/'outmap' pair from COPY.

=

FILE 5 7/3L/79 FILE 5

READING COMMAND ARGUMENTS
ECHO and GETARG

DESCRIPTION

Now the real work begins. The tool 'echo' does nothing
more than read the command line arguments passed to it and
print them on the standard output (hopefully your
terminal). However, for this tool you will have to
implement ‘'getarg'. Find the design specifications for
'getarg' and 'delarg' in Section 2 of this manual and read
them carefully.

CHANGES YOU MIGHT HAVE TO MAKE
The documentation for echo (and all the tools) precedes the
source code. Remove it and store it someplace convenient.
(All the documentation is also provided as a user's manual
on File 14.)

Before compiling echo, you'll have to copy the general
symbol definitions onto the front of the file.

The temporary primitives provide a version of getarg which
prompts the user for the command line arguments, If this
is the ONLY way you can implement getarg, then it will have
to do. First test "echo" with these temporary versions,
before attempting to create your own.

As you create your primitives, initialization routines will
probably be necessary. We have called ours 'initst' and
'endst’, and we have included them in the temporary
primitives on File 4. We have also written the DRIVER
macro to automaically call them for us. (If you can have
your system automatically do the initialization, so much
the better.) As vyou develop your ‘'getarg' and other
primitives, insert into the initst routine any
initialization which must be done to allow them to run.,

Then, when writing your own getarg, look at the temporary
primitives, especially 'makarg' and 'initst'. Makarg picks
up the arguments and puts them in an array which 'getarg’
subsequently reads. All you need do is change ‘'makarg' to
pick up the command line from your system, convert it to
ascii if necessary, and store it in the array. Then the
rest of the code can remain unchanged.

Also, while 1looking at initst, notice that it calls getarg
to look for file substitutions for the STDIN, STDOUT, and
ERROUT files, which are generally the user's terminal. The
files a user desires to substitute for are given as command
line arguments preceded by a special flag. The flags for
reassigned files are:

<infile

>outfile
>>outfile (for appending)

= b

FILE 5 7/31/79 FILE 5

?errfile
?7errfile (for appending)

where 'infile', 'outfile', and 'errfile' would be replaced
with the name of the file desired. You should be aware of
these file substitution capabilities, although they won't
be completely operational until you bring up the file
manipulation primitives.

NEW PRIMITIVES TO WRITE
Getarg - pick up command line arguments
delarg - delete argument number 'n'
(or, if possible, simply chiange 'makarg')

OTHER PRIMITIVES USED
Initst, endst, putch, getch, remark

ROUTINES NEEDED FROM OTHER TOOLS
The symbols file and library routines from file 4

o e

FILE

6 7/31/80 FILE 6

THE CAT TOOL FOR TESTIwG THE FILE PRIMITIVES
Open, Create, Close
Getch, Getlin, Putch, Putlin, Remark

DESCRIPTION

CHANG

Now is the time to begin developing your file manipulation
primitives. The 'cat' (i.e. concatenate = copy) tool is
provided for testing your versions.

This is the most critical step in the development of the
tools at your site. The file primitives provide a
mechanism for attaching to files from within running
programs. Many operating systems already provide these
utilities. 1In this case you simply need to design ratfor
interfaces to them. However, more likely 1is the
possibility that your operating system provides few or none
of the capabilities you will need.

First, attempt to get cat to run wusing the temporary
primitives open, create, close, getch, putch, and remark.
Look at the code for these primitives to get an idea of
what they should be doing. Notice that 'open' and ‘'create'
simply set up a particular fortran unit for reading or
writing. They assume you have assigned (in some manner) a
file to these particular units. When you write your own
primitives, you must be able to associate a file name with
an IO channel, and set it up for reading and/or writing
from within a running program.

Read the design specifications (Section 2 of this manual)
for open, create, close, getch, and putch. Then sit down
and carefully think through exactly what your versions will
have to do. For instance, if you want to be able to handle
local character sets as well as ascii, you will probably
have to do your own block IO. Remember, too, that you will
need a certain amount of random IO capabilities when you
bring up the editor so you might have a glance at the
descriptions for seek and note.

You will also have to teach 'remark' to find the end of a
hollerith array. If your system provides this capability,
fine. Otherwise, have 'remark' look for a period (.) as
the end marker for the string. All hollerith arrays in the
tools source code end with a dot.

You will probably have to set some 1limit to the maximum
number of files which can be open at a time. 10 - 15 seems
to be a good range.

ES YOU MIGHT HAVE TO MAKE

Extract the documentation, and copy the general symbols
file onto the front of the source code.

Insert into ‘'initst' any lnitialization that must be done.
Also, insert into 'endst' the code necessary to close any

=] 3=

FILE 6 7/31/80 FILE 6

files that have been opened. It's best to do this even if
your system automatically closes all files at the end of a
job.

You will most certainly have a number of symbol definitions
to create for your primitives. You might 1like to keep
these separate from the general definitions, on a file
which can be "included" when necessary.

You will need to do quite a lot of testing on your
primitives. Make sure reads on empty files work correctly;
make sure you can create a file that already exists; and,
test all the boundary conditions vou can think of.

Plan on at least one or two major rewrites of your
primitives in the future. _on't try for great efficiency
right now, just get something that works.

NEW PRIMITIVES TO WRITE
Open - open an existing file for reading, writing, or both
create - create a new file or overwrite an existing one
close - close (detach) a file
getch - read a character from a file
putch - write a character onto a file
remark - write a hollerith string to ERROUT

OTHER PRIMITIVES USED
Initst
endst
getarg

ROUTINES NEEDED FROM OTHER TOOLS

You can use any of the library routines provided on file 4.
inmap and outmap from file 2

=] B

File 7 7/31/80 File 7

FILE INSERTION
INCLUD Tool

DESCRIPTION
You are actually now ready to bring up the ratfor in ratfor
compiler itself. However, your task will be easier if you
implement the ‘'includ' tool first so that you can easily
include the common blocks needed in the preprocessor source
code.

This file will also be a good test for your primitives.

CHANGES YOU MIGHT HAVE TO MAKE
Remove the documentation and copy the general symbol
definitions file to the beginning of includ before
compiling it.

Adjust the symbol MAXOFILES in the general symbol
definitions to match the maximum number of opened files
allowed by your primitives.

NEW PRIMITIVES TO WRITE
None

OTHER PRIMITIVES USED

open

close
getlin
remark
getarg
initst
endst

ROUTINES NEEDED FROM OTHER TOOLS
Library routines from file 4

=-16-

File 8 7/31/80 File 8
RATFOR PREPROCESSOR

DESCRIPTION

File 8 contains the symbol definitions, included common
blocks, and source code for the ratfor preprocessor. This
version 1is one developed from the original by David Hanson
of the University of Arizona and enhanced by Joe Sventek
and Debbie Scherrer of Lawrence Berkeley Laboratory and
Allen Akin of the Georgia Institute of Technology. 1%
includes a hash table for searching through definitions,
plus a full macro processor, the 'string' declaration, long
variable names, and a few other goodies. If you've
brought up 'includ', extract the common blocks onto a file
named 'commons'. If you don't have 'includ', you'll have
to insert the common blocks by hand.

CHANGES YOU MIGHT HAVE TO MAKE
This version of ratfor automatically opens and includes the
file containing the general symbol definitions. Set the
definition STDEFNS in the source code to the name of the
file you are using for your symbols. (If the file resides
on a particular directory, don't forget to include that in
the filename.) For example,

define (STDENFS,"ratdef")

(The quotes must be included.) If you don't want this
feature, set the definition to:

define (STDEFNS,"")

Take a final look at 'remark' in your primitives to make
sure you've taught it to look for a period at the end of a
quoted hollerith string.

The major problems you will probably run into are character
sets. If you can't pass the braces '{' and *}* in, you can
use '[' and '] ' respectively. If your fortran compiler can
only process upper case characters, set the definition
UPPERC this way:

define (UPPERC,)

Look at 'inmap' and ‘'outmap' for any other character
problems you run into.

NEW PRIMITIVES TO WRITE
None

OTHER PRIMITIVES USED
open
close
getarg
getch
putch

= .

File 8 7/31/80 File 8

remark
initst
endst

ROUTINES NEEDED FROM OTHER TOOLS
Library routines

-18-

IN-CORE ED 7/31/80 IN-CORE ED

IN-CORE ED

DESCRIPTION
At this point you are ready to bring up most of the rest
of the tools. There are still a few more primitives to
write, but the order in which they are done is not
éritical.

If your system has not provided you with an editor of any
use, you might want to bring up the in-core editor now,
to assist you in implementing the rest of the tools.
You'll find it on the first part of file 11. The in-core
editor does not require any more primitives than those
you already have.

-19-

File 9 7/31/80 File 9
TEXT FORMATTING

DESCRIPTION

This is the source code for the text formatter (often
nicknamed 'roff'). Although you are now ready to bring up
many of the other tools, it might be advantageous to
implement the text formatter first, so that it can process
the documentation provided on File 14. Once again, extract
all the common block files and put them on files with the
names indicated.

You might want to use File 14 for testing.

CHANGES YOU MIGHT HAVE TO MAKE
This implementation of the formatter can either put out a
line-feed character (control-l) to indicate the beginning
of a page, or it can count lines as the version in the book
does. Decide which would be more appropriate for the
devices you will be printing output on, and then, if you
desire the control-1l, set the following definition:

define (PAGECONTROL,)

If this definition doesn't appear, format will count
lines.

This formatter has a mechanism which allows the user to
have the formatter stop before printing each page so that a
new sheet of paper can be inserted. The formatter will
attempt to open a channel to the user's teletype using the
definitions of TERMINAL IN and TERMINAL_OUT (in the
general symbols file) as the names of the input and output
channels respectively. Make sure you have set these to the
appropriate file names.

The primitive 'flush' will be needed to send a line to the
user's teletype while suvpressing the carriage return/line
feed sequence. If you can't implement flush, simply send a
NEWLINE to the output file (which will actually cause the
buffer to be flushed but won't suppress the cr/1Eq)

If possible, implement the primitive 'getnow', used to pick
up the current date and insert it into any header or footer
where a percent sign (%) occurs.

You'll eventually want to implement the tool Ylpr?
(system-dependent and thus not provided on the tape).
'Lpr' is a combination of the toocls ‘os' (overstrike) and
'detab', plus some sort of mechanism to spool a file for
printing. It might also have to do some carriage control
to make sure the formatter output aligns on page
boundaries.

NEW PRIMITIVES TO WRITE
flush - flush output buffer

T

File 9 7/31/80 File 9

getnow - get current date and time (optional)

OTHER PRIMITIVES USED
getarg
open
close
create
getch
putch
remark
initst
endst

ROUTINES NEEDED FROM OTHER TOOLS
The library routines

)

File 10 7/31/80 File 10

FILE ARCHIVING

DESCRIPTION
This is the source code for 'ar', the file archiving tool.
The archiver 1is an extremely useful tool for maintaining
source code, documentation, and files of files. It also
does quite a bit of IO so will be a lovely test for your
primitives.

Two versions of the archiver have been included in this
file. The first was written by Allen Akin at Georgia
Tech. It delimits archive members by preceding each with a
header of the format:

#-h- filename size type date time

and following each with a trailer exactly the same as the
header except beginning with "#-t-". Archives are searched
by comparing headers and trailers. The size of the file
(in characters), date and time are kept only for the wuser's
convenience. All files on this tape are maintained by this
archiver.

The second version is an enhanced version of the archiver
described in "Software Tools". It separates archive
members with the same header as the Akin version, but
relies upon the size given to locate the end of the
member.

The first version has the advantage that one can edit
archive files directly without destroying their integrity.
The second version has the advantage that it can be adapted
to be used with binary files. Choose whichever vou wish.

CHANGES YOU MIGHT HAVE TO MAKE

The primitive 'mkunig' is needed to generate a scratch file
name unique to the process. This is needed to aveoid
conflicts when several users are logged in under the same
account or directory. The archiver passes a string of
characters to 'mkuniqg', wiich in turn might append to them
the process ID or some other unique identifier. If you
cannot pick up a process ID or cannot generate unique file
names in any way, or if multiple users aren't a problem on
your system, simply have ‘'mkuniq' return the character
string passed to it.

The primitive 'remove' is used to delete the scratch file
after it has been used. Read the specifications in Section
2 for implementation details.

The library routine 'amove' is used to copy the archive
scratch file back to the original after all changes have
been made. It is currently implemented as a copy-remove
operation, but if your system provides a renaming feature
you should use that instead.

=20

File 10 7/31/80 File 10

You might have a look at the routine 'gettyp'. 'Gettyp' is
a function which deteimines a files's type--local
character, ascii, or binary. This information is stored in
the archive header only for the user's convenience. In
its current form, 'gettyp' returns the file type LOCAL, £
your system has a way for vou to determine a file's type,
you might want to teach 'gettyp' to return the correct
information. ('Gettyp' is also needed by the shell, if you
intend to bring that up.)

NEW PRIMITIVES TO WRITE

remove - remove a file from the file system
amove - move (rename) a file (optional)
mkuniq - get scratch file name (optional)

gettyp - determine a file's type (character or binary) (Optional)

OTHER PRIMITIVES USED

getarg

getnow (optional)
open

create

close

getch

putch

remark

initst

endst

ROUTINES NEEDED FROM OTHER TOOLS

The library routines

-

File 11 7/31/80 File 11

The Editor

DESCRIPTION
Two versions of the editor have been included on this
file. The first version 1is the in-core editor from the
"Software Tools" book. It is provided for those
unfortunates who cannot implement random I0 on their
systems. If you can implement random I0, choose the second
version.

CHANGES YOU MIGHT HAVE TO MAKE
You'll have to implement the two random IO primitives--seek
and note. Read their descriptions carefully. Two words
have been allotted for the address returned by 'note'. You
may not need this many but several systems do so space has
been allowed for them.

You will probably be interested in fine-tuning the editor a
bit for your own system. On the random access version of
the editor, 1look at the routines 'setb' and 'getb'--they
Pick up and store information in the line pointer array.
Four items of information are kept about each line: pcinter
to next 1line, pointer to 1last line, mark (for global
commands), and seek address (2 words). Each piece of
information is kept in a separate word, but you might 1like
to pack them into fewer bits. If you do this, adjust the
symbol 'BUFENT', which sets the number of words needed for
each line.

You'll probably want to adjust the symbol MAXBUF, which
determines the maximum length of the line pointer array.

NEW PRIMITIVES TO WRITE
note - determine current file position
seek - move read/write pointer to position specified

OTHER PRIMITIVES USED
getarg
getch
open
create
putch
remark
remove
mkunig
initst
endst

ROUTINES NEEDED FROM OTHER TOOLS
The library routines

-24-

File 12 7/31/80 File 12

OTHER TOOLS

DESCRIPTION
Here are most of the rest of the tools, each included as a
separate member of an archive.

Note that a few of the tools require common blocks and
definitions already provided for other tools on the tape.
We've included them twice, but make sure that if you've
made any changes to the previous ones, vou change these
copies as well.

CHANGES YOU MIGHT HAVE TO MAKE
If you've implemented vyour primitives properly, all these
tools should come up with few problems.

Finish up any primitives you haven't written, reading the
design specifications in Section 2.

NEW PRIMITIVES TO WRITE
whatever you haven't completed (except 'spawn')

OTHER PRIMITIVES USED
getarg
getch
putch
remark
open
close
Ccreate
initst
getnow
isatty
endst
remove
mkunig

ROUTINES NEEDED FROM OTHER TOOLS
The library routines

=96

File 13 6/9/79 File 13

The Shell

DESCRIPTION
Ah, here is the piece-de-resistence: the UNIX-like shell.

CHANGES YOU MIGHT HAVE TO MAKE
You'll have to implement the primitive 'spawn'. Read the
description in Secion 2 very carefully. You may have to
alter your original version of 'getarg' (or 'makarg') so
that it can read arguments passed via 'spawn’. If vyou
cannot implement background processes, disable the 'doampr'
routine,

Have a look at the library routine 'prompt'. It is used to
output a string (such as '$ ') to the user's terminal,
suppressing the carriage-return/line-feed sequence. It
then reads input from the user. '"Prompt' expects to be
able to write to the user's terminal via the channel
descriptor passed to it. If this cannot be done on your
system, adjust prompt to open a separate channel to the
teletype.

If you haven't already implemented 'gettyp', try it again
now. The shell wuses ‘'gettyp' to determine whether a
command 1is a binary executable file or character script
file containing further commands. If you absolutely cannot
find a way to tell character files from executable code,
then the user will have to explicitly execute shell scripts
by saying:

% sh scriptname args ...

You might also want to look at the routine 'loccom', which
searches a series of directories when attempting to locate
commands. You might want to adjust it for your system.

NEW PRIMITIVES TO WRITE
Spawn - execute a subtask
gettyp - determine type of file (character or binary)
prompt - issue prompt to user and read input

OTHER PRIMITIVES USED
close
create
delarg
endst
getarg
getch, getlin
initst
open
putch, putlin, remark
remove
mkuniq

File 13 6/9/79 File 13

ROUTINES NEEDED FROM OTHER TOOLS
The library routines

D s

File 14 7/31/80 File 14

Documentation

DESCRIPTION

Here is the input source for the software tools
programmer's manual, in a format designed to be sent to the
text formatter.

Notice that it is an archived file. To produce the
documentation for, say, ratfor, the user would specify:

ar p manual ratfor | format

(Or, "ar p manual ratfor | format | crt")

To print the entire manual, the user might say:
ar p manual | format | lpr

(where 'lpr' is a combination of 'os' and 'detab', plus
whatever is necessary to spool a file to the printer).

CHANGES YOU MIGHT HAVE TO MAKE
Change anything you'd like.

=28+

File 15 7/31/80 File 15

Optional Tools

DESCRIPTION
This section contains tools which may require additional,
special-purpose primitives, or which have been submitted
for distribution without extensive testing or alteration.
These tools have been included on the tape exactly as
submitted. Each is included as a member of the archive.

CHANGES YOU MIGHT HAVE TO MAKE
72272

NEW PRIMITIVES TO WRITE
Hopefully, each tool will provide not only documentation for
tool itself, but also instructions for writing any necessary
new primitives.

OTHER PRIMITIVES USED
probably all of them

ROUTINES NEEDED FROM OTHER TOOLS
Who knows...

~-29=

the

File 16 7/31/80 File 16
Spelling Dictionary

DESCRIPTION

Here are about 42,000 words for you. We use the dictionary
for our 'spell' tool, but it's also useful for game shows,
cross-word puzzles, etc.

The dictionary is in sort order (of course), all lower
case, and with one word per line.

CHANGES YOU MIGHT HAVE TO MAKE
Add to it all you like.

=30

SPECIFICATIONS FOR SYSTEM-DEPENDENT PRIMITIVES

This part of the coockbook contains detailed specifications

to be used in the design and implementation of the software
tools system-dependent primitives.

5

PRIMITIVES 1/8/81 PRIMITIVES

OVERVIEW OF SOFTWARE TOOLS PRIMITIVES

(The '#' indicates that, on some systems, the routine may be
written in terms of the other primitives.)

FILE ACCESS
open - open an existing file for reading, writing, or both
create - create a new file (or overwrite an existing one)
close = close (detach) a file
remove - remove a file from the file system
#amove - move (rename) filel to file2
isatty - determine if file is a teletype/CRT device
gettyp - determine type of file (character or binary)

I/0
getch - read character from file
#igetlin - read next line from file
putch - write character to file
#putlin - write a line to a file
#tprompt - write to/read frum teletype; suppress cr/1f
remark - print single-line message
seek - move read/write pointer
note - determine file position of next record to be read/written
readf - read 'n' bytes/words from file
writef - write 'n' bytes/words to file
flush = flush output buffer
MISCELLANEQUS

getarg - get command line arguments

delarg - delete command line argument 'n'

initst - initialize all standard files and common variables
endst - close all open files and terminate program

mkuniqg - generate unique file name

getnow - get current date and time

spawn - execute subtask

-32-

AMOVE (2) 11/10/78 AMOVE (2)

NAME
amove - move (rename) filel to file2

SYNOPSIS
stat = amove (namel, name2)
character namel (FILENAMESIZE), name2 (FILENAMESIZE)
integer stat returned as OK/ERR

DESCRIPTION
Amove moves the conteuts of the file specified by namel
to the file specified by name2. It is essentially a
renaming of the file. If the file could be moved
properly, OK is returned. If there were problems either
creating the new file or deleting the old one, ERR is
returned.
Both file names are ascii character strings terminated
with an EOS marker.
The files need not be connected to the running program to
be renamed.

IMPLEMENTATION
Amove primarily exists to change the name of a file, such
as when moving the archive scratch file back to the
original. 1If possible, this should be implemented with a
"rename" primitive in the 1local operating svstem. If
this capability isn't available, amove could be
implemented as a copy/delete combination.
Amoves from different devices will most likely have to
be implemented as copy/remove operations.
If the system supports naming conventions for devices
such as TTYs, then amoving a file to a TTY should copy
the file to the TTY and then remove it.

SEE ALSO
fcopy, remove

DIAGNOSTICS

None

CLOSE (2) 11/10/78
NAME

close - close (detach) a file
SYNOPSIS

call close (fd)

filedes fa
DESCRIPTION

Close disassociates file descriptor
file to which it refers. If "fa"
referring to that file, all pending
the file 1is closed. If "fd" does
file, close simply returns. “£a*

descriptor as returned from an open

IMPLEMENTATION

connection
open or
write buffer is flushed and

Close breaks the
file accessed via
file's

marked so that subsequent reads will find an
opened multiple times (that is, more than
assigned to a
that multiple closes will not damage the

file has been
one internal descriptor has
care 1s taken
file.

been

SEE ALSO

open, create, endst

DIAGNOSTICS

If the file descriptor is in
returns.

between
create.

error,

CLOSE (2)

"fd" from the opened
is the only descriptor
I/0 is completed and
not refer to an opened
is an internal file
or create call.

the program and a
If necessary, the
the end of the file is
EQF. If a

file),

the routine simply

CREATE (2) 11/10/78 CREATE (2)

NAME
create - create a new file (or overwrite an existing one)

SYNOPSIS
fd = create (name, access)
character name (FILENAMESIZE)
integer access
filedes fd - returned as a file descriptor/ERR

DESCRIPTION
Create creates a new file whose name is contained in
"name" and then opens it for I/0 according to the value
of "mode", as if open had been called (see "open"). If
the file already exists, it is truncated and prepared for
overwriting.
If the creation succeeded, create returns a file
descriptor which is wused to refer to the file in
subsequent I/0 calls. If the file could not be created,
ERR is returned.

IMPLEMENTATION
Create creates a new file from within a running program
and connects the external name of the file to an internal
identifier which is then usable in subsequent subroutine
calls. If the file already exists, the old version is
removed or truncated to 0 length and overwritten. All
other functions are similar to open.
On some systems a default character type (ASCII or LOCAL)
is assigned to a newly-created file.

SEE ALSO
open, close

DIAGNOSTICS

The function returns ERR if the file could not be created
or if there are already too many files open.

DELARG (2) 6/5/79 DELARG (2)

NAME
delarg - delete command line argument number 'n'

SYNOPSIS
call delarg (n)

integer n

DESCRIPTION
Delarg deletes the "n"th command 1line argument, if it
exists. After a successful call to delarg, calls to
getarg behave as though the deleted arqument had never
been specified.

IMPLEMENTATION
Delarg works in conjunction with 'getarg'. It generally
re-orders indices to an array holding the command line
arguments.

SEE ALSO
getarg, initst

DIAGNOSTICS
If argument 'n' does not exist, delarg simply returns.

ENDST (2) 11/10/78 ENDST (2)

NAME
endst - «c¢lose all open files and terminate program
execution

SYNOPSIS
call endst

DESCRIPTION
Normally called at the end of any ratfor program or
program which uses the software tools primitives. Closes
all open files and terminates program execution.
On many systems a call to endst is made automatically,
either by the system or by specifically inserting the
call into code processed by the ratfor preprocessor.

IMPLEMENTATION
Any open files are closed. 1If any files have been opened
multiple times (that is, they have more than one internal
descriptor assigned to them), care is taken that multiple
closes do not damage the file.

SEE ALSO
close, initst

DIAGNOSTICS

None

FLUSH (2) 7/24/79 FLUSH (2)

NAME
flush - flush output buffer for file 'fa‘

SYNOPSIS
call flush (£fd)
filedes fd

DESCRIPTION
Flush assures that any remaining characters in the output
buffer of the file specified by "fd" are sent out to the
file. It is useful for sending lines to a teletype-like
device without requiring a NEWLINE character, and also
for flushing buffers after calls to "writef".

IMPLEMENTATION
It is expected that most software tools installations
will employ some form of buffered I/O. Flush is intended
to define the buffer-clearing operation that takes place
before file closing, and to provide a means of insuring
that output directed to a terminal has appeared on that
terminal (e.g. before obtaining some input after a
prompt). On systems with unbuffered 1I/0, flush is a
l'lO—Op .

SEE ALSO
prompt, writef, putch, putlin

DIAGNOSTICS

None

GETARG (2) 11/10/78 GETARG (2)

NAME
getarg - get command line arguments

SYNOPSIS
stat = getarg (n, array, maxsize)
integer n, maxsize
character array (ARB)
integer stat returned as length/EOF

DESCRIPTION
Getarg returns the "n"th argument to the current program
in the array "arg", one character per array element. The
argument is terminated by an EOS marker. 'Maxsize' is
passed as the maximum number of characters array is
prepared to deal with (including the EOS); getarg
truncates the argument if necessary. Getarg returns the
length of the argument in "arg" (excluding the EOS), or
EOF if "n" specified a non-existent argument.
On some systems, if "n" is zero, the name of the current
program is returned in "arg" and, if "n" is -1, the
function returns the number of arguments on the command
line.
Also, on some systems, command line arguments can only be
passed in a single case (upper or lower). On these
systems an escape mechanism may be necessary to indicate
case when specifying arguments.

IMPLEMENTATION

The implementation of 'getarg' may be quite different on
different operating systems. Some systems allow only
upper case (or lower case) on the command line; they may
limit size; they may not even provide access at all
without considerable contortions.

When implementing 'getarg', the designer should keep in
mind that a ‘'delarg' will also be needed. One possible
design would be to create a routine 'makarg', which would
pick up the arguments from the system, convert them to
ascii strings, handle any upper-lower case escape
conventions, and store them in an array. 'Getarg' could
then access this array, stripping off any quoted strings
surrounding the arguments, and passing them along to the
user. 'Delarg' could also access this array when
removing reference to arguments.

If it 1is absolutely impossible to pick up command line
arguments from the system, 'makarg' could be taught to
prompt the user for them.

If the shell is implemented, ‘'getarg' (or perhaps
'markarg') will have to be altered to read arguments as
passed from the shell.

GETARG (2) 11/10/78 GETARG (2)

SEE ALSO
initst, delarg

DIAGNOSTICS
None

GETNOW (2) 09/25/80 GETNOW (2)

NAME
getnow - determine current date and time

SYNOPSIS
subroutine getnow (now)
integer now (7)

DESCRIPTION
'Getnow' is used to query the operating system for the
current date and time. The requested information is
returned in a seven-word integer array, where: word 1
contains the year (e.g. 1980); word 2 contains the month
(e.g. 9); word 3 contains the day (e.g. 25); word 4
contains the hour (e.g. 13); word 5 contains the minute
(e.g. 39); word 6 contains the second (e.g. 14); word 7
contains the millisecond (e.g. 397).
The information returned by 'getnow' may be used as-is or
further wuseful processing may be done by 'fmtdat' or
'wkday'.

IMPLEMENTATION

Operating systems generally have some mechanism for
picking up the current uate and time. If yours has one,
use it.

Getnow is not critical to the implementation of the tools
and can be left as a stub if the operating system cannot
supply the needed information.

ARGUMENTS MODIFIED

now

BUGS
Some systems cannot obtain all the time information
described. Array elements that cannot be filled default
to zero.

SEE ALSO

fmtdat (2), wkday (2), date (1)

GETCH (2) 11/10/78 GETCH (2)

NAME
getch - read character from file

SYNOPSIS
c = getch (c, f£4)
character ¢
filedes fd

DESCRIPTION
Getch reads the next character from the file specified by
fd. The character 1is returned in ascii format both as
the functional return and in the parameter c. If the end
of a 1line has been encountered, NEWLINE is returned. If
the end of the file has been encountered, EOF is
returned.

IMPLEMENTATION
Interspersed calls to getch and getlin work properly. A
common implementation is to have getlin work by repeated
calls to getch.
If the input file is not ascii, characters are mapped
into their corresponding ascii format via a routine
called "inmap".
Getch 1is able to recognize an end-of-file marker from
either a terminal or a file.

SEE ALSO
getc, getlin, putch, putlin, readf, writef

DIAGNOSTICS

None

GETLIN (2) 11/10/78 GETLIN (2)

NAME

getlin - get next line from file

SYNOPSIS

stat = getlin (line, £d)

character line (MAXLINE)
filedes fa
integer stat returned as length/EOF

DESCRIPTION

Getlin reads the next line from the file opened on file
descriptor "fd" into the ascii character array "line".
Characters are copied until a NEWLINE character (or other
end-of-record marker) is found or until MAXLINE
characters have been copied. A NEWLINE character is
returned whenever an end-of-line marker has been sensed
and the entire string is termined with an EOS.

If the 1line 1is 1longer than MAXLINE characters, some
systems truncate the line to MAXLINE, while other systems
return the remainder of the 1line in the next call to
getlin.

Getlin returns EOF when it encounters an end-of-file, and
otherwise returns the line length (excluding the EO0S).

Interspersed calls to getlin and getch are allowed and
work properly.

IMPLEMENTATION

Getlin reads characters either directly from a file or
from an internal buffer set up when the file was opened.
When an end-or-record is encountered (by whatever means
the system does that sort of thing), a NEWLINE character
is returned by getlin. If the file contains characters
in a representation other than ascii, the characters are
mapped (via inmap) into their internal ascii
representation.

Getlin generally assumes a maximum size of the array 1line
passed to it (MAXLINE). If the input line exceeds the
limit, either truncate the line or return the rest of it
in subsequent calls toc getlin.

Getlin and getch are compatible; that is, interspersed
calls to getlin and getch are allowed and work properly.
A common implementation is to have getlin call getch
until a NEWLINE character is found (or MAXLINE is
reached) .

Getlin 1is able to recognize end-of-file marks from both
terminals and files.

SEE ALSO

getch, putch, putlin

GETLIN (2) 11/10/78 "GETLIN (2)

DIAGNOSTICS
None

GETTYP (2) 01/7/81 GETTYP (2)

NAME
gettyp - get type of file (character or binary)

SYNOPSIS
type = gettyp (name)
character name (FILENAMESIZE)
integer type returned as ASCII, LOCAL, BINARY

DESCRIPTION
'Gettyp' determines whether the file specified by 'name'
is ascii characters, local characters (if different from
ascii), or binary. fThe type is returned as ASCII, LOCAL,
or BINARY in the functional call.

IMPLEMENTATION
A file's type may be determined by locating system
information about the file, or ‘'gettyp' might have to
actually open the file and read part of it, making a
reasonable 'quess' as to its flavor.
The shell uses 'gettyp' to determine whether a command
verb given by the user represents a script file or an
executable tool. If the file turns out to be a character
(i.e. script) file, the shell then spawns itself with the
file as input. Thus, if 'gettyp' could not be reliably
implemented on a particular system, the user would have
to specifically execute her script files by:

% sh script ...

'Gettyp' may also be called by the archiver to store a
file's tvpe in the archive header (for informational
purposes only).
This primitive is not considered finalized. Most likely,
another primitive will be specified which is used to pick
up an assortment of information about a file. 'Gettyp'
is being wused temporarily until the final version is
specified,.

SEE ALSO

DIAGNOSTICS

ERR is returned if the file does not exist

INITST (2) 11/10/78 INITST (2)

NAME
initst - initialize all standard files and common
variables needed for the software tools primitives

SYNOPSIS
call initst

DESCRIPTION
This routine is generally the first routine called by any
program desiring to use the software tools primitives.
It opens STDIN, STDOUT, and ERROUT files, performing any
file substitutions indicated on the command line. It
also prepares the list of arguments needed by getarg and
sets up any buffers, variables, etc. needed by the
software tools primitives.
On many systems, the calls to 'initst' and 'endst" are
done automatically either by having the ratfor
preprocessor insert them into the code, or by having the
system itself call them before executing the user's
program.

IMPLEMENTATION
'Initst! initializes any common blocks, variables,
buffers, arrays, or whatever is necessary to allow the
other software tools primitives to operate. It may also
have to retrieve (via 'makarg') the 1list of command
arguments passed to the program, if this is not
automatically available from the operating system.
'Initst' is also responsible for parsing the command line
to determine if there have been any file substitutions
for STDIN, STDOUT, or ERROUT. The appropriate files
(either the user's terminal or the substitutions) are
then opened and properly positioned. Arrangements are
made so that 'getarg' won't pick up standard file
substitution flags on subsequent calls (probably by a
call to 'delarg').

SEE ALSO
endst, getarg, delarg

DIAGNOSTICS

If initst cannot function for some reason, the program
generally aborts (possibly without an error message since
the standard error file may not have been opened).

ISATTY (2) 11/13/78 ISATTY (2)

NAME
isatty - determine if file is a teletype/CRT device

SYNOPSIS
stat = isatty (£4d)
filedes fd
integer stat returned as YES/NO

DESCRIPTION
This function returns YES if the file specified by 'fd!'
is a teletype-like device, otherwise it returns NO. 'Fa’
is a file descriptor returned by a call to open or
create.

IMPLEMENTATION
When a file is opened, a flag is wusually set indicating
what device the file is associated with. This function
generally reads that flag. Other implementations are
possible, depending upon the operating system involved.
'Isatty' is generally used by the tools to determine
whether they should issue prompts or not.

SEE ALSO
open, create

DIAGNOSTICS

NO is returned if 'fd' is in error.

MKUNIQ (2) 6/5/79 MEUNIQ (2)

NAME
mkunig - generate unique file name

SYNOPSIS
len = mkuniqg (seed, name)

character seed(ARB), name(FILENAMESIZE)
integer len returned as length/ERR

DESCRIPTION
Mkuniq generates a "unique" file name from a given seed
string. This name is intended for wuse in subsequent
calls to create and open. "Len" is returned as the
number of characters in "name", not including the EOS
marker. If there was some problem in creating the name,
ERR is returned.

Mkunig is generally used for generating scratch file
names, such as those needed by the editor and archiver.

On single-user systems or others where the unique naming
of scratch files is not important, mkuniq simply returns
"seed". More sophisticated versions may construct a file
name in a special directory, use process 1ids or
time-and-date to insure uniqueness.

IMPLEMENTATION

'Mkuniq' is used to avoid conflicts which occur when more
than one user 1is 1logged in under a single user or
directory name. The optimum implementation would be to
return an absolutely unique file name based on 'seed'.
However, on most systems this is impossible. Another
solution would be to append (or prepend) some sort of
process identifier to 'seed', thus making the file name
at least wunique to the «calling process. To avoid
privilege violations it might also be necessary to choose
a specific directory for all scratch files, with
appropriate privileges being assigned to it.

On some systems, 'seed' is limited to a certain number of
characters.

On single-user systems, systems with local files, or
other circumstances where unique file names are not a
problem, 'mkuniq’ can simply return the ‘'seed' as
'name’.

SEE ALSO

DIAGNOSTICS
If a £file name could not be generated, ERR is returned.

NOTE (2) 11/13/78 NOTE (2)

NAME
note - determine current file position

SYNOPSIS
stat = note (offset, fd)
integer offset(2)
filedes fd
integer stat returned as OK/ERR

DESCRIPTION
Note determines the current value of a file's read/write
pointer. The argument "offset" is a 2-word integer array
that will receive the information. Offset is maintained
untouched by the user and passed to "seek" when desiring
to return to that particular location in the file.
Note is wusually used as the file is being written,
picking up the pointer to the end of the file before each
record is inserted there.
On text files (e.g. those created by calls to putch,
putlin), note is guaranteed to work at line boundaries
only. However, it should work anywhere on a file created
by calls to writef.

IMPLEMENTATION
Note is compatible with whatever implementation is chosen
for seek and the opening of files at READWRITE access.
Offset is a two-word integer in which is stored a
character count, word address, block and record address,
or whatever is appropriate for the local operating
system. Note should be taught to return
BEGINNING_OF_FILE and END_OF_FILE where appropriate.
In the editor, note is cailed to locate the end of file
for subsequent writes.

tEE ALSO
seek, readf, writef

DIAGNOSTICS

None

OPEN (2) 11/1./78 OPEN (2)

NAME
open - open an existing file for reading, writing, or
both

SYNOPS1IS
fd = open (name, access)
character name (FILENAMESIZE)
integer access
filedes f£d - returned as file descriptor/ERR

DESCRIPTION
Open opens the file whose name is contained in "name" for
I/0 according to the value of "mode", which may be READ,
WRITE, READWRITE, or APPEND. If the file exists and can
be opened according to "mode", open returns a file
descriptor. If the file cannot be opened, ERR is
returned.
After a file is opened, it is positioned at the
beginning, unless APPEND access is requested, in which
case the file is prepared for extension.
Opening the same file for reading more than once is
permissible and works correctly. However, on many
systems a file may be orened only once in WRITE, APPEND,
or READWRITE mecde.
There is generally a limit to the number of files that
can be opened simultaneously. This number is specified
by the definition MAXOFILES in the general symbol
definition file.

IMPLEMENTATION

Open attaches an existing file to a running program and
associates the external file name with an internal
identifier which is then usable by the program. The file
is opened for I/0O according to the value of "mode", where
mode may be READ, WRITE, READWRITE, or APPEND. "Name" is
passed as an ascii character array, stored one character
per array element. The access mocdes READ, WRITE,
READWRITE, and APPEND are global symbols defined in the
standard definitions file.

Open does whatever manipulations are necessary to allow
reading and/or writing to the file. An internal
descriptor (usually an integer) is assigned to the file
and subsequently used when calling other primitives such
as close, getch, putch, getlin, and putlin.

'Open' should be able to open a channel to the teletype
in responce to the filenaues defined by TERMINAL IN and
TERMINAL_OUT. It also might be taught to respond to
other device names where appropriate.

Open may have to set up an internal I/0 buffer for the

=%=

OPEN (2) 11/10/78 OPEN (2)

file. It may also have to determine the file's type
(teletype, character file, binary file). Information
about the file's type and teletype characteristics (yes
or no) is generally maintained and made available to the
user via "isatty" and possibly other file characteristics
primitives.

Open is sometimes taught to read characters of ascii type
as well as local character type (if not ascii).
Translation of characters from local to ascii is done
when the characters are passed to getch and getlin.

Opening a fresh instance of an already opened file is
permissible and does not affect the position of the file
as accessed by subsequent or previous calls.

There 1is generally a limit to the maximum number of files
open at any one time. 10-15 is a common range.

READWRITE access may cause problems, or even be
impossible on many systems. The only tool which needs
this access is the editor. If necessary, READWRITE
access may be implemented by opening the file twice--once
at READ and once at WRITE access.

SEE ALSO
create, close, remove, getch, putch, readf, writef, seek,
note, isatty

DIAGNOSTICS
Open returns ERR if the file does not exist, if one of
the necessary directories (if any) does not exist or is
unreadable, if the file is not readable/writeable, or if
too many files are open.

PROMPT (2) 6/5/79 PROMPT (2)

NAME
prompt - prompt user for input

SYNOPSIS
call prompt (str, buf, £d)

character str (ARB), buf (MAXLINE)
filedes fd

DESCRIPTION
Prompt determines if "fd" refers to a teletype-like
device and, 1if so, writes the prompt string "str" to the
TTY, and flushes its output buffer to insure the prompt
is printed. A line of input is then read from £d by
"getlin".

No carriage return/line feed sequence is done unless
specified by a NEWLINE in the prompt string.

IMPLEMENTATION
The version of 'prompt' on the tape is essentially:

if (iTatty(fd) == YES)

call putlin(str, fd)
call flush (£4)
stat = getlin (buf, £d)

Note that prompt expects to be able to read from and
write to 'fd'. If this is not possible on your system,

modify prompt to open a separate channel to the teletype
for the write.

SEE ALSO
putlin, remark, flush, isatty

DIAGNOSTICS
None

PUTCH (2) 11/10/78 PUTCH (2)

NAME
putch - write character to file

SYNOPSIS
call putch (c, fd4d)
character c
filedes fd

DESCRIPTION
Putch writes the character c onto the file specified by
file descriptor "fd". 1If ¢ is the NEWLINE character, the
appropriate action is taken to indicate the end of the
record on the file. The character is assumed to be in
ascii format; however, if the ocutput file is not of ascii
type, the necessary conversion is done.

IMPLEMENTATION
Interspersed calls to putch and putlin work properly.
One implementation is to have putlin perform repeated
calls to putch.
If the output file 1is not ascii, characters are mapped
into their corresponding format via the routine outmap.

SEE ALSO
putc, putlin, getch, getlin, readf, writef

DIAGNOSTICS

None

PUTLIN (2) 11/10/78 PUTLIN (2)

NAME
putlin - output a line onto a given file

SYNOPSIS
call putlin (line, f£fd)
character line (ARB)
filedes fd

DESCRIPTION
Putlin writes the characters in "line" to the file opened
on file descriptor "fa4a". If a NEWLINE character is
located, appropriate action is taken to indicate the
end-of-record in whatever format is necessary for the
local operating system. If no NEWLINE character is
specified, no carriage return (or end-of-record) is
assumed. This probably means that the output buffer will
not be flushed.
Any necessary character translation is done if the output
file is not of ascii type.

IMPLEMENTATION
Putlin should write the line onto the file and, if a
NEWLINE 1is encountered, do whatever is necessary to
indicate to the local operating system that a record has
been generated. If the output file is to contain
characters in a representation other than ascii, the
characters are mapped (via outmap) into their proper
representation.
Putlin and putch are compatible; that is, interspersed
calls to putlin and putch are allowed and work properly.
A common implementation is to have putlin call putch
until an EOS marker is found.

SEE ALSO
putch, prompt, remark, getch, getlin

DIAGNOSTICS

None

READF (2) 6/30/78 READF (2)

NAME
readf - read from an opened file

SYNOPSIS
count = readf (buf, n, £d)
character buf (ARB) or integer buf (ARB)
integer n
filedes fd
integer count returned as count/EOF

DESCRIPTION
Readf reads "n" bytes (or words) from the file opened on
file descriptor "fd" into the array "buf". The bytes (or
words) are placed in "buf" one per array element. Readf
is the typical way of doing binary reads on files.
Whether buf 1is declared an integer or a character array
is dependent upon which is most appropriate for the host
operating system.
Readf returns the number of bytes/words actually read.
In most cases, this is equal to "n". However, it may be
less 1if an EOF has been encountered or if "fd" specified
a device such as a terminal where 1less than "n" Dbvtes
were input.

IMPLEMENTATION
Readf 1is the typical way of implementing binary I/0. Do
whatever is necessary on your system to allow users to
get at the file directly.
If reasonable, design readf to work properly in
conjunction with getch and getlin.

SEE ALSO
writef, getch, putch

DIAGNOSTICS

None

REMARK (2) 11/13/78 REMARK (2)

NAME
remark - print single-line message

SYNOPSIS
call remark (message)
integer message - message is a hollerith array

DESCRIPTION
Remark writes the message onto the standard error file
ERROUT. A NEWLINE is always generated, even though one
may not appear in the message. The message array is
generally a Fortran hollerith string in the format
generated by the Ratfor quoted string capability. On
some systems it may be necessary to indicate the end of
the message with a period ".". For example,

call remark ("this is a warning message.")

The escape character "@" may be used to output a period
(e.g. @.) and on some systems, the escape sequences "@t"
and "@n" and "@b" may be used to output a TAB, NEWLINE,
and BACKSPACE respectively.

IMPLEMENTATION
Remark is very similar to error except it returns after
printing, instead of stopping. It expects its argument
to be a hollerith string which is produced by the ratfor
quoted string capability. If your system has no way of
determining the end of hollerith strings, you might have
to require users to include a termination character such
as a ".". (All the quoted strings in the software tools
socurce code do terminate with a dot.)
Remark is similar to the following, except the message
string is hollerith rather than character:

call putlin (message, ERROUT)
call putch (NEWLINE, ERROUT)

SEE ALSO
error, putlin, putch, prompt

DIAGNOSTICS

None

REMOVE (2) 11/10/78 REMOVE (2)

NAME
remove - remove a file from the file system

SYNOPSIS
stat = remove (filename)
character filename (FILENAMESIZE)
integer stat returned as OK/ERR

DESCRIPTION
From within a running program, remove (or delete) the
file specified by "name" from the file system. "Name" |is
an ascii character array. The file need not be opened to
be removed.
If the file exists and can be removed, OK is returned.
If the file does not exist or cannot be removed for some
other reason, the function returns ERR.

IMPLEMENTATION
The file to be removed need not be connected to the
running program. However, if it is, remove closes the
file before removing it.

SEE ALSO
open, close, create

DIAGNOSTICS

If the file does not exist the routine returns ERR.

SEEK (2) 11/13/78 SEEK (2)

NAME
_ seek - move read/write pointer

SYNOPSIS

call seek (offset, fd)

integer offset (2)

filedes fd

integer stat returned as OK/ERR
DESCRIPTION

Seek moves the read/write pointer of the file specified
by "fd" to a (previously identified) spot specified by
"offset". "Offset" must have been set by a call to
“note", or its first element must be set to one of the
constants END_OF_FILE or BEGINNING_OF FILE (definitions
available in the standard symbols file).

Once the file 1is positioned by a call to seek, reading
can be done using the standard I/0 calls (getch, getlin,
readf).

Seek can alse be used for seeking to the end of a file
and performing a write (thus extending the file).

Rewriting in place may not be allowed on some systems.

~~ IMPLEMENTATION
Seek depends heavily upon the peculiarities of the
operating system. It can generally be used on files
opened at READWRITE access.

The offset wunits are chosen to be whatever is most
appropriate for the system involved: characters, words,
records, block numbers, 1line numbers, etc. Two words
have been allotted for "offset" although some systems may
not need that much.

On some systems READWRITE access may have to be
implemented by opening the file twice, once at READ and
once at WRITE access.

'Seek' should be made compatible with the standard
reading and writing routines.

SEE ALSO
note

DIAGNOSTICS
None

SPAWN (2) 11/13/78 SPAWN (2)

NAME
spawn - execute subtask

CYNOPSIS
stat = spawn(command, args, desc, waitflg)
character command (ARB) , args (ARB), desc (ARB) , waitflg
integer stat returned as OK/ERR

DESCRIPTION
Spawn is called to cause execution of a subtask.
'‘Command' is an ascii character array giving the
(file)name of the task to be executed.
'Args' is an ascii character array giving the command
line arguments to be passed to the subtask. The
arguments are separated by blanks and the entire string
is terminated with an EOS marker.
'Desc' is returned as a character array containing an 1ID
for the spawned subtask. This ID may be passed to the
'pstat', 'suspnd', 'resume', and 'kill® process control
tools (if implemented).
'Waitflg' is a flag indicating whether or not spawn
should return before execution of the task is completed.
If WAIT is passed, spawr does not return until execution
of the task has completed (the situation for normal
commands) . If NOWAIT is passed, spawn begins execution
of the task and immediately returns (for use with real
pipes). If BACKGROUND is passed, spawn executes the task
as a background process and immediately returns.
If the task cannot be executed, spawn returns ERR;
otherwise it returns OK.
Spawned tasks must be properly taught to read their
command line arguments in whatever manner spawn sends
them.

IMPLEMENTATION

Spawn is, by far, the most difficult primitive to
implement. A few of the major obstacles which must be
overcome are:

1. Does the target operating system permit a running
process to spawn a subprocess? If it provides a
multi-user, interactive environment, : & o most
certainly does, but it may not be common knowledge
as to how to do it. For example, the following DEC
implementations have been done by the LBL group:

a) RSX11lM - a loadable pseudo-driver is used to
stuff MCR commands into MCR's queue, via gio
requests.

SPAWN (2)

2,

SEE ALSO

DIAGNOSTICS

WRITEF

11/13/78 SPAWN (2)

b) IAS - the TCS macros provided by the operating
system for custom CLI construction are used.
The only interface is from assembly language,
so that is the language used.

c) VMS - the sysScreprc system service, which is
callable from any supported language, is used.
In fact, the entire spawn primitive is written
in ratfor.

Once one has determined how to spawn the process, it
is necessary to determine how to control it. If the
operating system does not provide any
synchronization methods, then they must be
implemented,

Finally, one must determine how to communicate the
arguments and environment information to the
subprocess. This generally entails an exploration
of the system provided interprocess-communication
mechanisms, and often requires the invention of
better ones.

A message 'Cannot spawn process' is printed if that
situation occurs.

(2)

6/30/78 WRITEF (2)

NAME
writef - write to an opened file

SYNOPSIS
count = writef (buf, n, fd)

—~ character buf (ARB) or integer buf (ARB)
integer n
filedes fd
integer count returned as count/ERR
DESCRIPTION

Writef writes "n" bytes from the array "buf" to the file
opened on file descriptor "fg". %ritef is the typical
way of doing binary writes to files. Whether buf is
declared an integer or a character array is dependent
upon which is most appropriate for the host operating

system.

Writef returns the number of bytes/words actually

written. 1In most cases, this is equal to "n", 1f;

however, a write error occurs, writef returns ERR.
IMPLEMENTATION

Writef is the typical way of implementing binary I/0. Do
whatever is necessary on your system to allow users to
get at the file directly.

If reasonable, design writef to work properly in
conjunction with putch and putlin.

SEE ALSO
readf, putch, putlin

—

JIAGNOSTICS
None

