subject: Study of UNIX

Messrs. W. S. Bartlett
D. P. Clayton
D. H. Copp
Mmes. G. J. Hansen
J. Hintz
Mr. L. J. Kelly
Miss R. L. Klein

Messrs.

Mrs.
Messrs.

Mrs.

Bell Laporatoﬁes.

date: September 14, 1972
tom: T. R. Bashkow

J. Ludwig
F. Maranzano
Pettit

E. Ritacco
A. Tague -
W. Vogel

S. Wright

On Tuesday, September 19, at 9:30 a.m. in

Room 2A-418 at Murray Hill, I will give a talk on my study

of the UNIX operating system.

The emphasis will be on the

structure, functional components, and internal operation

of the system.

MH-8234-TRB-mbh

Copy to '
Mr. G. L. Baldwin

R.

Bashkow

TRt

a

Subject: ‘PreliminaryfRelease of Date: 6/20/72
UNIX Implementation Document

- The contents of this document are incomplete and subject to rapid
change both in subject matter end organization. The purpcse of this

. release is to make the informsztion it contains available to persons
who have an immedizte and pLeSa*p need. The sections lhat are
included here ccontain the following information:

Section Contents
E.0 - E.10 Commented listing of UNIX operating
' system '
BE.11 " Commented listing of UNIX shell
E.12 ' Commented listing of UNIX
_ initislizztion progranm
F System Overview
G Data Rase Item Descriptions
H.O - H,9 Verbal degeriptions of UNIX
rontlnes.
The verbsl deceriztions in sectionmn ELO oo .G correoopond to tho
listings in Z.0 - E.9, Hewever, the routires sre listed in al ﬁﬂLbP+Jb&”
orcder in the K szcticng, rather than in the crder thev srrvear in ths
listings.

-J. DeFelice

modifications to UNIX to accomcdate the T4002A graphic console

uo

uo

uo

uo

u7

Page 1 add
gks = 177 -—- / graphic input status
gkb = 177 --- / graphic input buffer
gps = 177 -— / graphic output status
gpb = 177 =-- / graphic output buffer
Page 2 add somewhere

dspi; 240 / graphic input interrupt vector
Page 3 add at end of set up time out routines’
mov ¢ wakdsp, (r0) / time out subroutine for display
Page 4 add at end of device diréctory

23,
<dsp\0\o\0o\0> / T4002A

Page 4,5 add to end of icpen list
odsp / T4002A

add program odsp below

odsp: / open T4002A for reading or writing

mov $100,%sgks / set interrupt enable on input
mov $14,r1 / put np in r1 (erase, home)
jsr r0,chout / ougput the char

mov $21,r1 / put dci in ri (turn on joystock)
jsr r0,chout / output char

mov 637,r1 / put us in r1 (alpha mode)

jsr rO,chout / output char

br sret

/Note: a graphic block and buffer like the tty’s are not used. May

ué

need them when more than 1 disply is added.
Page 1 add at end of readi list
rdsp / T4002A

add the routine rdsp

rdsp: / read from the graphics terminal

mov $240,%sps / set ps to 5 _

jsr r0,getc; 22 / take char off clist and put it in rt
br 1f / list is empty, go to sleep

clr *¥sps / clear ps

jsr rO,passc / move char to user core

br rdsp / get next char

mov r5,-(sp) / save r5
jsr rO,sleep; 22 / put input process to sleep
mov (sp)+,r5 / restore rS
br . rdsp / try again
_add somewhere dspi.>

e -

dspi: / graphic display input interrupt routine
jsr rO,setisp / save r1, r2, r3
mov ¥3gkb,r1 / put char in ri
inc *¥s,9ks / set reader enable bit
bic $1177,r1 / strip char to 7 bits
jsr rO,putc; 22 / put char on the clist

br 1f / if full return
/Note: char is not echoed and quit
(£s) and interrupt (del) char are

/ not processed
cnp r1,$4 / char = eot
beq 1£
cmp r1,$12 / char = 1f
beg 1£ :

cmpb cc+22,315 / are there less than 15 char on the clist?
blo retisp / yes, return

1t Jsr rO,wakeup;runq; 22 / wakeup the process that’s inputting
br retisp / return

ub Page 3 add to bottom of writei list
wdsp / T4002A

{a@dd routines wdsp, chout, and wakdsp h

/ write routine for the T40022 graphics console

/ a character at a time is taken out of the graphic
/ instruction buffer and sent over to the T4002A

wdsp: / write on the graphic display
jsr rO,cpass / set next char from user buffer area
/ if none, return to syswrite
tst r1 / is the character null
beq wdsp / yes, get the next character
jsr rO,chout / output the character
br wdsp / get next character

chout: / do the actual output of the character
tstb *$gps / check for output ready
bge chout / wait for ready

1:
tstb = toutt+12 / check time out
bne 1b / wait for it to be 0
movb r1,¥s$gpb / output the character
cmpb r1,$14 / is char £ff (erase, home?)

beq 1£ " "
cmpb r1,$30 / is char can (erase)?
beq 1£

cmpb 1r1,$5 / is char eng (digitize joystock)?

beg 2f

rts x0

1:
movb $30,toutt+12 / put 500 ms delay for erase
jsr r0,sleep; 23 / put output process to sleep
rts r0

movb $2,toutt+12 / put in 20 ms delay for joystick
rts r0

/ time out subroutine for display
wakdsp: / wakeup the output process

jsr r0, wakeup; runqg+2; 23
rts r0

UNIX IMPLEMENTATION

/ u0 =— unix

cold = 0 '
orig =0 . / orig = 0. relocatable
rkda = 177412 / disk address reg rk03/rk11
rkds = 177400 / driv status reg rk03/rk11
rkcs = 177404 / control status reg rk03/rk11
resr = 174000 / receiver status reg dc-11
rcbr = 174002 / receiver buffer reg dc-11
tcsr = 174004 / xmtr status reg dc-11
tcbr = 174006 / xmtr buffer reg de-11
test = 177340 / dec tape control status tc11/tus6
tcem = 177342 / dec tape command reg tc11/tus6
tcwe = 177344 / word count tc11/tus6
tcba = 177346 / bus addr tc11/tus6
tcdt = 177350 / data reg tc11/tusé
dcs = 177460 / drum control status rf11/rs11
dae = 177470 / drum address extension rf11/rs11
lks = 177546 / clock status reg kwi1-1
prs = 177550 / papertape reader status pc11
prb = 177552 / - buffer pci1
pps = 177554 / punch status pcti
ppb = 177556 / . punch buffer pct1
/lps = 177514 1line printer status (future)
/lpb = 177516 1line printer buffer (future)
tks = 177560 / console read status asr-33
tkb = 177562 / read buffer asr-33
tps = 177564 / punch status asr-33
tpb = 177566 / punch buffer asr-33
ps = 177776 / processor status :
halt = 0
wait = 1
rti = 2
nproc = 16. / number of processes
nfiles = 50.
ntty = 8+1
nbuf = 6
- oif cold / ignored if cold = O
nbuf = 2

.endif

core = orig+40000 / specifies beginning of user’s core
ecore = core+20000 / specifies end of user’s core (4096 words)

/ %Qf 434 {nit by copy
/ 4°(unkni;0 _ bus error
/ o)1t fpsym30 illg in tr
141 unkni ;0 / trace and trap (see Sec. B.1 page)
10;21unkni 30 / trap
1;2bpanic;o / pwr
% '3 rtssym;0 / emt
%% sysent;0 / sys

Issue D Date 3/17/72 ID IMO.1-1 Section E.0 Page 1

UNIX IMPLEMENTATION

o = or1g+60
2 ttyi3240

b0l / interrupt vector tty imn 3

64 6tty0°240 /
/
/

interrupt vector tty out
punch papertape in
punch papertape out

processor level 5

7mvlppti 240
74, b pptos 240

;ﬂ/ﬂclock-340 / clock interrupt vector s processor level 7
« = Oorig+200 -
/ lpto; 240 1line printer interrupt ;s processor level 5 (future)
e = Orig+204 '
drum;300 / drum interrupt 3 processor level 6
*« = orig+214

tape;300 / dec tape interrupt
disk3;300 / rk03 interrupt
e = orig+300

o*4+trev;
1*4+trev;
2%4+trev;
3*4+trcv-
4*4+trcv-
5*4+trcv'
6*4+trcv;

O*4+txmt;
1#4+txmt
2#4+txmt;
3¥4+txmt
4%#4+txmt;
5%4+txmt;
6#4+txmts

240 / dc11 inputjoutput interrupt vectors
240
240
240
240
240
240
240

7¥*4+trcv; 7#4+txmt;

« = orig+400
/ copy in transfer vectors

nov secore,sp / put pointer to ecore in the stack pointer
jsr r0,copyz; 0; 14 / clear locations 0 to 14 in core
mov 84,r0
clr r1 _)
mov r0,(r1)+ / put value of 4 into location 0
mov r0,(r1)+ / put value of 4 into location 2
mov sunkni,(r1)+ / put value of unkni into location 4;
/ time out, bus error
clr (r1)+ / put value of 0 into location 6
mov gfpsym, (r1)+ / put value of fpsym into location 10
clr (r1)+ / put value of O into location 12
/ clear core
oif cold / ignored if cold = O
halt / halt before initializing rf file system- user has
/ last chance to reconsider
eendif
jer r0,copyz; systm; ecore / clear locations systm to ecore
mov $s.chrgt+2,clockp / intialize clockp
/ alloccate tty buffers; see H.0 for description
mov ebuffer,ro
mov stty+6,r1
1:
mov r0,(xr1)
add $140.,r0 / tty buffers are 140. bytes long
add $8,r1
ng r1,stty+[ntty*8] / has a buffer been assigned for each tty
o] 1b

/ allocate disk buffers; see H.0 for description

Issue D Date 3/17/72 ID IMO.1-1 Section E.0 Page 2

UNIX IMPLEMENTATION

mov sbufp,r1

mov ro,(x1)+

add = ¢8,rx0

mov r0,-2(r0) / bus address

mov $-256.,-4(r0) / word count

add $512.,r0 / buffer space

cmp ri1 ,sbufp+nbuf+nbuf

blo 1b)

mov $sb0, (xr1)+ / I/0 queue entry drum

mov gsb1,(r1)+ / 1/0 queue entry disk (mounted device)

mov $swp,(r1)+ / I/0 queue entry core image being swapped

mov ¢ [systm-inode]\/2,sb0+4 / sets ur initial buffers per
/ format given in

mov ¢systm,sb0+6 / memory map
mov $-512.,8b1+4

mov g$mount , sb1+6

mov $user,swp+6

/ set devices to interrupt

mov 8100,%$1ks / put 100 into clock status register;
/ enables clock interrupt

/ set up time out subroutines

mov $touts,r0 '
mov g¢startty,(r0)+ / if toutt = O call startty
mov $pptito,iro)+ / Lif toutt+1 = O call pptito
tst (xr0)+ / add 2 to r0

mov gntty-1,r1

13 :
mov gxmtto, (r0)+ / if toutt+2 thru toutt+2+ntty=0 call xmtto
dec r1
bne 1b

/ free all character blocks; see H.0 for description

mov 6510 .,r2
mov $-1 ,1‘1

jsr r0,put
sub $2,r2
bgt 1b

/ set up drum swap addresses; see H.0 for description

mov $1024.-64.,r1 / highest drum address; high 64 blks allocated

/ to UNIX _
mov ¢p.dska,r2 / p.dska contains disfaddresses for processes
18
sub 817.,r1 / 17 blocks per process
mov ri,(r2)+
cmp r2,5p.dska+nproc+nproc
bne 1b

Issue D Date 3/17/72 ID IMO,{-1 Section E.0 Page 3

UNIX IMPLEMENTATION

/ free rest of drum

+1f cola

mov
mnov -

18
dec
jsr

cmp
bgt

/ zero i list

1¢
dec
jsr
tst
bgt
«endif

$128,,8ystm / initialize word 1 of drum superblock image;
/ number of bytes in free storage map=128.
$64.,systm+2+128. / init., w3 66. of superblock image; # of
/ bytes in i-node map=64.

"I1 / r12687.,.40,34.

r0,free / free block ‘rt1’, i.e., set bit ‘r1’ in free
/ storage map in core

r1,834. / first drum address not in i list

1b / if block 34 has been freed, zero i list

rO/rO 33¢5000,1

r0,clear / zero block ‘r1’ on fixed head dis™

r1

1b / if blocks 33,...,1 have all been zeroed, done.

/ makz current program a user

mov $41.,r0 / rootdir set to 41 and never changed
mov r0,rootdir / rootdir is i-number of root directory
mov ro,u.cdir / u.cdir is i-number of process current directory
mov $1,r0
movb rO,u.uno / set process table index for this process to 1
mov rO,mpid / initialize mpid to 1
mov r0,p.pid / p.pid identifies process
movb rO,p.stat / process status = 1 i.e., active
= 0 free
oif cold / = 2 waiting for a child to die
/ = 3 terminated but not yet waited
/ ‘for

/ initialize inodes for special files (inodes 1 to 40.)

mov
1
jsr

mov
movb
movb

jsr

dec
bgt

$40.,r1 / set ri=i-node-number 40,

r0,iget / read i-ncde ‘r1’ from disk into inode area of
/ ccre and write modified inode out (if any)

| $100017,1i.f1gs / set flags in core image of inode to indi-

/ cate allocated, read (owner, non-owner),
/ write (owner, non-owner)

81,i.nlks / set no.. of links = 1

$1,i.uid / set user id of owner = 1

ro,setimod / set imod=1 to indicate i-node modified, also

~ / stuff time of modification into i-node
r1 / next i-node no. = present i-node no.-1
1b / has i-node 1 been initialized; no, branch

/ initialize i-nodes r1.,...,47. and write the root device, binary, etc.,
/ directories onto fixed head disk. user temporary, initialization prog.

Issue D Date

3/17/72 ID IMO.1-1 Section E.0 Page 4

nov
mov

mov

beq
jsr
bisdb

jsr
mov

movb
movb
jsr

mov

mov
clr
add
jsr
br

«endif

UNIX IMPLEMENTATION

g$idata,r0 / rO=base addr. of assembled directories.
gu.off,u.fofp / pointer to u.off in u.fofp (holds file
/ offset)

(r0)+,71/r1=41450005,47; 0" in the assembled directory

/ header signals last
£ -/ assembled directory has been written onto drum
rO,imap / locate the inode map bit for i-node ‘ri1’
mq,(r2) / set the bit to indicate the i-node is not

/ available
rO,iget / read inode ‘r1’ from disk into inode area of

/ core and write modified i-node on drum (if any)

(ro)+,i.flgs / set flags in core image of inode from
/ assembled directories header
(r0)+.i.nlks / set no. of links from header
(r0)+,i.uid / set user id of owner from header
r0,setimod / set imod=1 to indicate inode modified: also,
/ stuff time of modification into i-node

(ro)+,u.count / set byte count for write call equal to

' / size of directory -
rO,u.base / set buffer address for write to top of directory
u.off / clear file offset used in ’‘seek’ and ‘tell’ ‘
u.count,r0 / r0 points to the header of the next directory
ro,writei / write the directory and i-node onto drum
1b / do next directory

/ next 2 instructions not executed during cold boot.

bis
jsr
tstdb

bne

decb
sys

br
1:

2£30
22

$2000,8b0 / sb0 I/O queue entry for superblock on drum;
/ set bit 10 to 1
rO,ppoke / read drum superblock

sbo+1 / has I/O request been honored (for drum)?
1b / no, continue to idle.

sysflg / mormally sysflag=0, indicates executing in system
exec; 2f; 1f / generates trap interrupt; trap vector =

/ sysents O
panic / execute file/etc/init

Cle
T [T Lk e B S EO00

</etc/init\0> / UNIX looks for sﬁrings term, noted by nul\0

panic:
clr
dec
bne
dec
bne

Jmp

Issue D Date

pPs

$0
1>
$5
1b
#4473700 / rom loader address

3/17/72 ID IMO,1-1 Section E.0 Page S

rtssyms:
mov
mov
mov
mov
bic
asl

Jmp

mov
br

mov
br

mov
br

mov
br

mov
br

mov

cmp
blo
crp
bhis
bit-
bne
tst

add
mov
mov
mov
rti
13
rts
rts
rts
rts
rts
rts
rts
rts
badrts:

mov
mov

rpsyms

Issue D Date

UNIX IMPLEMENTATION

r0,~(sp)
r1,~(sp)
4(sp),r0
"’(IO),ro
$17,r0
r0
#1£(x0)

Of;1£;2£;3£;4€;5F;3badrts ;7

2(sp),r0
1£

r2,r1
1£

r3,r1
1£

rd,r1
1£

r5,r1
1£

8.(sp),r1

r1,8core
badrts
r1,$ecore
badrts
$1,r1
badrts
(r1)
badrts
$1£,x0
1'094(513)
(sp)+,r1
(sp)+,r0

r0
r1
r2
r3
r4
r5
8p
pc

(sp)+,r1
(sp)+,r0

3/17/72 ID IMO.1-~1

Section E.0 Page 6

idata:

/ root

9:

UNIX IMPLEMENTATION

Jmp unkni
«1f cold

41.
140016

.byte 7 »1

9f-.-—2

41.
2;.\o\o\o\o\o\o>
ééio\o\o\o\o\o\o>
ggév\o\o\o\o\o>
i:in\o\o\o\o\o>
igéc\o\o\o\o\o>
<u;r\o\o\o\o\o>

46.
<tmp\0\0\0o\o\0>

/ device directory

42.
140016

obyte 2,1

9f"o"‘2

41,
§§°\0\0\0\0\0\0>
g;{o\o\o\o\o\o\o>
égéy\o\o\o\o\o>
ggét\o\o\o\o\o>
<mém\o\o\o\o\o>
<rf0\0\0\0\0\0>
(rk0\0\0\0\0\0>
(tapO\O\O\O\O)
<tap1\0\0\0\0>
<tap2\0\0\0\0>

(tap3\0\0\0\0> ,

Igssue D Date 3/17/72

ID IMOO1 “‘1

Section E.0 Page 7

UNIX IMPLEMENTATION

22;p4\0\0\0\0>
lléps\o\o\o\o>
lz;ps\o\o\o\o>
LEApT\O\O\ONO
lééyo\o\o\o\o>
<Ety1\O\O\ONO
lgéy2\0\0\0\0>
lz€y3\0\0\0\0>
LELya\O\O\ONOD
$ELy5\O\O\O\OD
22€y6\0\0\0\0>
<Lty T\O\ONONOD
ZIor\0\0\O\ONO

01.
<tty8\0o\o\o\0> / really tty
93

/ binary directory"

43,
140016
.byte 2,3
9f—o‘2

41.
<. .\0\O\O\o\o\O>

43,
o <.\o\o\o\o\o\o\o>

/ etcetra directory

44.
140016
bete 2’3
f-e=2

41.
ﬁa.\o\o\o\o\o\o>
i;io\o\o\o\o\o\o>

'9 <init\o\o\o\0>
:

Issue D Date 3/17/72 ID IMO.1-1

Section E.0 Page 8

UNIX IMPLEMENTATION

/ user directory

9:

45,
140016
.byte 2 ’1
gf"' .-2

41 .
ig.\o\o\o\o\o\o>
<\0\0\0\0\0\0\O>

/ temporary directory

9:

46.
140017
Obyte 2’1
9f-.-2

41.
<é.\o\o\o\o\0\o>
46.
< \0\o\o\o\o\o\o>

/ initialization program

13

KH

47.

100036

Qbyte 1,3

9f-.-2

sys breaks; O

sys open; 6f-8b+core; O
mov r0o,r1)

sys seek; 6543 O

mov ri,x0 ‘

sys read; 9f-8b+core; 512.
mov 9f,r5 / size
beq 1£

sys creat; 9f-8b+core+4; O
mov r0,r2

movb 9f+2,0f

sys chmod; 9f-8b+core+4; Ot.e.

movb 9f+3,0f

sys chown; 9f-8b+core+4; O:..
tst rS

beq 2f

mov ri,r0

sys read; 9f-8b+core; 512.

mov $512.,0f
cmp r5,%$512.
bhi 3f

mov r5,0f

Issue D Date 3/17/72

ID IMO.1-1 Section E.O

Page 9

UNIX IMPLEMENTATION

mov r2,r0
sys write; 9f-8b+core; Ot
sub rO,r5
br 2b
23 '
mov r2,r0
sys close
br 1
1:
mov ri,r0
sys close -
sys execy S5f-8b+core; 4f-8b+core
8ys exit o
(2

S
> ij'sb;m@:\ thes /W’ﬂ s il g Ty g Lo
) eet/in -y . .
' (Jaev/eaporoy spplecad Lo o oy sfon
A of This iil o ¥ 7
93 .
/ end of initialization data
0

«endif

Issue D Date 3/17/72 ID IMO.1-1 Section E.0 Page 10

UNIX IMPLEMENTATION

/ ul —— unix

unkni: / used for all system calls

sysent:
incb sysflg / indicate a system routine is
beq 1f / in progress
Jmp panic / called if trap inside system

mov $s.8yst+2, clockp

mov r0,~-(sp) / save user registers ,

mov sp,u.r0 / pointer to bottom of users stack in u.rO

mov r1,~-(sp)

mov r2,-(sp)

mov r3,-(sp)

mov r4,-(sp)

mov rS5,~(sp) - " .

mov ac,~(sp) / accumulator register for extended
/ arithmetic unit

mov mg,-(sp) / "multiplier quotient” register for the
/ extended arjithmetic unit

mov sc,~(sp) / “"step count register for the extended

/ arithmetic unit

mov sp,u.sp / u.sp points to top of users stack

mov 18.(sp? ro / store pc in r0 :

mov -(ro).ro sys inst in ro0 10400xxx

sub $sys,r0 / get xxx code

asl r0 / multiply by 2 to jump indirect in bytes

cmp r0,$2f-1f / limit of table (35) exceeded

bhis badsys / yes, bad system call

bic $341,20.(sp) / set users processor priority to 0 and clear

/ carry bit
jmp #1£(r0) / jump indirect thru table of addresses
to proper system routine,

1: . :
sysrele /
sysexit /
sys“ork /
sysread /
syswrite / 4
sysopen / 5
sysclose / 6
syswait / 7
syscreat / 8
syslink / 9
sysunlink / 10
sysexec / 11
syschdir / 12
systime / 13
sysmkdir / 14
syschmod / 1
syschown / 16
sysbreak / 1
sysstat / 18
sysseek / 19
systell / 20

o
1
2
3

Issue D Date 3/17/72 ID IMO.1-1- Section E.1 Page 1

UNIX IMPLEMENTATION

sysmount / 2
sysumount /
syssetuid / 2
sysgetuid / 24
sysstime / 25
sysquit / 26
sysintr / 27
sysfstat / 28

sysemt

/ 29

sysmdate / 30
sysstty / 31
sysgtty / 32
sysilgins / 33

23

error:
mov .
bis

sysret:
tstb
bne
mov
clr
jsr

tstb
beq
clrb
bis

jsr
tstb

beq
clrb
movb
bis
jsr

tstb
bne

sysrele:
jsr

1:
mov
mov
mov
mov
mov
mov
mov
mov

Issue D Date

U.Sp,ri
$1,20.(r1) / set ¢ bit in processor status word below
/ users stack

u.bsys / is a process about to be terminated because

sysexit / of an error? yes, go to sysexit

u.sp,sp / no point stack to users stack

r1 / zero r1 to check last mentioned i-node

rO,iget / if last mentioned i-node has been modified
/ it is written out

smod / has the super block been modified

1f / no, 1f

smod / yes, clear smod

$1000,sb0 / set write bit in I/O queue for super block

./ output
rO,ppoke / write out modified super block to disk

mmod / has the super block for the dismountable file
/ system
1f / been modified? no, 1f
mmod / yes, clear mmod
mntd,sbi / set the I/0 queue
$1000,sb1 / set write bit in I/0 queue for detached sb
ro0,ppoke / write it out to its device

uquant / is the time quantum 0?
1€ / no, don’t swap it out

rO,tswap / yes, swap it out

(sp)+,sc / restore user registers
(BP)+’mq
sp)+,ac
8p)+,x5
(sp)+,ra
8p)+,r3
sp +,r2
(sp)+,r1

3/17/72 ID IMO.1-1 Section E.1 Page 2

UNIX IMPLEMENTATION

mov (sp)+,r0
mov és.chrgt+2,clockp
dech sysflg / turn system flag off

jer rO,isintr / is there an interrupt from the user
"~ dbr intract / yes, output gets flushed, take interrupt
/ action
rti / no return from interrupt
badsyss
incb u.bsys / turn on the user’s bad_system flag
mov $3f,u.namep / point u.namep to core\0O\O
jsr rO,namei / get the i-number for the core image file
‘ br 1£ / error ' ‘
neg r1 / negate the i-number to cpen the core image file
/ for . writing
jsr rO,iopen / open the core image file
jsr r0,itrunc / free all associated blocks
br 2f
1:) ')
mov $17,r1 / put i-node mode (17) in ri
jsr rO,maknod / make an i-node
mov u.dirbuf,rt / put i-nodes number in r1
23
mov $core,u.base / move address core to u.base
mov secore~-core,u.count / put the byte count in u.count
mov su.off,u.fofp / more user offset to u.fofp
clr u.,off / clear user offset
jsr rO,writei / write out the core image to the user
mov guser,u.base / pt. u.base to user
mov $64.,u,count / u.count = 64
jsr rO,writei / write out all the user parameters
neg r1 / make i-number positive
jsr r0,iclose / close the core image file
br sysexit /
3: _
{core\0\0>
sysexit: / terminate process
clr u.intr / clear interrupt control word
clr r1 / clear r1
1: / r1 has file descriptor (index to u.fp list) Search the whole list
jsr r0,fclose / close all files the process opened
br .+2 / ignore error return
inc r1 / increment file descriptor

cmp 1,810, / end of u.fp list?
blt 1b / no, go back
movb u.uno,ri1 / yes, move dying process’s number to ri1
"elrb ° p.stat-1(r1) / free the process
asl r1 / use r1 for index into the below tables
mov pepid-2(r1),r3 / move dying process’s name to r3
mov p.ppid—z(r1s,r4 / move its parents name to r4
clr r2
clr r5 / initialize reg
1: / £find children of this dying process, if they are 'zombies, free them
add 82,r2 / search parent process table for dying process’s name
cmp pe.ppid-2(r2),r3 / found it? '

Issue D Date 3/17/72 ID IMO.1-1 Section E.4 Page 3

bne
asr
cmpb

bne
clrdb

asl

UNIX IMPLEMENTATION

3f / no

r2 / yes, it is a parent

p.stat-1zr2),$3 / i¢ the child of this dying process a
zombie

2f / no '

pestat-1(r2) / yes, free the child process

r2

3: / search the process name table for the dying process’s parent

cmp
"bne
mov

cmp
blt
mov
beq
asr
movb
beq
cmp
beq
movb
movb
cmp
bne
dech
mov
jsr

p.pid-2(r2),r4 / found it?

3f / no

r2,r5 / yes, put index to p.pid table (parents
/ process # x2) in r5 -

r2,$nproc+nproc / has whole table been searched?:
1b / no, go back

r5,r1 / yes, r1 now has parents process # x2

2f / no parent has been found. The process just dies
r1 / set up index to p.stat

p.stat-1(r1),r2 / move status of parent to r2

2f / if its been freed, 2f

r2,83 / is parent a zombie?

2f / yes, 2f

u.uno,r3 / move dying process’s number to r3
$3,p.stat-1(r3) / make the process.a zombie

r2,62 / is the parent waiting for this child to die
2f / yes, notify parent not to wait any more
p.stat-1(r1) / awaken it by putting it (parent)
érung+4,r2 / on the rung

r0, putlu

2: / the process dies

clrb
jsr
0

u.uno / put zero as the process number, so 'swap" will
r0,swap / overwrite process with another process
/ and thereby kill it; halt?

intract: / interrupt action

cmp
bne
cmp

#(sp),srti / are you in a clock interrupt?
1f / no, 1£
(sp)+,(sp)+ / pop clock pointer

1: / now in user area ,

mov

mov
cmpb
beq
clrdb
mov
Cclr
bis
rti

1: / interrupt
clrb
mov
cmp
blo
jmp

1:

Isgue D Date

r1,~-(sp) / save rt

u.ttyp,r1 / pointer to tty buffer in control to ri

6(r1),8177 / is the interrupt char equal to del

1£ / yes, 1f :

6(r1) / no, clear the byte (must be a quit character)

(sp)+,r1 / restore r1 '

u.quit / clear quit flag

$20,2(sp) / set trace for quit (sets t bit of ps-trace trap)
/ return from interrupt

char = del .

6(r1) / clear the interrupt byte in the buffer

(sp)+,r1 / restore ri .

u.intr,score / should control be transferred to loc core?

1£

#y,intr / user to do rti yes, transfer to loc core

3/17/72 ID IMO.1-1 Section E.1 Page 4

sys

UNIX IMPLEMENTATION

1 / exit

syswait: / wait for a process to die

movb
asl
mov
clr
Cclr

. add

cmp
bne
inc
asr
cmpb
bne
clrb
asl
mov
br

asl

cmp
blt
tst

beq
movb

incb
Jsr
br

errori:
_ Jmp

sysret1:
Jmp

u.uno,r1 / put parents process number in ri
r1 / x2 to get index into p.pid table
p.pid-2(r1),r1 / get the name of this process
r2

r3 / initialize reg 3

$2,r2 / use r2 for index into p.ppid table / search table
/ of parent processes for this process name

p.ppid-2(r2),r1 / r2 will contain the childs process number

3f / branch if no match »f parent process name

r3 / yes, a match, r3 indicates number of children

r2 / r2/2 to get index to p.stat table

p.stat-1(r2),63 / is the child process a zombie?

2f / no, skip it

p.stat-1(r2) / yes, free it

r2 / r2x2 to get index into p.pid table

pe.pid-2(r2),*u.r0 / put childs process name in (u.r0)

sysret1 / return cause child is dead

r2 / r2x2 to get index into p.ppid table

r2,$nproc+nproc / have all proéesses been checked?
1b / no, continue search '

| r3 / one gets here if there are no children or children

/ that are still active A
error1 / there are no children, error
U.uno,r1 ; there are children so put parent process number
in 1

pe.stat-1(r1) / it is waiting for other children to die

rO,swap / swap it out, because it’s waiting
syswait / wait on next process

error / see ‘error’ routine

sysret / see ‘sysret’ routine

sysfork: / create a new process

clr

r1

1: / search p.stat table for unused process number

inc
tstb
beg
cmp
blt
add

br
movb

movb
incd

Issue D Date

r1

pe.stat-1(r1) / is process active, unused, dead

1f / it’s unused so branch

ri,énproc / all processes checked

1d / no, branch back ‘ '

$2,18.(sp) / add 2 to pc when trap occured, points
/ to old process return

errori / no room for @ new process

u.uno,~(sp) / save parent process number

ri,u.uno / set child process number to r1
pe.stat-1(r1) / set p.stat entry for child process t
/ active status :

3/17/72 ID IMO.1-1 Section E.1 Page 5

mov

beq
clrb

mov
jsr
asl
inc
mov

movb
asl
mov
mov

mov

mnov
mov

mov
Jsr
jsr
mov
tst
movb
mov

add

clr

UNIX IMPLEMENTATION

u.ttyp,r2 / put pointer to parent process’ control tty
/ buffer in r2

2f / branch, if no such tty assigned

6(r2) / clear interrupt character in tty buffer

$rung+4,r2
rO,putlu / put child process on lowest priority run queue
ri1 / multiply r1 by 2 to get index into p.pid table
mpid / increment m.pid; get a new process.name
mpid,p.pid-2(r1) / put new process name in child process’
name slot
(sp),r2 / put parent process number in r2
r2 / multiply by 2 to get index into below tables
p.pid-2(r2),r2 / get process name of parent process
r2,pppid-2(r1) / put parent process name in parent
/ process slot for child
r2,*u,r0 / put parent process name on stack at location
/ where r0 was saved
ssysreti y(sp) /
sp,u.usp / contents of sp at the time when user is
/ swapped out
g¢sstack,sp / point sp to swapping stack space
ro,wswap / put child procescs out on drum
r0 ,unpack / unpack user stack
u.,usp,sp / restore user stack pointer
(sp)+ / bump stack pointer
(sp)+,u.uno / put parent process number in u.uno
mpid,®u.r0 / put child process name on stack where r0O
/ was saved
$2,18.(sp) / add 2 to pc on stack; gives parent
process return
r1

1: / search u.fp list to £find the files opened by the parent process

movb
beq
asl
asl
asl
inchb

inc
cmp

blt
br

sysread:
jsr
tst
ble
Jsr
br

 gsyswrite:
jsr

Issue D Date

u.£p(r1),r2 / get an open file for this process

2f / file has not been opened by parent, so branch

r2 / multiply by 8

r2 / to get index into fsp table

r2

fsp-2(r2) / increment number of processes using file,
/ because child will now be using this file

ri / c¢et next open file

r1,810. / 10. files is the maximum number which can be
/ opened

1b / check next entry

sysret1

r0,rwi / get i-number of file to be read into ri1

r1 / negative i-number?

errort / yes, error 1 to read it should be positive
rg,readi / read data into core

1

x0,rw1 / get i-number in r1 of file to write
3/17/72 ID IMO,1-1 Section E.1 Page 6

tst -

bge
neg
jsr

mov
br

jsr
jsrxr
mov
jsr
rts

sysopen:

' jsr
jsr
br
tst
beq
neg

13
jsr
tst
beq

op0:
neg
op1:
clr
clr

UNIX IMPLEMENTATION

r1 / positive i-number ?

errori / yes, error 1 negative i-number means write
r1 / make it positive

r0,writei / write data

u.vread,*u.r0 / put no. of bytes transferred into (u.r0)
sysreti

r0,arg; u.base / get buffer pointer

r0,arg; u.count / get no. of characters

*u,r0,r1 / put file descriptor (index to u.fp table) in r1
r0,getf / get i-number of the file in r1

r0

r0,arg2 / get sys args into u.namep and on stack

rO,namei / i-number of file in r1

error2 / file not found

(sp) / is mode = 0 (2nd arg of call; O means, open for read)
1f / yes, leave i-number positive

r1 / open for writing so make i-number negative

" rO,iopen / open file whose i-number is in r1

(sp)+ / pop the stack and test the mode
op1 / is open for read opt
r1 / make i-number positive if open for writing

r2 / clear registers
r3

1: / scan the list of entries in fsp table

tstb

beq
inc
cmp
blt
br

tst
beg
add
cmp
blt
br
1 / r2 has
mov
mov

clr
clr
asr
asr
asr
inc

Issue D Date

u.fp(r2) / test the entry in the u.fp list
1f / if byte in list is O branch

r2 / bump r2 so next byte cdn be checked
r2,$10. / reached end of list?

1 / no, go back

error2 / yes; error (no files open)

£fsp(r3) / scan f£sp entries

1f / if O branch .

$8.,r3 / add 8 to r3 to bump it to next entry mfsp table
r3,$[nfiles*8.] / done scanning

1b / no, back

error2 / yes, error

index to u.fp list; r3, has index to fsp table

r1,fsp(r3) / put i-number of open file into next availatle
cdev,fsp+2(r3§ / entry in fsp table, put # of device in

/ next word

fsp+4(r3) '

fsp+6(r3) / clear the next two words

r3
r3 / divide by 8 to get number of the fsp entry-1
r3

r3 / add 1 to get fsp entry number

3/17/72 ID IMO.1-1 Section E.1 Page 7

UNIX IMPLEMENTATION

movb r3,u.fp(r2) / move entry number into next available slot
/ in u.fp list

mov r2,%u.r0 / move index to u.fp list into r0 loc on stack
br sysret?2
error2:
jmp error / see ‘error’ routine
sysret2:s
jmp sysret / see ‘sysret’ routine
syscreat: / name; mode
jsr rO,argz / put file name in u.namep put mode on stack
jsr rO,namei / get the i-number
br 2f / if file doesn’t exist 2f
neg r1 / if file already exists make i-number negative
(open for writing)
jsr rO,iopen /
jsr r0,itrunc / truncate to 0 length
br opO
2: / file doesn’t exist
mov (sp)+,r1 / put the mode in ri

bic $1377,r1 / clear upper byte

jsr r0,maknod / make an i-node for this file

mov u.dirbuf,r1 / put i-number for this new file in r1
br op0 / open the file

sysmkdir: / make a directory
jsr r0,arg2 / point u.namep to the file name

jsr ro,namei / get the i-number
br .+4 / if file not found branch around error
br error2 / directory already exists (error)
tstb u.uid / is user the super user
bne error?2 / no, not allowed

mov (sp)+,r1 / put the mode in rt

bic $1317,r1 / all but su and ex

bis $40000,r1 / directory flag

jsr r0,maknod / make the i-node for the directory
br sysret2 /

sysclose: / close the file
mov *u,r0,r1 / move index to u.fp list into r1
jsr r0,fclose / close the file
"br error2 / unknown file descriptor

br sysret2
sysemt:
jsr rO0,arg; 30 / put the argument of the sysemt call in loc 30
cnp 30,8core / was the argument a lower address than core
blo 1£ / yes, rtssym
cmp 30,%ecore / no, wag it higher than “core” and less than

ecore”
blo 2f / yes, sysret2

nov $rtssym, 30
~ br sysret2
Issue D Date 3/17/72 ID IMO.1-1 Section E.1 Page 8

UNIX IMPLEMENTATION

sysilgins: / calculate proper illegal instruction trap address

jsr

cmp
bleo
cmp
blo

mov

23
br

r0,arg; 10 / take address from sysilgins call , put
/ it in loc 8.,

" 40,%core / making it the illegal instruction trap address

1f / is the address a user core address? yes, go to 2f
10,$ecore
2f

$fpsym,10 / no, make ‘fpsum’ the illegal instruction trap
/ address for the system

sysret2 / return to the caller via ‘sysret’

sysm@ate: / change the modification time of a file

jsr
jsr

jsr
cmpb
begq
tstd
bne

jsr
mov
mov
br

sysstty: / set
jsr
mov
mov

1: / flush the
mov
movb
mov
jsr

bxr
mov
inc
tstb
beq
mov
jsr
br

mov
mov
mov

beq

mov

mov

Issue D Date

r0,arg; u.namep / point u.namep to the file name
rO,namei / get its i-number

br error2 / no, such file

r0,iget / get i-node into core

u.uid,i.uid / is user same as owner

1£ / yes '

u.uid / no, is ucer the super user

error2 / no, error

rO,setimod / £ill in modification data, time etc.
4(sp),i.mtim / move present time to
2(sp),iemtim+2 / modification time

sysret2

mode of typewriter; 3 consequtive word arguments . :
ro,g%ty)/ r1 will have offset to tty block, r2 has source
rz,"’ Sp

r1,~(sp) / put r1 and r2 on the stack

clist wait till typewriter is quiescent

(sp),r1 / restore r1 to tty block offset

tty+3(r1),0f / put cc offset into getc argument
$240,%$ps / set processor priority to 5

rO,getc; O:../ put character from clist in r1

br .+4 / list empty, skip branch

1b / get another character until list is empty

Ob,r1 / move cc offset to ri

ri / bump it for output clist

cc(r1) / is it 0

1f / yes, no characters to output

r1,0f / no, put offset in sleep arg

rO,sleep; O:.. / put tty output process to sleep

1b / try to calm it down again -

(sp)+,r1 ~

(sp)+,r2 / restore registers

(r2)+,r3 / put reader control status in r3

1€ / if 0, 1£

r3,recsr(r1) / move r.c. status to reader control status
/ register

(r2)+,r3 / move pointer control status to r3

3/47/72 ID IMO.1~-1 Section E.1 Page 9

beq

mov
13
mov

Jmp

sysgtty: / get

jsr
mov
mov

mov
Jrp

gtty:
jsr
mov
jsr

tst

bgt

neg

sub
cmp

bhis

asl
asl
asl
mov
rts

Issue D Date 3/17/72

UNIX IMPLEMENTATION

1€ / if O 1£f

r3,tesr(r1) / move p.c. status to printer control status reg

(r2)+,tty+4(r1) / move to flag byte of tty block
sysret2 / return to user

status of typewriter; 3 consequtive word arguments
rO,gtty / r1 will have offset to tty block, r2 has
/ destination’
resr(r1),(r2)+ / put reader control status in 1st word
'/ of dest
tesr(rt),(r2)+ / put printer control status in 2nd word
of dest
tty+4(r1),(r2)+ / put mode in 3rd word
sysret2 / return to user

r0,arg; u.off / put first arg in u.off
*u,r0,r1 / put file descriptor in rit
rO0,getf / get the i-number of the file

- r1 / is it open for reading

1£ / yes ‘
r1 / no, i-number is negative, so make it positive

$14.,r1 / get i-number of tty0

ri,$ntty-1 / is there such a typewriter

error9 / no, error

r1 / 0%2

r1 / 0%4 / yes

r1 / 0%8 / multiply by 8 so r1 points to tty block
u.off,r2 / put argument in r2

r0 / return

ID IMO.1-1- Section E.1 Page 10

/ u2 == unix

UNIX IMPLEMENTATION

syslink: / namet, name2

jsr
jsr

br

jsr
mov
mov

mov
jsr
jsr

br

cmp
bne
mov
jsr

mov
jsr
inch
jsrx

sysret9:
Jmp
error9:
jmp

r0,arg2 / u.namep has 1st arg u.off has 2nd

rO,namei / £find the i-number associated with the ist
/ path name

error9 / cannot be found

r0,iget / get the i-node into core

(sp)+,u.namep / u.namep points to 2nd name

ri,-(sp) / put i-number of namet on the stack (a link
/ to this file is to be created)

cdev,-(sp) / put i-nodes device on the stack

r0,isdir / is it a directory

rO,namei / no, get i-number of name2

br .+4 / not found so ri-i-number of current directory

ii = i-number of current directory

error9 / file already exists., error

(sp)+,cdev / u.dirp now points to end of current dir

error9

(sp),u.dirbuf / i-number of namei1 into u.dirbuf

ro,mkdir / make directory entry for name2 in current
/ directory

(sp)+,r1 / r1 has i-number of namet

r0,iget / get i-node into core

i.nlks / add 1 to its number of links

r,setimod / set the i-node modified flag

sysret / see ‘sysret’ routine

error / see ‘error’ routine

isdir: / if the i-node whose i-number is in r1 is a directory there is an
/ error unless super user made the call

tstb
beqg
mov
jsr
bit
. bne
mov
jsr

rts

u.uid / super user

1f / yes, don‘t care

ii,~-(sp) / put current i-number on stack
r0,iget / get i-node into core (i-number in r1)
$40000,i.f1gs / is it a directory

error9 / yes, error

(sp)+,r1 / no, put current i-number in ri1 (ii)
r0,iget / get it back in

r0

sysunlink: / name - remcve link name

isr
isr

mov
jsr
clr

sub
jsr

Issue D Date

r0,arg; u.namep / u.namep points to name
rO,namei / £ind the i-number associated with the path name
br error9 / not found
r1,-(sp) / put its i-number on the stack
r0,isdir / is it a directory
u.dirbuf / no, clear the location that will get written
/ into the i-number portion of the entry
$10.,u.0ff / move u,off back 1 directory entry
ro,wdir / free the directory entry

3/17/72 ID IMO.1-1 Section E.2 Page 1

mov
isr
jsr
decb
bgt
jsr

br

mkdir:
jsr
mov
mov

UNIX IMPL:MENTATION

(sp)+,r1 / get i-number back

ro,iget / get i-node

rO,setimod / set modified flag

i.nlks / decrement the number of links

sysret9 / if this was not the last link to file return

rO,anyi / if it was, see if anyone has it open. Then
/ free contents of file and destroy it.

sysret9

r0,copyz; u.dirbuf+2; u.dirbuf+10. / clear this
u.namep,r2 / r2 points to name of directory entry
su.dirbuf+2,r3 / r3 points to u.dirbuf+2

1: / put characters in the directory name in u.dirbuf+2 - u.dirbuf+10

movb
beq
cmp
beq
cmp

beg
movb
br

mov

wdir:
’ mov -
T mov
mo-
jsx
jsr
rts

sysexec:
jsr
jsr

jsr
bit
beg
Jsr

bit
beq
tstb
beq
movb
mov

mov

Issue D Date

(r2)+,r1 / move character in name to ri
1f / if null, done _
ri,8°/ / is it a /' ?
error9 / yes, error
r3,8u.dirbuf+10. / have we reached the last slot for
/ a char?
1b / yes, go back ‘
r1,(r3)+ / no, put the char in the u.dirbuf
1b / get next char

u.dirp,u.off ; pointer to empty current directory slot to
: u.off

su.dirbuf,u.base / u,base points to created file name
810.,u.count / u.,count = 10
ii,r1 / r1 has i-number of current directory

r0,access; 1 / get i-node and set its file up for writing

ro,writei / write into directory
ro

r0,arg2 / arg0 in u.namep,argl on top of stack

rO,namei / namei returns i-number of file named in
/ sysexec call in r1

br error9

rO,iget / get i-node for file to be executed

$20,i.flgs / is file executable

error9 .

rO,iopen / gets i-node for file with i-number given in
/ r1 (opens file)

$40,i.flgs / test user id on execution bit

1£

u.uid / test user id

1£, / super user

i.,uid,u.uid / put user id of owner of file as process

/ user 1id

(sp)+,r5 / r5 now contains address of list of poibters to

arguments to be passed

81,u.quit / u.quit determines handling of quits;
/ u.quit = 1 take quit

3/17/72

ID IMO.1-1 Section E.2 Page 2

mov

UNIX IMPLEMENTATION

81,u.intr / u.intr determines handling of interrupts;
/ u.intr = 1 take interrupt
mov értssym,*30 / emt trap vector set to take system routine
mov ¢fpsym,*10 / reserved instruction trap vector set to take
/ system routine
mov s¢sstack,sp / stack space used during swapping
mov r5,-(sp) / save arguments pointer on stack
mov secore,r5 / r5 has end of core
mov sécore,r4 / r4 has start of users core
mov r4,u.base / u.base has start of users core
mov (sp),r2 / move arguments list pointer into r2
1:
tst (r2)+ / argument char = nul”
bne b
tst ~(r2) / decrement r2 by 2; r2 has addr of end of argument
‘ / pointer list
1: / move arguments to bottom of users core
rov -(r2),r3 / (r3) last non zero argument ptr
crp r2,(sp) / is r2 = beginning of argument ptr list
blo 1f / branch to 1f when all arguments are moved
2
tstb (r3)+
bne 2b / scan argument for \0 (nul)
23
movb =-(r3),-(r5) / move aggument char by char starting at
‘ ecore
cmp r3,(r2) / moved all characters in this argument
bhi 2b / branch 2b if not ‘
mov r5,(r4)+ / move r5 into top of users core; rS has
/ pointer to nth arg
br 1b / string
1:
clrb =(r5)
bic 81,r5 / make r5 even, r5 points to last word of argument
/ strings
mov gécore,r?
1: / move argument pointers into core following argument strings
cmp r2,r4
bhis 1f / branch to 1f when all pointers are moved
mov (r2)+4~(r5)
br 1b
1: '
sub gcore,r4 / gives number of arqguments ¥*2
asr r4 / divide r4 by 2 to calculate the number of args stored
mov r4,-(r5) / save number of arguments ahead of the argument
/ pointers
clr ~(r5) / popped into ps when rti in sysrele is executed
mov g¢core,-(r5) / popped into pc when rti in sysrele
/ is executed
mov r5,0f / load second copyz argument
tst -(r5) / decrement r5
mov r5,u.x0 /
sub $16.,r5 / skip 8 words
mov r5,u.8p / assign user stack pointer value, effectively
/ zeroes all regs when sysrele is executed
jsr r0,copyz: core; 0:0 / zero user’s core

Issue D Date

3/17/72 ID IMO,1-1 Section E.2 Page 3

UNIX IMPLEMENTATION

clr u.break

mov r5,8p / point sp to user’s stack

mov g$14,u,count

mov s$u.off ,u.fofp

clr u,off / set offset in file to be read to zero

jsr rO,readl / read in first six words of user’s file, starting
-/ at score

mov sp,r5 / put users stack address in r5

sub $¢core+d40.,r5 / subtract $core +40, from r5 (1eaves

/ number of words less 26 available for
/ program in user core
mov r5,u.count /
cmp core,$405 / br .+14 is first instruction if file is
/ standard a.out format
bne 1f / branch, if not standard format
mov core+2,r5 / put 2nd word of users program in r5; number of
/ bytes in program text
sub $14,r5 / subtract 12

cmp rS5,u.count /
bgt - 1f / branch if r5 greater than u.count
mov rS,u.count
jsr r0,readi / read in rest of user’s program text
add core+10,u.nread / add size of user data area to u.nread
br 2f
L]
jsr r0,readi / read in rest of file
22
mov u.nread,u.break / set users program break to end of
/ user code
- add $core+14,u.break / plus data area
- jsr rO0,iclose / does nothing
br sysret3 / return to core image at $core

sysfstat: / set status of open file
jsr r0,arg; u.off / put buffer address in u.off
mov u.off,~-(sp) / put buffer address on the stack
mov *u,r0,r1 / put file descriptor in ri
jsr r0,getf / get the files i-number
tst ri / is it 07
beq error3 / yes, error
bgt 1f / if i-number is negative (open for writing)
neg r1 / make it positive, then branch

br 1£ / to 1£f

sysstat: / ; name of file; buffer - get files status
jsr r0,arg2 / get the 2 arguments
jsr rO,namei / get the i-number for the file

br error3 / no such file, error

jer r0O,iget / get the i-node into core

mov (sp)+,r3 / move u.off to r3 (points to buffer)
mov r1,(r3)+ / put i-number in 1st word of buffer
mov ¢inode,r2 / r2 points to i-node

mov (r2)+,(r3)+ / move rest of i-node to buffer
cmp r2,8inocde+32 / done?

Issue D Date 3/17/72 ID IMO.1-1 Section E.2 Page 4

UNIX IMPLEMENTATION

bne 1b / no, go back

br sysret3 / return through sysret
error3: .
o jmp error / see ‘error’ routine
sysret3:
" jmp sysret / see ’‘sysret’ routine

getf: / get the device number and the i-number of an open file
cmp r1,$10. / user limited to 10 open files
bhis error3 / u.fp is table of users open files, index in
/ fsp table
movb u.fp(ri),r1 / r1 contains number of entry in fsp table

beq 1£ / if its zero, return

asl ri

. asl r1 / multiply by 8 to get index into fsp table entry

asl r1

add ¢fsp-4,r1 / r1 is pointing at the 3rd word in the fsp entry
mov ri,u.fofp / save address of 3rd word in fsp entry in u.fofp
mov -(r1),cdev / remove the device numbe: cdev

mov -(r1),r1 / ari the i-nusber ri

1: '
rts r0
_namei: ‘

mov w.cdir,r1 / put the i-number of current directory in ri
mov u.cdev,cdev / device number for users directory into cdev
cmpb *u.namep,$’/ / is first char in file name a / :

bne 1f

inc u.namep / go to next char

mov rootdir,r1 / put i-number of rootdirectory in r1

clr cdev / clear device number

1: -
tstb *u.namep / is the character in file name a nul |
beq nig / yes, end of file name reached; branch to nig
&€

jsr ro,access; 2 / get i-node with i-number ri

bit $40000,1i.f1lgs / directory i-node?

beq error3 / no, got an error

mov i.size,u.dirp / put size of directory in u.dirp

clr u.off / u.off is file offset used by user

mov su.off,u.fofp / u.fofp is a pointer to the offset portion

/ of fsp entry

mov $u.dirbuf ,u.base / u.dirbuf holds a file name copied from
/ a directory
mov $610.,u.count / u.,count is byte count for reads and writes
jsr r0O,readi / read 10. bytes of file with i-number (r1);
/ i.e. read a directory entry

tst u.nread

ble nib / gives error return

tst u.dirbuf /

bne 3f / branch when active directory entry (i-node word in
/ entry non zero)

mov u.,off ,u.,dirp

sub 810.,u.dirp

~Issue D Date 3/17/72 ID IMO.1-1 Section E.2 Page 5

UNIX IMPLEMENTATION

br 2b
3:
mov u.namep,r2 / u.namep points into a file name string
mov su.,dirbuf+2,r3 / points to file name of directory entry
3:
movb (r2)+,r4 / move a character from u.namep string into rd
begq 3f / if char is nul, then the last char in string has been
/ moved
cmp rd,s’/ / is char a <{/>
beq 3f
cmp r3,su.dirbuf+10. / have I checked all 8 bytes of file name
beq 3b
cmpb (r3)+,r4 / compare char in u.namep string to fi.e name
' / char read from
beq 3b / directory; branch if chars match
br 2b / file names do not match go to next directory entry
3:
cmp r3,8u.dirbuf+10. / if equal all B8 bytes were matched
beqg 3f
tstb (r3)+ /
bne 2b
3:
mov r2,u.namep / u.namep pointe to char following a / or nul
mov u.dirbuf r1 / move i-node number in directory entry to rt
tst ra / if r4 = 0 the end of file name reached, if rd = </>
/ then go to next directory
bne 1b '
nigs
tst (ro)+ / gives non-error return
nib:
rts r0

syschdir: / makes the directory specified in the argument the current
/ directory

jsr r0,arg; u.nauep / u.namep points to path name
jsr rO,namei / find its i-number
br error3
jsr r0,access; 2 / get i-node into core
bit $40000 i. flgs / is it a directory?
beq error3 / no error
mov ri,u.cdir / move i-number to users current directory
mov cdev u.cdev / move its device to users current device
br sysret3
"isown:
jsr r0,arg2 / u.namep points to file name
jsr rO,namei / get its i-number
br error3
jsr r0,iget / get i-node into core
tstb u.uid / super user?
beq 1f / yes, branch
cmpb i,uid,u.uid / no, is this the owner of the file
beq 1f / yes
jmp error3 / no, error
1: N

Issue D Date 3/17/72 ID IMO.1-1 Section E.2 Page 6

jsr
mov

rts

syschmod: /
jsr
bit
beqg
bic

movb

br

UNIX IMPLEMENTATION

r0,setimod / indicates i-node has becn modified

(sp)+,r2 / mode is put in r2 (u.off put on stack with
/ 2nd arg)

r0 :

name; mode

r0,isown / get the i-node and check user status
$40000,1.flge / directory?
2f / no
$60,r2 / su & ex / yes, clear set user id and
/ executable modes

r2,i.flgs / move remaining mode to i.flgs
1£

syschown: / name; owner

jer

tstb

beq
bit
bne

movb

Jmp
Jmp

arg:
mov
mov

add
rts

arg2:
jsr

isr

mov
mov
mov

Jmp

systime: / get

mov
mov
br

r0,isown / get the i-node and check user status
u.uid / super user

2f / yes, 2f

$40,1.flos / no, set user id on execution?

3f / yes error, could create Trojan Horses

r2,i.uid / no, put the new owners id in the i-node

sysret4

error

u.sp,ri

#48,(r1),*(r0)+ / put argument of system call into
argument of arg2 or rw/

$2,18.(r1) / point pc on stack to next system argument
xr0

r0,arg; u.namep / u.namep contains value of first arg in

/ sys call _
r0,arg; u.,off / u.off contains value of second arg in
/ sys call ‘
ro,r1 / r0 points to calling routine
(sp),r0 / put operation code back in r0
u.off,(sp) / put pointer to second argument on stack
(r1) / return to calling routine

time of vear

s.time,4(sp)

s.time+2,2(sp) / put the present time on the stack
sysret4

sysstime: / set time

tstb

bne
mov
mov
br

Issue D Date

u.,uid / is user the super user
errord / no, error

4(sp),s.time

2(sp),s.time+2 / set the system time

sysret4

3/17/72 ID IMO.1~1 Section E.2 Page 7

UNIX IMPLEMENTATION

sysbreaks / set the program break
mov u,break,rt1 / move users break point to ri
cnp r1,écore / is it the same or lower than core?
blos 1f / yes, 1f
cmp ri,sp / is it the same or higher than the stack?
bhis 1f / yes, 1£f
bit $1,r1 / is it an odd address
beq 2f / no, its even
clrdb (r1)+ / yes, make it even
2: / clear area between the break point and the stack

cmp ri,sp / is it higher or same than the stack
bhis 1f / yes, quit
clr (r1)+ / clear word
br 2b / go back
13
jsr rO,arg; u.break / put the “address” in u.break (set new
/ break point)
br sysret4d / br sysret

maknod: / r1 contains the mode
bis $100000,r1 / allocate flag set

mov r1,-(sp) / put mode on stack

mov ii,r1 / move current i-number to r1

jsr rO,access; 1 / get its i-node into core
mov r1,-(sp) / put i-number on stack

mov $40.,r1 / r1 = 40
1: / scan for a free i-node (next 4 instructions)

inc i/ r1 = ri+1
jsr r0,imap ; get byte address and bit position in inode map in
r2 & m

bitb mg,(r2) / is the i-node active

bne ib / vos, try the next one

bisb mq,(r } / no, make it activ: (put a 1 in the bit map)
jsr r0,iget / get i-node into core

tst i.flgs / is i-node already allocated

blt 1b / yes, look for another one -

mov ri,u.dirbuf / no, put i-number in u.dirbuf

mov (sp)+,r1 / get current i-number back

jsr r0,iget / get i-node in core

jsr r0,mkdir / make a directory entry in current directory
mov u.dirbuf,r1 / r1 = new inode number

jsr r0O,iget / get it into core

jsr r0,copyz; inode; inode+32. / 0 it out

mov (sp)+,i.flgs / £ill flags

movb u.uid,i.uid / user id

movb $1,i.nlks / 1 link

mov s.time,i.ctim / time created

mov s.time+2,i.ctim+2 / time modified
jsr r0,setimod / set modified flag

rts r0 / return
sysseek: / moves read write pointer in an fsp entry
jsr r0,seektell / get proper value in u.count
add u.base,u.count / add u.base to it
mov u.count,*u.fofp / put result into r/w pointer

Issue D Date 3/17/72 ID IMO.1-1 Section E.2 Page 8

br

UNIX IMPLEMENTATION

sysret4d

systell: / get the r/w pointer

jsr
br

errord:
Jmp
sysret4:
Jmp

seektell:
jsr
jsr
mov
jer
mov
beg
bgt
neg
jer
cmp
blt
beq
mov
br

1: / ptr name
mov

r0,seektell
errord4

error / see ‘error’ routine

sysret / see ‘sysret’ routine

r0,arg; u.base / puts offset in u.base
rO ,arg;.u.count / put ptr name in u.count
.ro r1 / file descriptor in r1 (index in u.fp list)

rO,getf / u.fofp points to 3rd word in fsp entry
ri,-(sp) / r1 has i-number of file, put it on the stack
-error4 / if i-number is O, not active so error

.+4 / if its positive jump

r1 / if not make it positive
rO0,iget / get its i-node into core

u.count ¢1 / is ptr name =1

2f / no its zero

1f / yes its 1

i.size,u.count / put number of bytes in file in u.count
2f
=1

#y,.fofp,u.count / put offset in u.count

2: / ptrname =0

mov
rts

(sp)+,r1 / i-number on stack r1
r0

sysintr: / set interrupt handling

jsr

br
SysquT ! 3sr

1:

mov

beq

clrb

br

syssetuid: /
movb
cmpd
beq
tstb
bne

movb
movh
br

sysgetuid:
movb
br

Issue D Date

r0,arg; u.intr / put the argument in u.intr
1£ / go into quit routine
r0,arg; u.quit / put argument in u.quit

u.ttyp,r1 / move pointer to control tty buffer to ri1
sysret4 / return to user

6(r1) / clear the interrupt character in the tty buffer
sysretd4 / return to user

set process 1id

*u.r0,r1 / move process id (number) to r1
ri,u.ruid / is it equal to the real user id number
1£ / yes

u.uid / no, is current user the super user?

errord / no, error

ri,u.uid / put process 1d in u.uid

ri,u.ruid / put process id in u.ruid
sysret4d / system return

u.ruid,*u.r0 / move the real user id to (u.r0)
sysretd / system return, sysret

3/17/72 ID IMO.1-1 Section E.2 Page 9

fclose:
mov

jsr

tst
beqg
tst
mov
mov

clrb
mov
dechb

bge
mov
clr
tstd
beg
mov
jsx

mov
jsr

mov
rts

UNIX IMPLEMENTATION

r1,-(sp) / put r1 on the stack (it contains the index
/ to u.fp list) _

r0,getf / r1 contains i-number, cdev has device =, u.fofp
/ points to 3rd word of fsp entry

ri / is inurker 07

1f / yes, i-node not active so return

(ro)+ / no, jump over error return

r1,r2 / move i-number to r2

(sp),r1 / restore value of r1 from the stack whiclh is
/ index to u.fp

u.fp(r1) / clear that entry in the u.fp list

u.fofp,r1 / r1 points to 3rd word in fsp entry

2(r1) / decrement the number of processes that have opened

/ the file

1f / if all processes haven’t closed the file, return

r2,~(sp) / put r2 on the stack (i-number)

-4(r1) / clear 1st word of fsp entry

3(r1) / has this file been deleted

2f / no, branch

r2,r1 / ves, put i-number back into r1

rO,anyi / free all blocks related to i-number
/ check if file appears in fsp again

(sp)+,r1 / put i-number back into ri
rO0,iclose / check to see if its a special file

(sp)+,r1 / put index to u.fp back into ri
r0

anyi: / r1 contains an i-number

mov

cmp
beg
neg
cmp
beq

add
cmp
blt
tst
bge
neg
jsr
bicb
Jsr
clr
rts
1: / i-numbers
incb
rts

Issue D Date

$fsp,r2 / move start of fsp table to r2

r1,(r2) / do i-numbers match?
1£f / yes, 1f
rt1 / no complement r1
r1,(r2) / do they match now?
1f / yes, transfer
/ i-numbers do not match
$8,r2 / no, bump to next entry in fsp table
r2,5fsp+[nfiles*8] / are we at last entry in the table
1b / no, check next entries i-number
r1 / yes, no match
¥4
r1 / make i-number positive
rO,imap / get address of allocation bit in the i-map in r2
ng, (r2) / clear bit for i-node in the imap
r0,itrunc / free all blocks related to i-node
i.flgs / clear all flags in the i-node
r0 / return
match :
7(r2) / increment upper byte of the 4th word
r0 / in that fsp entry (deleted flag of fsp entry)

3/17/72 ID IMO,1-1 Section E.2 Page 10

/ u3 ~= unix

tswap:
movb
mov
jsr

swaps:
© mov
mov

UNIX IMPLEMENTATION

u.uno,r1 / move users process number to r1
$runq+4,r2 / move lowest priority queue address to r2
r0,putlu / create link from last user on Q to u.uno’s user

$300,%s$ps / processor priority = 6
$rung,r?2 / r2 points to rung table

1: / search rung table for highest priority process

tst
bne
cmp
bne
jsr

br

tst
mov
movb
cmpb
beg
tst
movi

br

clr
2: / write out
/ required
clr
cmpb
beq
mov

mov
mov
mov
tstb
beq
jsr

mov
jsr
jsr
mov

mov

movb
rts

Issue D Date

(r2)+ / are there any processes to run in this Q entry
1f / yes, process 1f
r2,8runq+6 / if zero compare address to end of table
1b / if not at end, go back
r0,idle; s.idlet+2 / waif for interrupt; all queues

/ are empty
swap

-(r2) / restore pointer to right Q entry
r2,u.pri / set present user to this run queue
(r2)+,r1 / move i1st process in queue to rf
r1,}r2)+ / is there only 1 process in this Q to be run
i£ yes
-(r2) / no, pt r2 back to this Q entry
p.link-1(r1),(r2) / move next process in line into
/ run queue
2f

-(r2) / zero the entry; no processes on the Q
core to appropriate disk area and read in new process if

#8ps / clear processor status
ri,u.uno / is this process the same as the process in core?
2f / yes, don’t have to swap

r0,-(sp) / no, write out core; save r0 (address in rout!

/ that called swap)
sp,u.usp / save stack pointer
s$sstack,sp / move swap stack pointer to the stack pointer
ri,~(sp) / put r1 (new process #) on the stack
u.uno / is the process # = 0
1f / yes, kill process by overwriting
ro,wswap / write out core to disk

(sp)+,r1 / restore r1 to new process number

ro,rswap / read new process into core

rO0,unpack / unpack the users stack from next to his program
/ to its normal

u.usp,sp / location; restore stack pointer to new process
/ stack :

(sp)+,r0 / put address of where the process that just got
/ swapped in, left off., i.e., transfer control

/ to new process

$30.,uquant / initialize process time quantum
r0 / return

3/17/72 ID IMO.1-1 Section E.3 Page 1

UNIX IMPLEMENTATION

wsw D2
mov #430,u.emt / determines handling of erts
mov #410,u.11gins / determines handling of illegal instructions
mov u.break,r2 / put process program break address in r2
inc r2 / add 1 to it -
bic $1,r2 / make it even
mov r2,u.break / set break to an even location
. mov u.usp,r3 / put users stack pte: at moment of swap in r3
cnp r2,8core / is u.break less than s$core
blos 2f / yes
cmp r2,r3 / no, is (u.break) greater than stack pointer
bhis 2f / yes
1:
mov (r3)+,(r2)+ / no, pack stack next to users program
cmp r3,8ecore / has stack reached end of core
bne 1b / no, keep packing
br 1€ / yes
23
mov secore,r2 / put end of core in r2
1: '
sub suser,r2 / get number of bytes to write out (user up
/ to end of stack gets written out) :
neg r2 / make it negative
asr r2 / ¢ ange bytes to words (divide by 2)
mov r2,swpt4 / word count
movb u.uno,ri / move user process number to r1
asl r1 / x2 for index
mov r2,p.break-2(r1) / put negative of word count into the
/ p.break table
mov p.dska-2(r1),r1 / move disk address of swap area for
) / process to ri
mov r1,swp+2 / put processes dska address in swp +2 (block
/ number)
bis $1000,swp / set it up to write (set bit 9)
jsrxr rO,proke / write process out on swap area of disk
1¢
tstb swp+1 / is it done writing?
bne 1b / no, wait
rts r0 / yes, return to swap
rswaps _ .
asl r1 / process number x2 for index
mov p.break-2(r1), swp+4 / word count

mov p.dska-2(r1),swp+2 / disk address
bis $2000,swp / read
jer rO,ppoke / read it in

tstb swp+1 / done
bne 1b / no, wait for bit 15 to clear (inhibit bit)

mov u.emt,*$30 / yes move these
mov u.ilgins,*$10 / back
rts r0 / return

unpack: / move stack back to its normal place
mov u.break,r2 / r2 points to end of user program

Issue D Date 3/17/72 ID IMO,.1-1 Section E.3 Page 2

UNIX IMPLT"MENTATION

cmp r2,6core / at begirning of user program yet?
blos 2f / yes, return .
cmp r2,u,usp / is break above the stack pointer before
/ swapping
bhis 2f / yes, return
mov secore,r3 / r3 pointe to end of core
add r3,r2
sub u.usp,r2 / end of users stack is in r2
1:
mov ~(r2),~(r3) / move stack back to its normal place
cmp r2,u.break / in core
bne 1
23
rts . r0

putlu: / r1 = user process no.; r2 points to lowest priority queue
tstb (r2)+ / is queue empty?
beq 1f / yes, branch w -
movb (r2),r3 / no, save the 1last user procesg number in_ r3
movb r1,§.1ink—1(r3) / put pointer to user on last users- link
br 2f '

movb r1,-1(r2) / user is only user; put process no. at beginning
/ and at end

movb r1,(r2) / user process in r1 is now the last entry on
/ the queue

dec r2 / restore r2
rts ro
copyz:
mov r1,-(sp) / put r1 on stack
mov r2,-(sp) / put r2 on stack
mov (r0)+,r1
mov (xr0)+,r2
1: ~
clr (r1)+ / clear all locatiocns between r1 and r2
cmp ri,r2 '
blo 1b
mov (sp)+,r2 / restore r2
mov (sp)+,r1 / restore ri
rts ro :
idle:
mov *sps,-(sp) / save ps on stack
clr *s$ps / clear ps
mov’ clockp,~(sp) / save clockp on stack
mov (ro)+,clockp / arg to idle in clockp
1 / wait for interrupt
mov (sp)+,clockp / restore clockp, ps
mov (sp)+,*sps
rts r0
clear:

jsr rO,wslot / get an I/0 buffer set bits 9 and 15 in first
/ word of I/O0 queue rS5 points to first data word

Issue D Date 3/17/72 ID IMO.1-1 Section E.3 Page 3

UNIX IMPLEMENTATION

/ in buffer
mov $256,,r3
1: :
clr (r5)+ / zero data word in buffer
dec r3
bgt 1b / branch until all data words in buffer are zero
jsr r0,dskwr / write zeroed buffer area out onto physical

/ block specified
rts ro / in r1

Issue D Date 3/17/72 ID IMO.1-1 Section E.3 Page 4

UNIX IMPLEMENTATION

/ u4 == unix

setisp:
mov rt,-(sp)
mov r2,-(sp)
mov r3,-(sp)
mov clockp,-{sp)
mov $s.syst+2,clockp
jmp (x0)
clock: / interrupt from 60 cycle clock
mov x0,~-{sp) / save rO
tst *81ks / restart clock?
mov ¢s.time+2,r0 / increment the time of day
inc {ro)
bne 1£

inc -(r0)

mov clockp,r0 / increment appropriate time category
inc © (r0)
bne 1£

inc -(x0)

mov $uquant,r0 / decrement user time guantum
decb (ro)
bge 1f / if less than O
clrb (r0) / make it O

1: / decrement time out counts return now if priority was not O
cnmp 4(sp),6200 / ps greater than or equal to 200
bge 2f / yes, check time outs
tstb (x0) / no, user timed out?
bnc 1f / no
cmpb sysflg,$-1 / yes, are we outside the system?
bne 1f / no, 1£f

mov (sp)+,r0 / yes, put users r0 in r0
sys 0 / sysrele
rti

2: / priority is high so just decrement time out counts
mov $toutt,r0 / r0 points to beginning of time out table

tstb (ro) / is the time out?

beq 3f / yes, 3f (get next entry)

dech (x0) / no, decrement the time

bne 3f /lIsit zero now?

incb (r0) / yes, increment the time

inc r0 / next entry
cmp r0,8touts / end of toutt table?
blo 2b / no, check this entry

mov (sp)+,r0 / yes, restore ro0
rti / return from interrupt

1: / decrement time out counts; if 0 call subroutine
mov {(sp)+,r0 / restore r0
mov $240,%$ps / set processor priority to 5
jsx r0,setisp / save registers

Issue D Date 3/17/72 ID IMO,1-1 Section E.4 Page 1

UNIX IMPLFMENTATION

mov $touta—~toutt~1,r0 / s« up r0 as index to decrement thru
/ the table :

tstb toutt(r0) / is the time out for this entry
be 3 2f / vyes

decb toutt(r0) / no, decrement the time

bne 2f / is the time 0, now

asl r0 / yes, 2 x r0 to get word index for tout entry
jsr r0,*touts (rC) / go to appropriate routine specified in this
asr r0 / touts entry; set r0 back to toutt index
2 :
 dec r0 / set up r0 for next entry

bge 1b / finished? , no, go back . '
br retisp / yes, restore registers and do a rti

ttyi: / console tty input interrupt routine

jsr rO,setisp / save reg r1, r2, r3
mov #3tk,r1 / r1 = char in tty reader buffer
inc *stks / set the reader enable bit

bic $1177,r1 / clear upper 9 bits of the¢ character (strip off
/ 8th bit of char)
cmp r1,$6’a=40 / is character upper case A,..., upper case Z.
/ note that
blt 1f / lower case a is represented by 141, upper case by
crp r1,4°z-40 / 101; and lower case z by 172, upper
/ case Z by 132.
bgt 1f / if not upper case, branch
add $40,r1 / if upper case, calculate the representation of its
lower case counter part

cmp r1,6175 / char
beq 2f / yes 2f
cmp r1,8177 / char
beq 2f / yes, 2f
jsr rO,putc; 0 / put char in r1 on clist entry

br 1f
movb ri,ttyoch / put char in ttyoch
jsr r0,startty / load char in tty output data buffer
cmp r1,84 / r1 = eot
beq 1f / yes, 1f
cmp r1,812 / r1 = 1f
beq 1f / yes 1£
cmpb cc+0,815., / are there less than 15 chars on the input list

"}"? Note: may be quit char (fs)

"del”?

blo retisp / yes, return

1:
jsr rO,wakeup; runq; 0 / no, wakeup the input process
br retisp / return

2: / r1 = "}" or "delete” to get here
mov tty+[ntty*8]-8+6,r2 / move console tty buffer address to r2
beq 2f / if 0, wakeall w -
movb r1,6(r2) / move } or del into interrupt char
: / byte of buffer

jsr rO,wakeall / wakeup all sleeping processes
br retisp / return

Issue D Date 3/17/72 ID IMO.1-1 Section E.4 Page 2

wakeall:

13

ttyo: /

retisp:

ppti: /

UNIX IMPLEMENTATION

mov $39.,0f / £11l arg2? of wakeup call with 39

jsx rO,wakeup; rung+4; O:.. / wakeup the processes in the
dec Ob / wait list; decrement arg?

bge @ 1b / if not done, go back

rts rC

console typewriter output interrupt. routine

jsr rO,setisp / save registers Yey e,
jsr rO,startty / put a char en"the console tty o tput buffer-
br retisp / restore registers

mov (sp)+,clockp / pop values before interrupt off the stack
mov (sp)+,r3

mov - (sp)+,r2

mov (sp)+,r1

mov (sp)+,r0

rti / return from interrupt

paper tape input interrupt routine
jsr r0,setisp / save registers
movb pptiflg,r1 / place pptiflg in rt - "
jmp #1f(r1) / jump to location specified by value of pptiflg

retisp / file not open
1£f / file just opened

2f / file normal

retisp / file not closed

1: / file just opened

/lpto:

Issue D

tstb #$prs+1 / is error bit set in prs

bge 1f / no

jsr r0,pptito / place 10 in toutt entry for ppt input
br retisp :

movb $4,pptiflg / change "pptiflg” to indicate file "normal”

jsr r0,wakeup; rung+2; 2 / wakeup process for ppt input entry
/ in wlist
tstb #s$prs+1 / is error bit set
blt 1£ / yes
mov *$prb,r1 / place contents ppt read buffer in r1
jsr ro,putc; 2 / place character in clist area for ppt input
br .+2 / temp / if no space in clist character lost
cmpb cc+2,$50. / character count in clist area for ppt input
/ greater than or equal to 50
bhis retisp / yes
inc #sprs / no, set reader enable bit in prs
br retisp

movb $6,pptiflg / set pptiflg to 6 to indicate error bit set
br retisp

Date 3/17/72 ID IMO.1-1 Section E.4 Page 3

UNIX IMPLEMENTATION

/ jsr r0,setisp

/ jsr ro,starlpt

/ br retisp

ppto: / paper tape output ir.. errupt routine
jsr r0,setisp / s.ve registers
jsr r0,starppt / get next character from clist, and output

/ if possible

br retisp / pop register values from stack

/sta-lpt:

/ cmpb cc+5.,$100.

/ bhi 1£

; jsr r0,wakeup; rung+2; 5

1:

/ tstb *$lps

/ bge 1£

/ jsr rO,getc; 5

/ br 1£f

/ mov r1,%¥$1pb

/ br starlpt

/1

/ rts x0

startty: / start or restart console tty output
cmpb cc+1,$5.
bhi 1f / branch to 1f when character count on tty (? input,
/ output) list is greater than 5.
jsr r0,wakeup; rung+2; 1

tstb #stps / test console output ready bit
bge 2f / branch if ready bit is clear
tstb toutt+0 / is toutt for console a zero
bne 2f / if not; branch to 2f
movb ttyoch,rt1 / put character to be output in ri
bne 1£
jsr r0,getc; 1 / if char is nul, get a char from console
/ output list
br 2f / if console output list is empty, branch to 2f

clrb ttyoch

mov r1,*stpb / put character in console output register
cmp r1,$12 / is char a line feed
bne 1£

movb $15,ttyoch / put a cr in ttyoch

cmp r1,811 / char = ht

bne 1£

movb €15.,toutt+0 / set time out to 15 clock tics
1: ‘

cmp r1,815 / char = cr

bne 2f ' _

movbh $15.,toutt+0 / set time out to 15 clock ticks

rts r0

Issue D Date 3/17/72 ID IMO.1-1 Section E.4 Page 4

UNIX IMPLEMENTATION

pptito: / paper tape input touts gubrouting
cmpb pptiflg,$2 / does pptiflg’ indicate file just opened
bne 1f / no, do nothing ot
movb $10.,toutt+1 / yes, place 10 in tout entry for tty input
tstdb *4prs+1 / is error bit set

blt 1f / yes, return

inc *sprs / no, set read enable bit
1:

rts r0

starppt: / start ppt output
cmpb cc+3,810. / is character count for ppt output greater

/ than 10.
bhi 1f / yes, branch
jer r0,wakeup; rung+2; 3 / no, wakeup process in wlist

/ entry for ppt input

tstb *spps / is ready bit set in punch status word
bge 1f / no, branch
jsr r0,getcsy 3 / yes, get next char in clist for pptout and
/ place in r1
br 1f / if none, branch
mov r1,*$ppb / place character in ppt buffer

rts r0

wakeup: / wakeup processes waiting for an event by linking them to the

gueue

mov r1,-(sp) / put char on stack

mov (ro)+,r2 / r2 points to a queue
mov (ro)+,r3 / r3 = wait channel number

movb wlist(r3),r1 / r1 contains process number in that wait
/ channel that was sleeping

beg 2f / if 0 return, nothing to wakeup

cmp r2,u.pri / is rung greater than or equal to users process
/ priority

bhis 1f / yes, don’t set time quantum to zero

clrb uquant / time guantum = O

1:

clrb wlist(r3) / zero wait channel entry

jsr - rO,putlu / create a link from the last user on the Q
/ to this process number that got woken

mov (sp)+,r1 / restore r1
rts r0
sleep: / wait for event
jsr rO,isintr / check to see if interrupt or quit from user
br 2f / something happened / yes, his interrupt so return
/ to user
mov (ro)+,r1 / put number of wait channel in r1

movb wlist(r1),-(sp) / put 0ld process number in there, on
/ the stack }

movb u.uno,wlist(r1) / put process number of process to put
/ to sleep in there

mov cdev,-(sp) / nothing happened in isintr so

Issue D Date 3/17/72 ID IMO.1-1 Section E.4 Page 5

UNIX IMPLEMENTATION

jsr r0,swap / swap out process that needs to sleep
mov (sp)+,cdev / restore device
jsr r0,isintr / check for interrupt of new process

br 2f / yes, return to new user
movb (sp)+,r1 / no, r1 = old process number that was originally
/ on the wait channel
beg 1f / if O branch

mov $runqg+4,r2 / r2 points to lowest priority queue
mov $300,%*$ps / processor priority = 6
jsr ro,putlu / create link to old process number
clr #$ps / clear the status; process priority = 0
1¢
rts r0 / return
23
jmp sysret / return to user
isintr: .
mov ri,~(csp) / put number of wait channel on the stack
mov r2,-(sp) / save r2 _
mov u.ttyp,r1 / r1 = pointer to buffer o” process control
/ typewriter
beq 1f / if 0, do nothing except skip return
movb 6(r1),r1 / put interrupt char in the tty buffer in ri1
beq 1f / if its O do nothing except skip return
cmp r1,$177 / is interrupt char = delete?
bne 3f / no, so it must be a quit (fs)
tst u.intr / yes, value of u.intr determines handling
/ of interrupts
bne 2f / if not 0, 2f. If zero do nothing.
1¢ '
tst (r0)+ / bump r0 past system return (skip)
43
mov (sp)+,r2 / restore r1 and r2
mov (sp)+,r1
rts ro -

3: / interrupt char = quit (fs)
tst u.quit / value of u.quit determines handling of quits
beq 1b / u.quit = 0 means do nothing
2: / get here because either u.intr £ 0 or u.quit £ 0
mov stty+6,r1 / move pointer to tty block into ri
1: / find process control tty entry in tty block .
cmp (r1),u.ttyp / is this the process control tty buffer?
beqg 1f / block found go to 1f
add $8,r1 / look at next tty block
cmp ri,stty+[ntty*8]+6 / are we at end of tty blocks
blo 1b / no
br 4b / no process control tty found so go to 4b

mov $240,%sps / set processor priority to 5

movb -3(r1),0f / load getc call argument; character list
/ identifier

inc Of / increment

jsr rO,getcs O:.. / erase output char list for control
br 4b / process tty. This prevents a line of stuff
/ being typed out after you hit the interrupt

Issue D Date 3/17/72 ID IMO.1-1 Section E.4 Page 6

UNIX IMPLEMENTATION

/ key
br 1b

Issue D Date 3/17/72 ID IMO.1~1 Section E.4 Page 7

/ u5 == unix

mget:
mov
clr
mov
nov
bit
bne
bit
bne
bic
mov
bne

jsr
mov
jsr
jsr

rts
3: / adding on
jsr

jsr
mov
mov

mov
clr
dec
bgt
mov

clr
dec
bgt
jsr
mov
bis
jsr
br

4; / large file

mov
bic

mov
mov

bic
mov
bne

jsr

Issue D Date

UNIX IMPLEMENTATION

*y.fofp,mqg / file offset in mg

ac / later to be high sig

$-8,1sh / divide ac/mq by 256.

mg,r2

$10000,1i.flgs / lg/sm is this a large or small file

4f / branch for large file

$117,r2 2 .

3f / branch if/gf greater than or equal to 16

¢116,r2 / clear all bits but bits 1,2,3

i.dskp(r2),r1 / r1 has physical block number

2f / if physical block num is zero then need a new block
/ for file

r0,alloc / allocate a new block

r1,i.dskp(r2) / physical block number stored in i-node

r0,setimod / set inode modified byte (imod)

r0,clear / zero out disk/drum block ‘ust allocated

xr0
block which changes small file to a large file
r0,alloc ; allocate a new block for this file; block number
in r1
rO,wslot / set up I/0 buffer for write, r5 points to first
/ data word in buffer
¢8.,r3 / next 6 instructions transfer old physical block
/ pointers
¢i.dskp,r2 / into new indirect block for the new large file

(r2),(r5)+

(r2)+

r3

1b

$256.~8.,r3 / clear rest of data buffer

(r5)+

r3

1b

r0,dskwr / write new indirect block on disk

r1,i.dskp / put pointer to indirect block in i-node
$10000,1.flgs / set large file bit in i.flgs word of i-node
rO,setimod / set i-node modified flag

mget

$-8,1sh / divide byte number by 256.
¢1776,r2 / zero all bits but 1,2,3,4,5,6,7,8; gives offset
'/ in indirect block
r2,-(sp) / save on stack
mg,r2 / calculate offset in i-node for pointer to proper
/ indirect block
$116,r2
1odSkp(r2),r1
2f / if no indirect block exists
r0,alloc / allocate a new block

3/17/72 ID IMO,1-1 Section E.5 Page 1

UNIX IMPLEMENTATION

mov r1,i.dskp(r2) / put block number of new block in i-node
jsr rO0,setimod / set i-node modified byte
jsr rO,clear / clear new block

22
jsr r0,dskrd / read in indirect block
mov (sp)+,r2 / get offset _
mov r1,~(sp) -/ save block number of indirect block on stack

add r5,r2 / r5 points to first word in indirect block, r2
/ points to location of inter

mov (r2),r1 / put physical block no of block in file
/ sought in ri
bne 2f / if no block exists
jsr r0,alloc / allocate a new block
mov r1,(r2) / put new block number into proper location in
/ indirect block
mov (sp)+,r1 / get block number of indirect block
mov (r2),~(sp) / save block number of new block
jsr rO,wslot
jsr r0,dskwr / write newly modified indirect block back out
/ on disk
mov (sp),r1 / restore block number of new block
jsr rO,clear / clear new block
23 '
tst (sp)+ / bump stack pointer
rts ro
alloc:
mov r2,~(sp) / save r2, r3 on stack
mov r3,-(sp)
mov $¢systm,r2 / start of inode and free storage map for drum
tst cdev '
beq 1f / drum is device
mov $mount,r2 / disk or tape is device, start of inode and free

/ storage map

mov (r2)+,r1 / first word contains number of bytes in free
/ storage map
asl r1 / multiply r1 by eight gives, number of blocks in device

asl r1

asl r

mov r1,~(sp) / save # of blocks in device on stack

clr r1 / r1 contains bit count of free storage map
1

mov (r2)+,r3 / word of free storage map in r3

bne 1f / branch if any free blocks in this word
add 616.,r1

cmp ri,(sp) / have we examined all free storage bytes
blo 1b
jmp panic / found no free storage
1:
asr r3 / £ind a free block
bes 1f / branch when free block found; bit for block k is in
/ byte k/8 / in bit k (mod 8)
inc r1 / increment bit count in bit k (mods)
br 1ib

12

Issue D Date 3/17/72 ID IMO.1-1 Section E.5 Page 2

tst
Jsr
bic
br

free:
mov
mov
jsx

bis

mov
mov
tst

bne
incdb
rts

incd
rts

mov.
bic
clr
bisb

mov
asr
asr
asr
asr
bee

swab
asl
add
tst

beq
add

rts

.byte

access:
jsr

mov

Issue D Date

UNIX IMPLEMENTATION

(sp)+ / bump sp

r0,3f / have found a free block

r3,(r2) / set bit for this block i.e. assign bhlock
2f

r2,-(sp) '/ save r2, r3
r3,-(sp)
r0,3f / set up bit mask and word no. in free storage map
/ for block
r3,(r2) / set free storage block bit; indicates free block

(sp)+,r3 / restore r2, r3

(sp)+,r2

cdev / cdev = 0, block structured, drum; cdev = 1
/ mountable device

1£

smod / set super block modified for drum

r0

mmod / set super block modified for mountable device
r0

ri,r2 / block number, k, = 1
817,r2 / clear all bits but 0,1,2; r2 = (k) mod (8)
r3
2£(r2),r3 / use mask to set bit in r3 corresponding to

(k) mod 8
ri,r2 / divide block number by 16
r2
r2
r2
r2

/ branch if bit 3 in r1 was 0 i.e., bit for block is in
/ lower half of word

/ swap bytes in r3; bit in upper half of word in free

/ storage map

r3

r2 / multiply block number by 2; r2 = k/8
$systm+2,r2 / address of word of free storage map for drum
/ with block bit in it

cdev _

1f / cdev = 0 indicates device is drum

$mount-systm,r2 / address of word of free storage map for
/ mountable device with bit of block to be
/ freed

x0 / return to ‘free’

1,2,4,10,20,40,100,200 / masks for bits 0,...,7

r0,iget / read in i-node for current directory (1=number
/ passed in r1)

i.flgs,r2

3/17/72 ID IMO.1~-1 Section E,5 Page 3

cmpb
bne
aerb

asrb‘
bit

bne

tstb

beq

Jmp
1

rts

setimod:
movb
mov
mov
rts

UNIX IMPLEMENTATION

i.uid,u.nid / is user same as owner of file

1f / no, then branch

r2 / shift owner read write bits into non owner
/ read/write bits

r2

r2,(r0)+ / test read-write flags against argument in

/ access call
1£
u.uid
1£
error

r0

$1 imod / set current i-node modified bytes
.time,i.mtim / put present time into file modified time

S.time+2,i.mtim+2

x0

imap: / get the byte that has the allocation bit for the i-number contained

/ in r1
mov
mov

sudb
mov
bic
mov

asr
asr
asr

mov
mov

tst
beq
add

add
add
add
rts

iget:
cmp
bne
cmp
beqg

tstb

Issue D Date

¢1,mq / put 1 in the mg
r1,r2 / r2 now has i-number vhose pyte in the map we
/ must find
$41.,r2 / r2 has i-41
r2,r3 / r3 has i-41
$17,r3 / r3 has (i-41) mod 8 to get the bit position
r3,1sh / move the 1 over (i-41) mod 8 positions to the left
/ to mask the correct bit
r2
r2)
r2 / r2 has (i-41) base 8 of the byte no. from the start of
/ the map
r2,~(sp) / put (1-41) base 8 on the stack
$systm,r2 / r2 points to the in-core image of the super
/ block for drum
cdev / is the device the disk
1£ / yes
$mount-systm,r2 / for mounted device, r2 points to 1st word
/ of its super block

(r2)+,(sp) / get byte address of allocation bit
(sp)+,r2 / ?

$2,r2 / ?

r0

r1,ii / r1 = i-number of current file

1£

idev,cdev / is device number of i-node = current device
2f

imod / has i-node of current file been modified i.e.,
/ imod set
3/17/72

ID IMO.1-1 Section E.5 Page 4

beq
clrdb
mov
mov
mov
mov
jsr
mov
mov

tst
beqg
tst

bne
cmp

bne
mov
mnov

mov
mov
jer

mov
rts

UNIX IMPLEMENTATION

1£

imod / if it has, we must write the new i-node out on disk
r1,~(sp)

cdev,-(sp)

ii,r1

idev,cdev

rO,icalcy 1

(sp) +,cdev

(sp)+,r1

r1 / is new i-number non zero
2f / branch if ri1=0
cdev / is the current device number non zero (i.e., device
/ # drum) :
1f / branch if cdev £ 0
ri,mnti / mnti is the i-number of the cross device
/ file (root directory of mounted device)
1£
mntd,cdev / make mounted device the current device
rootdir,r1

ri,ii
cdev,idev
rO,icalc; 0 / read in i-node ii

ii,r1
r0

jcalc: / i-node i is located in block (i+31.)/16. and begins 32.%
/ (1+31)mod16 bytes from its start

add
mov
asr
asr
asr
asr

jsr
tst
beq
jsr

bic
mov
mov
add
mov
mov
tst
beqg

mov
dec

bagt
jsr

Issue D Date

$31.,r1 / add 31. to i-number
r1,~-(sp) / save i+31. on stack
r1 / divide by 16.
ri
r1 .
r1 / r1 contains block number of block in which
/ i-node exists '
fo,?skrd / read in block containing i-node i.
r0
1f / branch to wslot when arguient in icalc call = 1
ro,wslot / set up data buffer for write (will be same buffer
/ as dskrd got)

8117,(sp) / zero all but last 4 bits; gives (i+31.) mod 16
(sp)+,mq / calculate offset in data buffer; 32.%(i+31.)mod16
$5,1sh / for i-node i. : _

mq,r5 / r5 points to first word in i-node {i.

g¢inode,r1 / inode is address of first word of current i-node
$160’r3 :

(r0)+ / branch to 2f when argument in icalc call = 0

2f / r0 now contains proper return address for rts r0

(r1)+,(r5)+ / over write old i-node
r3
1b
r0,dskwr / write inode out on device

3/17/72 ID IMO.1-1 Section E.5 Page 5

rts

mov
dec
bgt
rts

itrunc:
jsr
mov
1
mov
beq
mov
bit
beq
mov
jsr
mov

mov
beq
mov
mov
jsrx

mov

dec
bgt
mov

jsr
mov

cmp
bne
bic
clr
jsr
jsr
mov
rts

UNIX IMPLEMENTATION

ro

(r5)+,(r1)+ / read new i-node into "inode" area of core
xr3
2b
r0

rO,iget
$i.dskp,r2 / address of block pointers in r2

(r2)+,r1 / move physical block number into ri

St

rz,"(sp) .

$10000,1.f1lgs / test large file bit?

Af / if clear, branch

ri,-(sp) / save block number of indirect block

r0,dskrd / read in block, 1st data word pointed to by r5
$256.,r3 / move word count into r3

(r5)+,r1 / put 1st data word in r1; physical block number
3f / branch if zero

r3,-(sp) / save r3, r5 on stack

r5,-(sp)

r0,free / free block in free storage map

(sp)+,x5

(sp)+,r3

r3 / decrement word count
2b / branch if positive
(sp)+,r1 / put physical block number of indirect block

r0,free / free indirect block
(sp)+,r2

r2,$1 .dskp+16.

1b / branch until all i.dskp entries chec’.
$10000,i.flgs / clear large file bit

i.size / zero file size _
rO,copyz; i.dskp; i.dskp+16. / zero block pointers
rO,setimod / set i-node modified flag

ii,xr1

r0

Issue D Date 3/17/72 ID IMO.1-1 Section E.5 Page 6

/ u6 == unix

UNIX IMPLEMENTATION

readi:
clr u.nread / accumulates number of bytes transmitted
tst u.count / is number of bytes to be read greater than 0O
bgt 1f / yes, branch
rts r0 / no, nothing to read; return to caller
1: :
mov r1,~(sp) / save i-number on stack
cmp r1,440., / want to read a special file (i-nodes 1,...,40 ara
-/ for special files)
ble 1£ / yes, branch
jmp dskr / no, jmp to dskr; read file with i-node number (r1)
/ starting at byte ((u.fofp)), read in u.count bytes
1:
asl r1 / multiply inode number by 2
jmp *1£-2(r1)
1:
rtty / tty; r1=2
rppt / ppt; ri=4
rmem / mem; r1=6
rrfo / rfo
rek0 / rko
rtap / tapO
rtap / tap1
rtap / tap2
rtap / tap3
rtap / tap4
rtap / taps
rtap / tapé
rtap / tap7
rcvt / ttyo
revt / tty1
rcvt / tty2
revt / tty3
revt / tty4
revt / ttys
rcvt / ttyé
revt / tty7
rcrd/ crd

rtty: / read from console tty

mov
tst
bne
jsr
tst
beq

movb
inc

Issue D Date

tty+[8%*ntty]-8+46,r5 / r5 is the address of the 4th word of
/ of the control and status block
2(rs) / for the console tty; this word points to the console
/ tty bufier
1f / 2nd word of console tty buffer contains number
/ of chars., Is this number non-zero?
r0,canon; ttych / if 0, call ‘canon’ to get a line
~ / (120 chars.)

2(rs) / is the number of characters zero

ret1 / yes, return to caller via ‘rett’

#4(r5),r1 / no, put character in r1

4(r5) / 3rd word of console tty buffer points to byte which
/ contains the next char.

3/17/72 ID IMO.1-1 Section E.6 Page 1

reti:

rppt: /

rmen: /

passc:

Issue D Date

dec
jsrx
br

Jmp .

UNIX IMPLEMENTATION

2(r5) / decrement the character count
ro0,passc / move the character to core (user)
1b / get next character

ret / return to caller via ‘ret’

read paper tape

isr

jsx
br

ro,pptic / gets next character in clist for ppt input and
/ places

br ret / it in r1; if there is no problem with reader, it

/ also enables read bit in prs
r0,passc / place character in users buffer area

rppt

transfer characters from memory to a user area of core

mov
inc

movb
jsr

br

Jmp

mov
Jsr
mov
sub
blos
cmp
bhis
mov

jsr
jsx
jsr
movb
dec
bne
tst
bne
br

movb

inc

#u.fofp,rt / save file offset which points to the char to
/ be transferred to user
#u,fofp / increment file offset to point to ‘next’ char in
/ memory file
(r1),r1 / get character from memory file, put it in r1
ro,passc / move this character to the next byte of the
/ users core area
rmenm / continue

error / see ’‘error’ routine

(sp),r1 / i-number in r1

r0,iget / get i-node (r1) into i-node section of core
i.,size,r2 / file size in bytes in r2

#u,fofp,r2 / subtract file offset

ret :

r2,u.count / are enough bytes left in file to carry out read
1£

r2,u.count / no, just read to end of file

r0,mget / returns physical block number of block in file
/ where offset points

r0,dskrd / read in block, r5 points to 1st word of data in
/ buffer

r0,sioreg

(r2)+,(r1)+ / move data from buffer into working core
/ starting at u.base
r3
2b / branch until proper number of bytes are transferred
u.count / all bytes read off disk '
dskr
ret

r1,*u.base / move a character to the next byte of the
/ users buffer
u.base / increment the pointer to point tc the next byte

3/17/72 ID IMO.1-1 Section E.6 Page 2

UNIX IMPLEMENTATION

/ in users buffer

inc u.nread / increment the number of bytes read

dec u.count / decrement the number of bytes to be read
bne 1f£ / any more bytes to read?; yes, branch

mov (sp)+,r0 / no, do a non-local return to the caller of

rets: / (1)£pop the return address off the stack into r0

mov (sp)+,r1 / (2) pop the i-number off the stack into rit
1: :

clr #sps / clear processor status

rts r0 / return to address currently on top of stack
writei:

clr u.nread / clear the number of bytes transmitted during

/ read or write calls

tst u.count / test the byte count specified by the user

bgt 1f / any bytes to output; yes, branch

rts r0 / no, return - no writing to do
13

mov r1,-(sp) / save the i-node number on the stack

cmp r1,%840. / does the i-node number indicate a special file?

bgt dskw / no, branch to standard file output

asl r1 / yes, calculate the index into the special file

Jmp *1f-2¥r1) / jump table and jump to the appropriate routine
1

wtty / tty

wppt / ppt

wmem / mem

wrf0 / rfo

wrk0 / rko

wtap / tapO

wtap / tap1

wtap / tap2

wtap / tap3

wtap / tap4

wtap / taps

wtap / tap6

wtap - / tap7

xmtt / ttyO

xmtt / ttyt

xmtt / tty2

smtt / tty3

xmtt / tty4

xmtt / ttyS

xmtt / ttyé

xmtt / tty7?
/ wlpr / lpr
wtty: ~

jsr r0,cpass / get next character from user buffer area; if

ncne go to return address in syswrite
tst r1 / is character = null
beq wtty / yes, get next character

mov $240,%$ps / no, set processor priority to five

Issue D Date 3/17/72 ID IMO.1-1 Section E.6 Page 3

cmpb

bhis
jsr

jsr
br

mov
jsr
mov
br

wppt:
jsr

jsr
br

~
t
e
o
=

jsr
cmp
blo
cmp
bhi
sub

-
(1]

jsr
br

I N

£
=]
0
=}

jer
mov
mov
inc
movb

br

Jmp

UNIX IMPLEMENTATION

cc+1,$: 0. / is character count for console tty greater
/ than 20

2f / yes; branch to put process to sleep

rO,putc; 1 / find place in freelist to assign to console
/ tty and

br 2f / place character in list; if none available

/ branch to put process to sleep
r0,startty / attempt to output character on tty
wtty

ri,~(sp) / place character on stack

rO,sleep; 1 / put process to sleep

(sp)+,r1 / remove character from stack

1b / try again to place character in clist and output

r0,cpass / get next character from user buffer area,
/ if none return to writei’s calling routine
r0,pptoc / output character on ppt

wppt

ro,cgass
ro0,s$ a
1£

r1 ,$'Z
1£
$40,r1

r0,lptoc
wlpr

¢+ / transfer characters from a user area of core to memory file

rO,cpass / get next character from users area of core and
/ put it in r1

r1,~-(sp) / put character on the stack

#u.fofp,r1 / save file offset in r1

#u.fofp / increment file offset to point to next available
/ location in file

(sp)+,(r1) / pop char off stack, put in memory loc assigned

/ to it
wmem / continue

error / ?

dskw: / write routine for non-special files

mov
Jsr

mov
add
- cmp
blos

Issue D Date

(sp),rt / get an i-node number from the stack into rt
r0,iget / write i-node out (if modified), read i-node ‘r1’

/ into i-node area of core
#y,fofp,r2 / put the file offset [(u.off) or the offset in
/ the fsp entry for this file] in r2
u.count,r2 / no. of bytes to be written + file offset is
/ put in r2

~r2,i.size / is this greater than the present size of

/ the file?
1f / no, branch

3/17/72 ID IMO.1-1 Section E.6 Page 4

mov

jsr

jsr

bit
bne

cmp

bhis

UNIX IMPLEMENTATION

r2,i.size / yes, increase the file size to file offnet +
/ no. of data bytes
r0,setimod / set imod=1 (i.e., core inode has been
/ modified), stuff time of modification into
/ core image of i-node

r0,mget ; get the block no. in which to write the next data
. byte

#u,fofp,s777 / test the lower 9 bits of the file offset
2f / if its non-zero, branch; if zero, file offset = O,

/ 512, 1024,...(i.e., start of new block)
u.count,$512. / if zero, is there enough data to fill an

/ entire block? (i.e., no. of

3f / bytes to be written greater than 512.? Yes, branch.

/ bon’t have to read block

2: / in as no past info. is to be saved (the entire block will be
/ overwritten).

jsr

jsr

jsr

movb
dec
bne
jsr
tst
bne

jmp

L4 ’

no, must retain old info.. Hence, read block "r1

x0,dskrd /
/ into an I/0 buffer
r0,wslot / set write and inhibit bits in I/0 queue, proc.
/ status=0, r5 points to 1st word of data
rO0,sicreg / r3 = no. of bytes of data, r1 = address of data,
/ r2 points to location in buffer in which to
/ start writing data

(r1)+,(r2)+ / transfer a byte of data to the I/0 buffer
r3 / decrement no. of bytes to be written

2b / have all bytes been transferred? No, branch
r0,dskwr / yes, write the block and the i-node

u.count / any more data to write?

1b / yes, branch

ret / no, return to the caller via ‘ret’

cpass: / get next character from user area of core and put it in r1

tst

beq
dec
movb

inc
inc
rts

mov
mov
rts

sioreg:
mov
mov
bis
bic
add

Issue D Date

u.count / have all the characters been transferred (i.e.,
/ u.count, # of chars. left
1f / to be transferred = 0?) yes, branch
u.count / no, decrement u.count
#y,base,r1 / take the character pointed to by u.base and
/ put it in
u.nread / increment no. of bytes transferred
u.base / increment the buffer address to point to the
r0 / next byte

(sp)+,r0 / put return address of calling routine into r0
(sp)+,r1 / i-number in r1
r0 / non-local return

#u,fofp,r2 / file offset (in bytes) is moved to r2

r2,r3 / and also to r3

$177000,r3 / set bits 9,¢.s+,15. of file offset in r3

$1777,r2 / calculate file offset mod 512.

r5,r2 / r2 now points to 1st byte in system buffer where
/ data is to be placed

3/17/72 ID IMO.1-1 Section E.6 Page 5

mov
neg

cmp
blos

mov

add
sub
add
add

rts

UNIX IMPLEMENTATION

u.base,r1 / address of data is in r1
r3 / 512 - file offset (mod512.) in r3 (i.e., the number
/ of free bytes in the file block
r3,u.count / compare this with the number of data hytes to
/ be written to the file

'2f / if less than branch. Use the number of free bytes

/ in the file block as the number to be written
u.count,r¥3 / if greater than, use the number of data bytes
as the number to be written
r3,u.nread / r3 + number of bytes xmitted during write is
/ put into u.nread

r3,u.count / u.count = no. of bytes that still must be

/ written or read

r3,u.base ; u.base points to the 1st of the remaining data
bytes

r3,*u.fofp / new file offset = number of bytes done + old
/ file offset

ro

Issue D Date 3/17/72 ID IMO.1-1 Section E.6 Page 6

/ u7 == unix

cancns
mov
adad
mov

clr
jsr
jsr
jsr

cmp
beq
movb

inc
inc
cmp
beg
cmp
bhis
br

UNIX IMFLEMENTATION

r5,r1 / move tty buffer address to ri1

$10.,r1 / add 10 to get start of data

r1,4(r5) '/ canp = 10(r5) / move buffer aidr + 10 to 3rd
/ word in buffer (char. pointer)

2(r5) / ncan / clear 2nd word in buffer, 0 char. count

r0,¥(r0) / jump to arg get char off Q of characters, sleep
/ if none

rO,cesc; 100 / test for € (kill line)

br canon / character was @ so start over

rO,cesc; 43 / test for # (erase last char. typed)

br 1b / character was #, go back

rd,84 / is char eot?

1f / yves, reset and return

ri,%*4 rss / no, move char to address in 3rd word of buffer
(char. pointer)

2(r5) / increment 2nd word (char. count)

4(r5) / increment 3rd word (char. pointer)

r1,$°\n / is char = newline

1£ / yes, 1f

2(r5),$120. / is byte count greater than or equal to 120

1f / yes, 1£

1b / no, get another char off the Q

1: / get here if line is full, a new line has been received or an eot
/ has been received

mov
add
mov
tst
rts

r5,r1 / move buffer address to r1

$10.,r1 / add 10 :
r1,4(r5) / canp = 10(r5) / reset char pointer
(r0)+ / skip over argument

r0 / return

cesc: / test for erase or kill char

cmp
bne
tst
beq
dec
dec
cmpb
bne

tst

rts

r1,(r0)+ / char in r1 = erase or kill character?
1f / no, skip return

2(rs) / yes, is char. count = 0O

2f / yes, don’t skip return

2(r5) / no, decrement char count

4(r5) / decrement character pointer
#4(r5),8°\\/ was previous character a \

2f / no, don’t skip

(r0)+ / yes, skip

r0 / return
‘ S{om

ttych: / get characters from Q of characters inputted e tty

mov
jsr

clr
rts

$240,%sps / set processor priority to 5

r0,getc; 0 / takes char. off clist and puts it in r1
br 1£ / list is empty, go to sleep

*sps / clear process priority

r0 / return

1: / list is empty

Issue D Date

3/17/72 ID IMO.1~-1 Section E.7 Page 1

UNIX IMPLEMENTATION

mov r5,-(sp) / save r5

jsr rO0,sleep; 0 / put process to sleep in input wait channel
mov (sp)+,r5 / restore r5

br ttych / try again

pptic: / paper tape inpat control
mov $240,%$ps / set processor priority to five
cmpb cc+2,$30. / is character count for paper tape input in
/ clist greater than or equal to 30
vhis 1f / yes, branch
bit *¥4prs,$104200 / is there either an error, an unread char
/ in buffer, or reader busy
bne 1f / yes, don’t enable reader
inc #sprs / set reader enable bit

jsr r0,getc; 2 / get next character in clist for ppt input and

/ branch
tst (r0)+ / pop stack so that return will be four locations past
/ subroutine call
23 :
clr #4ps / set process priority equal to zero
rts r0 / return
13 o ”»
cmpb pptiflg,$6 / does pptiflg indicate file not closed
beq 2b / yes, return to calling routine at instruction
/ immediately following jsr
jsr r0,sleep; 2 / no, all characters to be read in not yet in

/ clist, put process to sleep
brx pptic

pptoc: / paper tape output control

mov $240,%sps / set processor priority to five.

cmpb cc+3,450. / is character count for paper tape outout in
/ clist greater than or equal to 50

bhis 1£ / yes

jsr ro,putc; 3 / f£find place in freelist to assign ppt output
/ and place

br 1f / character in list; if none available branch to put
/ process to sleep

jsr r0,starppt / try to output character
clr #*3ps / clear processor priority
rts r0 / return
12 ’
mov r1,~-(sp) / place character on stack
jsr rO,sleep; 3 / put process to sleep
mov (sp)+,r1 / place character in ri
br pptuc / try again to place character in clist and output
/lptoc: / line printer output control
/ mov $240,%*$ps / set processor priority to five
/ cmpb cc+5,8200. / is character count for printer greater than or
/ equal to 200
/ bhis 1f / yes
/ isr rO,putc; 5 / find place in freelist to assign to printer

and place

Issue D Date 3/17/72 ID IMO.1-1 Section E.7 Page 2

UNIX IMPLEMENTATION

br 1f / char in list, if none available branch to put
/ process to sleep

/ jsr r0,starlpt / try to output character
/ clr *#$ps / set processor priority = 0
5 rts r0 / return

1: '
/ mov r1,-(sp) '/ place character on stack
/ jsr r0,sleep; S5 / put process to sleep
/ mov (sp)+,r1 / place character on stack
/ br lptoc

+ / get a character off character list
mov (ro)+,r1 / put argument in getc call in r1 (char list id)
jsr r0,get ' '
br 1f / empty char list return
decb cc(r1) / decrement number of char in char list
mov $-1,r1 / load minus 1 in 1
jsr ro,put / put char back on free list
movb clist-2(r2),r1 / put char in ri

(o]
o
ﬂ
Q

o

tst (ro)+ / bump r0 for non blank char list return
13
rts r0
putc:
mov r1,~(sp) / save char on stack
mov $-1,r1 / put free list list id in r1
jsxr r0,get / take char off free list / clist slot taken
_ '/ identified by r2 ,
br 1f / branch when no chars in free list
mov (ro)+,r1 / put putc call arg in r1 (i.e., list identifier)
incb cc(r1) / increment character count for list (r1)
jsr rO,put / put clist entry on list
movb (sp),clist-2(r2) / put character in new entry
1:
tst (ro)+
mov (sp)+,r1
rts r0
get:
movb cf+1(r1),r2 / move current first char offset to r2
beq 2f / no characters in char list
tst (r0)+ / bump r0, second return
cmpb r2,cl+1(r1) / r2 equal to last char offset
beq 1€ / yes, (i.e., entire char list scanned), branch to 1f
bic $1377,r2 / clear bits 8-15 in r2
asl r2 / multiply r2 by 2 to get offset in clist
movb clist-1(r2),cf+1(r1) / move next char in list pointer to
/ first char offset ptr
br 2f
1:
clrb cf+1(r1) / clear first char clist offset
clrb cl+1(r1) / clear last char clist offset
bic $1377,r2 / zero top half of r2
asl r2 / muitiply r2 by 2
2:

rts r0

Issue D Date 3/17/72 ID IMO,.1~1 Section E.7 Page 3

put:
asr
mov
movb

beq .

bic
asl
movb
br

movd

mov
movb
asl

rts

UNIX IMPLEMENTATTI

I%E/ divide r2 by 2; r2 is offset in clist
r2,~(sp) / save r2 on stack
cl+1(r1),r2 / move offset of last char in list (r1) into r2
1f / offset = O then go to 1f (i.e., start a new list)
$1377,r2 / zero top half of r2
r2 / multiply offset by 2, r2 now has offset in clist
(sp),clist-1(r2) / link new list entry to current last

/ entry in list (r1)
2fF

(sp),cE+1(r1) / put new list entry offset into first char
/ offset of list (rt)

(sp)+,r2 / pop stack into r2; offset of new list
/ entry in r2
r2,cl+1(r1) / Tak? new list entry the last entry in list
r1
r2 / multiply r2 by 2; r2 has clist offset for new
/ list entry)
r0

iopen: / open file whose i-number is in r1

tst
blt
jer
cmp
bgt
mov
asl

Jmp

otty
oppt
sret
sret
sret
sret
sret
sret
sret
sret
sret
sret
sret
ocvt
ocvt
ocvt
ocvt
ocvt
ocvt
ocvt
ocvt

r1 / write or read access?

2f / write, go to 2f

rO,access; 2 / get inode into core with read access
r1,640. / is it a special file

3f / no, 3f
r1,—(sps / yes, figure out

r1
#1£f-2(r1) / which one and transfer to it

tty
ppt
mem
/ rfo
rk0
tap0
tap1
tap2
tap3
tap4
tap5
tapé6
tap?
tty0
tty1
tty2
tty3
tty4
ttys
tty6
tty?

NN

R R

error / crd

Issue D Date 3/17/72 ID IMO.1-1 Section E.7 Page 4

UNIX IMPLEMENTATION

2: / check open write access

neg r1 / make inode number positive
jsr rO,access; 1 / get inode in O core
bit $40000,i.flgs / is it a directory?
bne 2f / yes, transfer (error)
cmp r1,840. / no, is it a special file?
bgt 3f / no, .return
mov ri,-(sp) / yes
asl r1
jmp #4f-2(r1) / figure out which special file it is
/ and transfer ’
1:
otty / tty
leadr / ppt
sret / mem
sret / rfo0
sret / rkO
sret / tapO
sret / tapi
sret / tap2
sret / tap3
sret / tap4
sret / tapS
sret / tapé6
sret / tap7
ocvt / tty0
ocvt / tty1
ocvt / tty2
ocvt / tty3
ocvt / tty4
ocvt / ttySs
ocvt / tty6
ocvt / tty7
/ ejec / lpr
otty: / open console tty for reading or writing
mov $100,%stks / set interrupt enable bit (zero others) in
/ reader status reg :
mov $100,%stps / set interrupt enable bit (zero others) in
/ punch status reg '
mov tty+[ntty¥8]-8+6,r5 / r5 points to the header of the
/ console tty buffer
incb (r5) / increment the count of processes that opened the
/ console tty
tst u.ttyp / is there a process control tty (i.e., has a tty
/ buffer header
bne sret / address been loaded into u.ttyp yet)? Yes, branch
mov r5S,u.ttyp ; no, make the console tty the process control
: tty
br sret / ?
sret:
clr #8$ps / set processor priority to zero
mov (sp)+,r1 / pop stack to ri
3
’ rts ro0

Issue D Date

3/17/72 ID IMO.1-1 Section E.7 Page 5

UNIX IMPLEMENTATION

oppt: / open paper tape for reading or writing

mov
tstb
bne
mov

jsr

br
movb
movb
br

Jmp

$100,*$prs / set reader interrupt enable bit
pptiflg / is file already open
2f / yes, branch

$240,%$ps / no, set processor priority to 5

r0,getc; 2 / remove all entries in clist

br .+4 / for paper tape input and place in free list
1b

$2,pptiflg / set pptiflg to indicate file just open
$10.,toutt+1 / place 10 in paper tape input tout entry
sret

error / file already open

iclose: / close file whose i-number is in r1

tst
blt
cmp
bgt -
mov
asl

Jmp

ctty
cppt
sret
sret
sret
sret
sret
sret
sret
sret
sret
sret
sret
ccvt
cevt
ccvt
ccvt
ccvt
cevt
ccvt
ccvt

ri1 / test i-number

2f / if neg., branch

r1,$40. / is it a special file
3b / no, return

r1,-(sp) / yes, save r1 on stack

r1 '
#4{£f-2(r1) / compute jump address and transfer

tty

ppt

mem

rfo

kO

tap0O
tap1
tap?2
tap3
tap4
tap$s
tap6
tap7
ttyo
tty1
tty2
tty3
tty4
tty5
tty6
tty7

O S S LN G 0 NS S N

error / crd

2: / negative i-number - .

neg
cmp
bgt
mov
asl
Jrp
1

Issue D Date

ri1 / make it positive

r1,$40. / is it a special file

3b / no, return

r‘:—(SPS

r1 / yes, compute jump address and transfer
¥4 £-2(r1 S

3/17/72 ID IMO.1-1 Section E.7 Page 6

UNIX IMPLEMENTATION

ctty / tty

leadr / ppt

sret / mem

sret / rfo

sret / rkoO

sret / tapO
sret / tapi
sret / tap2
sret / tap3
sret / tap4
sret / tap5
sret / tap6
sret / tap7
cevt / ttyO
cevt / ttyt
cevt / tty2
cevt / tty3
cevt / tty4
cevt / ttys
cevt / ttyé
cevt / tty7

/ ejec / 1lpr

ctty: / close console tty
mov tty+{ntty*8]-8+6,r5 / point r5 to the console tty buffer
decb (r5) / dec number of processes using console tty
br sret / return via sret

cppt: / close paper tape
clrdb pptiflg / set pptiflg to indicate file not open
12
mov $240.%$ps / set process or priority to 5
jsr .r0,getc; 2 / remove all ppt input entries from clist
/ and assign to free list

br sret
br 1b
/ejec: ' '
/ nmov $100,*31ps / set line printer interrupt enable bit
/ mov $14,r1 / ‘form feed’ character in r1 (new page).
/ jsr r0,lptoc / space the printer to a new page
/ br sret / return to caller via ‘sret’

leadr: / produce paper tape leader
mov $100,%*$pps / set paper tape punch interrupt enable
mov $100.,-(sp) / 101. characters of ‘nul’ will be output as

/ leader
1
clr r1 / r1 contains a ‘nul’ character
jsr r0o,pptoc / output the ‘nul’ character
dec (sp)
bge 1b / last leader character output? no, branch
tst (sp)+ / bump stack pointer
br sret / return to caller via ‘sret’

sysmount: / mount file system; args special; name

Issue D Date 3/17/72 ID IMOe1—1 Section E.7 Page 7

jsr
tst
bne
jsr
mov

mov
jsr

mov
tstb

bne
mov
movb

mov
bis
jer

tstb
bne
br

UNIX IMPLEMENTATION

r0,arg2 / get arguments special and name

mnti / is the i-number of the cross device file zero?

c¢rrora / no, error

r0,getspl / get special files device number in ri

(sp)+,u.namep / put the name of file to be placed on the
/ device

r1,=(sp) -/ save the device number

rO,namei / get the i-number of the file

br errora

ri,mnti / put it in mnti

sb1+1 / is 15th bit of I/0 queue entry for dismountable
/ device set? :

1b / (inhibit bit) yes, skip writing

(sp),mntd / no, put the device number in mntd '

(sp),sb1 / put the device number in the lower byte of the

/ I/0 queue entry

(sp)+,cdev / put device number in cdev

$2000,sb1 / set the read bit

rO,ppoke / read in entire file system .Sa/wl/océ

sb1+1 / done reading?
1b / no, wait
sysrcta / yes

sysumount: / special dismount file system

jsr
jsr
cmp
bne

tstb

bne
clr
clr
br

rO0,arg; u.namep / point u.namep to special
r0,getspl / get the device number in ri

ri,mntd / is it equal to the last device mounted?
errora / no error

sb1+1 / yes, is the device still doing I/O (inhibit
/ bit set)?

1b / yes, wait

mntd / no, clear these

mnti o

sysreta / return

getspl: / get device number from a special file name

jsr

sub
ble
cmp

bgt
rts

exrroras
Jmp

sysreta:
Jmp

Issue D Date

rO,namei / get the i-number of the special file

br errora / no such file

$4,r1 / i-number-4 rk=1,tap=2+n
errora / less than 0? vyes, error
r1,$%. / greater than 9 tap 7
errora / yes, error

r0 / return with device number in ri

error / see ‘error’ routine

sysret / see ‘sysret’ routine

3/17/72 ID IMO.1-1 Section E.7 Page 8

/ U8 ~— unix

UNIX IMPLEMENTATION

rtap: / read from the dec tape

asr
sub
mov
jsx

wtap: .
asr
sub
mov
jsr

rrk0Os
mov
jsr

wrkO:
mov
jsr

rrfQ:
clr
jsr

wrfo:
clr
jsr

r1 / divide the i-number by 2

$4.,r1 / (i-number/2)-4 ri

rt1,cdev / cdev now has device number

r0,bread; 57¢. / read in block thats in *u.fofp

ri / divide i-number by 2 .

$4.,r1 / rt = i-number minus 4

ri,cdev / this is used as the device number

rO,bwrite; 578. / write block (u.fofp) on dec tape
/ Maximum

$1,cdev / set current device to i., 4isk

r0,bread; 4872. / read block from disk (maximum block
/ number allowed on ‘evice is 4872.)
/ - (u.fofp) contains block number

$1,cdev / set current device to 1; disk
r0,bwrite; 4872. / write block (u.fofp) on disk

cdev / set current device to 0., fixed head disk

r0,bread; 1024. / read block (u.fofp) from fixed head
/ disk (max. block number allowed on
/ device is 1024.)

cdev / set current device to 0., fixed head disk
r0,bwrite; 1024. ; write block ‘(u.fofp)’ on fixed head
disk

bread: / réad a block from a block structured device

jsr

mov
mov

cmp
bhis
mov
jsr
mov

inc
dec

bgt

tst
mov

Issue D Date

ro,tstdeve ; errog on special file I/0 (only works on
tape

#u.fofp,r1 / move block number to r1

$2.-cold,~-(sp) / 2-cold to stack

r1,(r0) / is this block # greater than or equal to
/ maximum block # allowed on device
1f / yes, 1f (error)
rt1,-(sp) / no, put block # on stack
r0,preread / read in the block into an I/O buffer
(sp)+,r1 / return block # to ri1
rt / bump block # to next consecutive block
(sp) / "2-1-cold on stack
1b / 2-1-cold = 0? No, go back and read in next block

(sp)+ / yes, pop stack to clear off cold calculation
#u,.fofp,r1 / restore r1 tc initial value of the
/ block #

3/17/72 ID IMO.1-1 Section E.8 Page 1

cmp

bhis
inc
jsr
bis

bit
beg
cmp
ble
tstb
bne
mov
jsr
mov
br

UNIX IMPLEMENTATION

r1,(r0)+ / block # greater than or equal to maximum
/ block number allowed

errori0 / yes, error

*u,fofp / no, *u.fofp has next block number

rO,preread / read in the block whose number is in ri

$40000,(r5) / set bit 14 of the 1st word of the I/O
, / buffer

$22000,(r5) / are 10th and 13th bits set (read bits)

1f / no ‘

cdev,$1 / disk or drum?

2f / yes . :

uquant / is the time quantum = 0?

2f / no, 2f

r5,-(sp) / yes, save r5 (buffer address)

r0,sleep; 31. / put process to sleep in channel 31 (tape)
(sp)+,r5 / restore r5

1b / go back

2: / drum or disk

jsr
br

r0,idle; s.wait+2 / wait
1b

1: / 10th and 13th bits not set

bic
jsr
add
jsr

1: / r5 points

$40000,(r5) / clear bit 14

r0,tstdeve / test device for error (tape)

$8,r5 / r5 points to data in I/0 buffer

r0,dioreg / do bookkeeping on u.count etc.

to beginning of data in I/0 buffer, r2 points to beginning

/ of users data

movb
dec
tst
beg
tst
br

mov
Jmp

(r5)+,(r2)+ / move data from the I/O buffer

r3 / to the user’s area in core starting at u.base
u.count / done

1f / yes, return

~(r0) / no, point r0 to the argument again

bread / read some more

(sp)+,r0 / jump to routine that called readi
ret

bwrite: / write on block structured device

jsr
mov
cmp
bhis
inc
jsrx
jsr
1: / r2 points
movb
dec
bne
jsrx
tst
beg
tst
br
12

Issue D Date

r0,tstdeve / test the device for an error

#*u,fofp,r1 / put the block number in r1

ri,(r0)+ / does block number exceed maximum allowable #
errori0 / yes, error

*u.fofp / no, increment block number

ro,wslot / get an I/O buffer to write into

r0,dioreg / do the necessary bookkeeping

to the users data; r5 points to the I/0O buffers data area
(r2)+,(rs)+ / 3 r3, has the byte count

r3 / area to the I/O buffer

1b

r0,dskwr / write it out on the device

u.count / done

1f / yes, 1£f

-(r0) / no, point r0 to the argument of the call
bwrite / go back and write next block

3/17/72 ID IMO.1-1 Section E.8 Page 2

mnov
jmp

UNIX IMPLEME: "ATION

(sp)+,r0 / return to routine that called writei
ret

tstdeve: / check whether permanent error has occured on special file

/ 1/0

mov

tstb

bne
rts
1:

clrdb

error10:
Jmp

dioreg:
mov
cmp

blos

mov
1

mov

add

sub

add

rts

preread:
jsr

bis
jsr

clr
rts

dskrd:
Jsr

bis
jsr
clr
bit
beq
jsr
br

add
rts

wslot:
jsr

Issue D Date

cdev,r1 / only works on tape; r1 has device #
deverr(r1) / test error bit of device

1f / error

r0 / device okay

deverr(r1) / clear error

error / see ‘error’ routine

u.count,r3 / move char count to r3
x3, $512. / more than 512, char?
1f / no, branch

$512.,r3 / yes, just take 512,

u.base,r2 / put users base in r2 '
r3,u.nread / add the number to be read to u.nread
r3,u.count / update count

r3,u.base / update base

r0 / return

r0,bufaloc / get a free I/O buffer (r1 has block number)
br 1f / branch if block already in a I/O buffer
$2000,(r5) / set read bit (bit 100 in I/O buffer)
ro,poke ./ perform the read

#sps / ps = O
r0

ro,bufaloc / shuffle off to bufaloc; get a free I/O buffer
br 1f
$2000,(r5) / set bit 10 of word 1 of I/O queue entry
/ for buffer
r0,poke / just assigned in bufaloc; bit 10=1 says réad

$22000,(r5) / if either bits 10, or 13 are 1; jump to idle
1£

r0,idle; s.wait+2

1d

$8,r5 ; r5 points to first word of data in block just read
in
r0

r0,bufaloc / get a free I/0 buffer; pointer to first
br 1f / word in buffer in rS5

3/17/72 ID IMO.1-1 Section E.8 Page 3

bit
beq
jsr
br

bis

clr
add

rt::

dskwr:
bic

ppoke:
mov
jsr
clr
rts

poke:
mov
mov
mov
mov

mov
bit

beq
bit
bne
movb
tstb
beg
mov
clrdb
br

cmpb
blt
bgt

bit
bne
bis
mov
nov
mov

Issue D Date

UNIX IMPLEMENTATION

$22000,(r5) / check bits 10, 13 (read, waiting to read)
/ of I/0 queue entry
1f / branch if 10, 13 zero (i.e., not reading, or waiting
/ to read)
r0,idle; s.wait+2 / if buffer is reading or writing to read,
‘ / idle
1b / till finished

$101000,(r5) / set bits 9, 15 in 1st word of I/0 queue
(write, inhibit bits)
*4ps / clear processor status
¢8,r5 / r5 points to first word in data area for this
/ block

.r0

$100000,%bufp / clear bit 15 of I/O queue entry at
/ bottom of queue

$340,%$ps
r0,poke
*$ps

r0

r1,-(sp)

r2,-(sp)

r3sﬁ(59) ;

s$bufp+nbuf+nbuf+6,r2 / r2 points to highest priority I/O
/ queue pointer -

—(r2),r1 / r1 points to an I/0 queue entry

$3000,(r1) / test bits 9 and 10 of word 1 of I/O queue
/ entry

2f / branch to 2f if both are clear

$130000,(xr1) / test bits 12, 13, and 15

2f / branch if any are set

(r1),r3 / get device id

deverr(r3) / test for errors on this device

3f / branch if no errors

$~1,2(r1) / destroy associativity

1(r1) / do not do I/0

2f

r3,81 / device id = 1; device is disk
prf / device id = 03 device is drum
ptc / device id greater than or equal to 1; device is
/ dec tape
$2,active / test disk busy bit
2f / branch if bit is set
$2,active / set disk busy bit '
ri,rkap / rkap points to current I/O queue entry for disk
2(r1),mq / put physical block number in mg

$12.,div / divide physical block number by 12.

3/17/72 ID IMO.1-1 Section E.8 Page 4

nov
mov

mov

bis
br

prfs / drum

bit
bne
bis
mov
mov
clr

movb

clr
movb

mnov

mov
mov
mov
mov

. bit

beqg
mov

mov’
br

ptc: / tape

geta: /

Issue D Date

bit
bne
mov
swab
bic
add
crpb
beg
movb

bis
mov
mov
mov
movb
sub
swab
bis
mov

UNIX IMPLEMENTATION

$rkda+2,r3 /
ac,~(sp) / put remainder from divide on stack; gives
/ sector number
$4,1sh / shift quotient 4 bits, to align with cyl and surf
/ bits in rkda
mq,{(sp) / or mg with sector; gives total disk address
3f ‘

$1,active / test drum busy bit
2f / branch if bit is set
$1,active / set drum busy bit
r1i,xfap / rfap points to current I/0 queue entry for drum
$dae+2,r3
-(sp)
2(r1),1(sp) / move low byte of physical block number into
/ high byte of stack
-(sp) / word
3(r1),(sp) / move high byte of physical block number into
/ low byte of stack
load dae with high byt . of physical block
number

(SP)+,-(r§)

/

/

(sp)+,~(r3) / load rkda register; load dar register

6(r1),-(r3) / load bus address register

4(x1),-(r3) / load word count register

$103,-(sp) / 103 indicates write operation when loaded

/ in csr

$2000,(r1) ; if bit 10 of word 1 of I/0 queue entry is
a one _

3f / then read operation is indicated

$105,(sp) / 105 indicates read operation

(sp)+,-(r3) / load csr with interrupt enabled, command, go
seta

I1/0

$4,active

2f

tcem,r3

r3 '

$17,r3

$2,r3

r3,(r1)

3f

$1,tcem / stop transport if not same unit

$4,active

ri,tcap

820.,tcerrc

g¢tapei,tcstate

(r1),r3 / device

$2,r3 / now unit

r3

$103,r3 / now rbn,for,unit,ie
r3,tcem

1/0 queue bookkeeping; set read/write waiting bits.,

mov

(r1),r3 / move word 1 of I/O queue ontry into r3

3/17/72 ID IMO.4~1 Section E.8 Page 5

bic
bic
rol
rol
rol
bis

cmp

bhi
mov
mov
mov
rts

bufaloc:
mov
mov
clr
mov

mov

bit
bne

mov

cmpb

bne
cmp

bne
tst
br

cmp
blo

mov
bne
jsr
br
23
tst

mnov

movb

mov

Issue D Date

UNIX IMPLEMENTATION

$13000,r3 / clear all bits except 9 and 10

$3000,(r1) / clear only bits 9 and 10

r3

r3

r3

r3,(r1) / or old value of bits 9 and 10 with bits 12
/ and 13 '

r2,4bufp / test to see if entire I/0O queue has been
/ scanned

1b .

(sp)+,r3

(sp)+,r2

(sp)+,r1

ro

r2,-(sp) / save r2 on stack
$340,%sps / set processor priority to 7

~(sp) / vacant buffer
¢bufp,r2 / bufp contains pointers to I/0 queue entrys
/ in buffer area

(r2)+,r5 / move pointer to word 1 of an I/O queue entry
/ into r5 : '
$173000,(r5) / lock+keeptactivetoutstanding
3f / branch when any of bits 9,10,12,13,14,15 are set
/ (i.e., buffer busy)
r2,(sp) / save pointer to last non-busy buffer found
/ points to word 2 of I/O queue entry)

(r5),cdev / is device in I/O queue entry same as current
/ device

3£

2{(r5),r1 / is block number in I/0 queue entry, same as
/ current block number

3f '

(sp)+ / bump stack pointer

1£f / use this buffer

r2, sbufp+nbuf+nbuf
2b / go to 2b if r2 less than bufp+nbuf+nbuf (all
/ buffers not checked)
(sp)+,r2 / once all bufs are examined move pointer to
/ last free block
2f / if (sp) is non zero, i.e., if a free buffer is
/ found branch to 2f :
rO,idle; s.wait+2 / idle if no free buffers
1>

(xr0)+ / skip if warmed over buffer

-(r2),r5 / put pointer to word 1 of I/O queue entry in r5
cdev, (r5) / put current device number in I/0 queue entry
r1,2(r5) / move block number into word 2 of I/O queue

3/17/72 ID IMO.1-1

Section E.8 Page 6

UNIX IMPl ENTATION

/ entry

cmp | r2,sbufp / bump all entrys in bufp and put latest assigned
blos 1f / buffer on the top (this makes if the lowest priority)

mov ~(r2),2(r2) / job for a particular device
br 1b
1
mov r5,(r2)
mov (sp)+,r2 / restore r2
rts x0
tape: / dec tape interrupt .
jsr rO,setisp / save registers and clockp on stack
mov tcstate,r3 / put state of dec tape in r3

jsr rO,trapt; tccem; tcap; 4 / busy bit
mov r3,pc / device control status register
/ if no errors, go to device state (an address)

taper: / dec tape error
dec tcarrc / decrement the number of errors
bne 1{ / if more than 1 branch ‘
movb 1(r2),r3 / r2+1 points to command register upper byte
bic $17,r3 / clear all but bits 8-10 (Unit Select:ion)
inch deverr+2(r3) / set error bit for this tape unit
br - tape3
1: / more than 1 error -
bit $4000,(r2) / direction of tape
beg 1f / if forward go to 1f
bic $4000,(r2) / reverse, set to forward
mov $tapet,tcstate / put tape 1 in the state

br Of
1: / put tape in reverse
bis $4000,(r2) / set tape to reverse direction
mov stape2,tcstate / put tape 2 as the state
O: ' ‘
bis $4,active / check active bit of tape
movb $103,(r2) / set read function and interrupt enable
br 4f / go to retisp v
tapetl: / read bn forward
mov $tcdt,r0 / move address of data register to r0O
cmp (r0),2(r1) / compare block addresses

blt ob / if 1t, keep moving

bat taper / if gt, reverse

mov 6(r1),-(ro) / put bus address in tcha

mov 4(r1),-(r0) / put word count in tcwc

mov $115,-(sp) / put end interrupt enable

bit $20000,(r1) / is waiting to read bit of I/0 queue set?
beq 1f / no, 1f

mov $105,(sps / yes, put and interrupt enable

movb (sp)+,(r2) / move function into command register (tccm)
bis $4,active / set active bit :

mov gtape3,tcstate / get ready for I/0 transfer

br 4f / go to retisp (rti)

tape2: / read bn bakasswards

Issue D Date 3/17/72 ID IMO.1-1 Section E.8 Page 7

mov
add
cmp
bgt
bxr

UNIX IMPLEMENTATION

tcdt,r0 / r0 has contents of data register
$3,r0 / overshoot

rO,Z(rﬂ

O0b / if gt keep reading

taper / else reverse

tape3: / I/O transfer

bic
jsr
bit
bne
movb

jsr
br

$30000,(r1) / clear bits 12 and 13 of I/O queue entry
rO,poke / do the I/9

84, ictive / still % sy see if pick up r-ahead, w-behind
1£ ves

$1,(r2) / no, indicate too bad

ro,wakeup; rung; 31. / wait up
4f / retisp

drum: / interrupt handler

jsr
jsr

br

disk:
jsxr
Jmp

jsr

mov
mov

br

bit
beq
mov
mov

bit

bne
inc
asr
asr
asr
dec

bic
mov
mov
mov
jsr
mov
mov
mov

Issue D Date

r0,setisp / save r1,r2,r3, and clockp on the stack

r0,trapt; dcs; rfap; 1 / check for stray interrupt or
error

br 3f / no, error

2f / error

r0,setisp / save r1,r2,r3, and clockp on the stack
#$0fF

- rO,trapt; rkcs; rkap; 2

br 3f / no, errors

$115,(r2) / drive reset, errbit was set

$1¢£, Ob—2 / next time jmp ¥$0f is executed jmp will de
/ to 1f

4f

$20000,rkes

4f / wait for seek complete
$0b,0b~2

rkap,r1

$3000,(r1) / are bits 9 or 10 set in the 1st word of
/ the disk buffer

3f / no, branch ignore error if outstanding

r1

(r1) / reissue request
rt

$30000,(r1) / clear bits 12 and 13 in 1st word of buffer
ac,—(sp)

mg,~-(sp) / put these on the stack

sc,~(sp)

r0,poke

(sp)+,sc

(sp)+,mq / pop them off stack

(sp)+,ac

3/17/72 ID IMO.1-1 Section E.8 Page 8

UMNIX IMPLEMENTATION

4:
jmp retisp / u4-3
trapt: / r2 points to the
mov (ro)+,r2 / device control register
mov #(r0)+,r1 / transaction pointer points to buffer
tst (sp)+
tstb (r2) / is ready bit of dcs set?
bge 4b / device still active so branch
bit (ro),active / was device busy?
beg 4b / no, stray interrupt ~
bic (ro)+,active / yes, set active to zero
tst (r2) / test the err(bit is) of dcs
bge 2f / if no error jump to 2f
tst (ro)+ / skip on error
23
Jmp (ro)

Issue D Date 3/17/72 ID IMO.1~-1 Section E.8 Page 9

UNIX IMPLEMENTATION

/ u9 —— unix
trev: Jtyx yecewss intoript fandles
jsr ro,1f
jsr r0,1f
jsr r0,1f
Jsr r0,1f
jsr ro,1f

jsr r0,1f
jsr r0,1£
jsr ro,1£f
1
mov rt,-(sp)
mov r2,-{(sp)
mov r3,~(sp)
mov clockp,~(sp)
mov $s.8yst+2,clockp
sub $trev+a,r0 / 0%4 / calculate offset for tty causing
asl r0 / 0%8 / this interrupt
mov resr{r0),r2
mov rcor(r0),r1
tst r2

blt 1f / error

tst tty+6(x0)

beq 1£

bit. $40,r2 / parity

bne 3f / branch if set

tstb tty+4(r0)

blt 4f / 37 parity not allowed
br 2f

bitb $100,tty+4(r0)

beg 2f / non-37 parity not allowed <2{
vic sQzner - 7

bit $40,tty+4(r0)

bne 3f / raw

cmp r1,$177

beq 5f
cmp r1,$34
bne 3f

5:
mov tty+6(r0),r0
beg 2fF
movb r1,6(r0) / interrupt or quit
jsr ro,wakeall
br 2f

3:
cmp r1,815 / or
bne 3f
bit $20,tty+4(r0)
beg 3f
mov $12,r1

3:
bith s4.ttv+4(r0)

Issue D Date 3/17/72 ID IMO.1-1 Section E.9 Page 1

UNIX IMPLEMENTATION

beg 3f
cmp r1,¢’a
blo 3f
cmp r1,$’z
bhi 3f

add $40,r1

movb tty+3(r0),0f

jsr rO,putc; O:.e / put char on input clist
br 2f :

bitb $10,tty+4(r0) / echo

bne 4f / branch echo bit set

cmp ri1,812

bne 3f
bitb $20,tty+4(r0) / cr
beq 3f
4: :
cmp r1,84 / is char input an eot
beq 1£ '
mov r1,-(sp) / put char on stack
movb tty+3(r0),0f
inc Of
jsr ro,putc; O0:.. / put char just input on output clist
br .42
jsr r0,starxmt
mov (sp)+,r1

bitb $40,tty+4(r0) / raw

bne 1f / branch if raw bit set
cmp ri1,s12

beqg 1£

movb tty+3€r0),r1

cmpb CC(r1)’$150

blo 2f

movb tty+3(r0),0f
jsrx r0,wakeup; rung; O:.. / call wakeup for process

jmp retisp

txmt /?Z{\y)g f“dhfhrﬂu [,L/e(ﬂ%] WM(//\‘%\

jsr r0,1£f
jsr r0,1£f
jsr r0,1£f
jsr ro,1£
jsr r0,1£
jsr r0,1£
jsr ro,1£f
jsr rO,1f

mov ri,-(sp)
mov r2,-(sp)
mov r3,-(sp)
mov clockp,-(sp)

nov $8.8yst+2,clockp
sub stxmt+4,r0 / 0%4 / offset in cc

Issue D Date 3/17/72 ID IMO.1-1 Section E.9 Page 2

asl
jsr
jmp

xmtto:
mov
mov
sub
asl
asl
jsr
mov
rts

starxmt:
mov
movb

cmpb

bhi
mov
inc
jsr -

UNIX IMPLEMENTATION

ro / 0%8
rO,starxmt
retisp

ro,~(sp)
2(sp),r0 ./ 0%2+6
$6,r0

r0

ro / 0%8
r0,starxmt
(sp)+,70

r0

(sp),r1 / 0%8 r1 contains 8xtty number

tty+3(r1) r1 / place contents of 4th byte of tty
/ buf in rt1 (cc,cf,cl offset)

cc+1(r1),%$10. / is char count for tty output greater
/ than or egual to 10

1£f / yes

r1,0f / no, make offset an arg of "wakeup

of / increment arg of wakeup

rO,wakeup; rung+2; O... / wakeup process identified

/ by wlist

1: / entry specified by arqument in O:

mov
asr
asr
asr
tsthb
bne
mov
tstb

bge
movb
clrb
tst
bne
movb
inc

jsr

bic
movb

bge
bisb

Issue D Date

(sp),r1 / 0%8 / r1 contains 8xtty number

r1

r1i

r1 / 0%1 r1 contains tty number

toutt+3(r1) / is trut entry for tty output = 0

1f / no, return to calling routine

(sp)y,r2 / ves, place (8xtty number) into r2

tesr(r2) / does tty’s tcsr register = 0 (is ready

/ bit =0

1f / yes, return to calling routine

tty+2(r2),r1 / no, place third byte of "tty buf
/ into r1 (char left over after 1f)

tty+2(r2) / clear third byte

r1 / is third byte =

3f / no, r1 contains a non nul character

tty+3(r2),0f / yes, make byte 4 arg of "getc"

Of / increment arg to make it tty output list of

/ clist

r0,getc; 0O:.. / obtain next character in clist for tty
/ out and place in r1

br 1f / if no entry in clist to be output, return to

/ calling routine

$1177,r1 / zero out bits 7-15 of r1
partab(r1),r3 / move partab entry (identified by
/ r1) into r3
3f / if entry is greater than or equal to 0 (digit
/ 2, far left digit = 0) branch
200,r1 / if entry is less than 0 add 128 to ASC14
/ code for char to be output

3/17/72 ID IMO.1-1 Section E.9 Page 3

UNIX IMPLEMENTATION

bic $1177,r3 / to make it teletype code and then clear
/ bits 7-15 of r3

mov (sp),r2 / r2 contains 8xtty number

bit $84,rcsr(r2) / is carrier present for tty

beq starxnt / no carrier flush

mov r1,~(sp) ./ yes, place character to be output on stack

cmp r1,$11 / is character ht
bne 3f / no
bitb &2,tty+4(r2) / is tab to space flag for tty set
/ (bit 1 of byte 5 in tty buffer area)
beg 3f / no

mov $240,(sp) / yes, change character to space
33 :
mov (sp)+,tcbr(r2) / place char to be output in tty output
/ buffer w .
add stty+1,r2 / place addr of 2nd byte of tty buf
jmp 1£-2(r3) ; area in r2 (which is the column count) and
then

incb (r2) / normal / jmp to location determined by digits
/ 0 and 1 of character’s entry in partab which
/ is now in r3

/2 rts r0 / non-printing
br 1f / bs 4<§_£E2304%4/
br 2f / nl (line feed) : JQV?!/
br 3f / tab (horizontal tab)
br 4f / vert (vertical tab)
br s5f / cr

deckb (r2) / col decrement column count in byte 2 of " tty'
area

bge 1f / if count >0 return to calling routine

clro (r2) / col set column count = 0

br 1£

bit $1,r1 / is bit 0 of ASC11 char = 1 (char = 1f)
bne 2f / yes w w
bith $20,3(r2) / cr flag is bit 4 of 5th byte of tty
area = 1
beq 2f / no (only 1f to be handled) v w
movb ¢15,1(r2) / place cr in 3rd byte of _tty area
/ (character leftover after 1f)

movb (r2),r3 / place present column count in r3

beq 1f / return to calling routine if count = 0O

clrb (r2) / col clear column count

asr r3

asr r3

asr r3

asr r3 / delay = col/16

add $3,r3 / start to determine tout entry for tty output
br 2f

bith 62,3(r2) / is bit 1 of 5th byte of "tty area = 1
/ (tab to space bit set)

Issue D Date 3/17/72 ID IMO.1-1 Section E.9 Page 4

UNIX IMPLEMENTATION

beq 3t / no

incb (r2) / increment column count

bitb $7,(r2) / are bits 0, 1 and 2 set at col 0%8

beq 1f / no

movb $11,1{(r2) / yes, place ht in another tab next time
br 1£ / 3rd byte of tty area (character left over after

/ "1f")

movb (r2),r3 / place column count in r3

bisb ¢7,(r2) / make bits 0, 1 and 2 of column count = 1
incb (r2) / increment column count

bis $17,r3 / clear bits 3-15 of r3

neg r3 / delay = dcol start to determine tout entry for
/ tty out
br 2f / by neg r3
43
mov $176.,r3 / delay = lots start to determine tout entry
br 2f
5:
mov $104,r3 ; cr delay 160ms for tn300 start to determine
tout
clrb (r2) / set column count = 0 entry
23 '
add $5,r3 / time for this chas'increment\value for tout
/ entry by 5
mov (sp),r2 / 0%8 r2 contains 8xtty number
asr r2 :
asr r2 : :
asr r2 / O%1 r2 contains tty number
movb r3,toutt+3(r2) / place value for tout entry into tout
/ table
1:
rts r0 / return

partab: / contains 3 digits for each character; digit 2 is used
/ to determine if 200 is to added to ASC11 code digits O
/ and 1 are used to determine value for jump table.
.byte 002,202,202,002,002,002,002,202
.byte 204,010,006,212,012,214,202,002
.byvte 202,002,002,202,002,002,202,002 ,aliwr*“ Y
.byte 002,202, 202,002,202,002,002,202
.byte 200,000,000,200,000,200,200,000
.bvte 000,200,200,000,200,000,000,200
+hyte 000,200,200,000,200,000,000,200
.byte 200,000,000,200,000,200,200,000
.byte 200,000,000,200,000,200,200,000
«byte 000,200,200,000,200,000,000,200
.byte 000,290,200,000,200,000,000,200
.byte 200, 70,00¢,200,000,200,200,000
.byte 000,3:00,200,000,200,000,000,200
.byte 200,000,000,200,000,200,200,000
.bvte 200,000,000,200,000,200,200,000
+byte 000,200,200,000,200,000,000,202

Xmtte ‘ '
jsr ro,cpass / get next character from user buffer area

Issue D Date 3/17/72 ID IMO.1-1 Section E.9 Page 5

tst
beq

mov
mov
asl
sub

mov
cmpb

bhis
jsr

mov

mov
sub
asl
asl
jsr
mov
br

mov
mov

jsr
mov
br

UNIX IMPLEMENTATION

r1 / is character nul
xmtt / yes, get next character

$240,%*$ps / set processor priority equal to 5
(sp),rz / r2 contains 1 node number of file
r2 / 0%2+28 / multiply inode number by 2
$21.,r2 / 0%247 / subtract 21 from 2x inumber to
/ get cc, cf, cl offset
r2,0f / make offset arg of putc
cc(rz) $50. / is char count for device greater than
/ or equal to 50
2f / yes
rO,putc; Ot.. / find location in freelist to assign to
/ device and
br 2f / place char in list, if none available branch
/ to put process to sleep
r0,-(sp) / place calling routines return address on
/ stack
Ob,r0 / place offset into cc, cl and cf tables in r0
$7,r0 / subtract seven from offset
xr0 / multiply by 2
r0 / 0%8 / multiply by 2 (r0 contains 8xtty number)
rO,starxmt / attempt to output character
(sp)+,r0 / pop stack
xmtt / get next character

r1,~-(sp) / place character on stack

O0b,0f / make offset into cc, cf, cl table arg of
/ sleep (identifies location in wlist)

rO,sleep; O:.. / put process to sleep

(sp)+,r1 / remove character from stack

1b / try again

rcvt: / read tty

sub
asl
asl
mov
mov

tst
bne
bitb
beq
tst
jsr
tst
mov
bitb
beqg
jsr

Jmp

jsr

$28.,r1 / 0%2 r1 contains 2xtty number

ri

r1 / r1 contains 8xtty number

r1 ,“(Sp)

tty+6(r1),r5 / r5 contains address of 4th word in
/ tty area

2(r5) / is char count = 0

1f / no

$40,tty+4(r1) / raw flag set?

2f / no

~(sp) / yes, decrement sp

r0,rcvch / get character from clist

(sp)+ / increment sp

(sp)+;r2 / r2 contains 8xtty number

¢4,rcsr(r2) / is carrier detect bit on

3f / no

rO,passc / yes, place character in users buffer area

ret

r0,canon; rcvch / process a line of characters in
/ clist and place results in tty buffer

Issue D Date 3/17/72 ID IMO.1-1 Section E.9 Page 6

tst

tst
beg
movb
inc
dec
jsr

br

jmp

rcvche
mov
mov
bit
bne
bic
rts

movb
mov
jsr

clr
rts

mov
mov
jsr
mov
br

ocvt:
sub
mov
asl
asl
mov
add
movb

mov
bit
bne
mov

movb
jsr
br

mov
tstb

Issue D Date

UNIX IMPLEMENTATION

/ area
(sp)+ / increment sp

2(r5) / is char count for tty buffer = O

1f / ves

#4(r5),r1 / no, move character pointer to r1

4(r5) / increment character pointer

2(r5) / decrement character count

r0,passc ; place character, whose address is in
ri, in

1b / user buffer area. Then get next character.

ret

4(sp),r2 / 0%8 r2 contains 8xtty number

sd,r1

ri,rcsr(r2) / is carrier detection bit on

1f / vyes

¢$1,resr(r2) / no, clear data terminal ready bit
ro

tty+3(r2),0f / make cc offset arg for "getc”
$240,%8ps / set processor priority = 5
r0,getc; 0:.. / get next character off clist
br 2f / clist empty

*sps / set processor priority = O

r0

0b,0f / make "getc" arg an arg for "sleep
r5,-(sp) / save tty buffer address on stack
rO,sleep; Ot.o

(sp)+,r5

rcvch

$28.,r1 / 0%2 calculate tty table offset
ri,r2

r1 / 0%4

r1 / 0%8

ri,~-(sp)

$6,r2 / calculate clist id clist offset
r2,tty+3(r1) / put clist id in tty table

(sp),r1

¢4,rcsr(r1) / carrier detect bit set

1f / if so, branch

¢511,rcsr(r1) / set ready, speed, interrupt enable,
/ supervisor transmit

tty+3(r1),0f / put clist id in sleep argument

rO,sleep; O:.o

1b

tty+6(r1),r5 / put tty buffer address in r5
(r5) / first byte of tty buffer = 0

3/17/72 ID IMO.1-1 Section E.9 Page 7

bne
mov
mov
movb

incb
tst
tst
bne
mov
br

ccvt:
sub
asl
asl
mov
decb

Jmp

Issue D Date

UNIX IMPLEM NTATION

1f / if not, branch

$511,rcsr(r1) / set control bits for receiver
$511,tcsr(r1) / set control bits for transmitter
$210,tty+4(r1) / put 210 in tty table word 3 / set flags

(r5) / inc first byte of tty buffer

(sp)+

u.ttyp / 'is there a process control tty

1f / yes, then branch

r5,u.ttyp / no, make this tty the process control tty
1f / return

$28.,r1
r1 / 0%4

1
tty+6(r1),r5
(rs)

sret

3/17/72 ID IMO.1-1 Section E.9 Page 8

/ ux =— unix

systm:

Issue D Date 3/17/72

UNIX IMPLEMENTATION

o=o+2
e=e+128,
o=o+2
o=o+64o
gs.time: o=.t+4
8.5yst= e=otd
s.wait: .=.+4
s.idlet=o=o+4
s.Chrgtie=.+4

, s.drerr:e=.+2

inode:
1.f1lgs: e=e+2
1.nlks: e=.+1
i.uid: e=e+1
i.8ize; o=.42
i.dskp: e=e+16.
f.ctim: o=.+4
iemtim: ex=e+4
¢« = inode+32,

mount: e.=.+1024.

proc:
pepid: e=.+[2%*nproc]
p.dska: .=.+[2%nproc]
p.ppid: .=.+[2%*nproc]
pe.break: .=.+[2¥nproc]
Pelink: .=.+nproc
pe.stat; .=.tnproc

tty:
® - .+[ntty*8.3

fsp: o=et+[nfiles¥*8.]

bufp: e=o+ [Nbuf#*2]+6

sb0: oo +8

sb1: o=.+8

sSWp e=s+8

ii: e=est+2

idev: ex=et+2

CdeV: .=0+2

deverr: o.=.+12,

active: e=,+2

rfap: e=s+2

rkap: e=et?2

tcap: e=et2

tcstates o= +2

tcerrc: o=.+2

mntis e=e+2

mntd: e=e+?2

mpid: e=a+2

CloCKkp: e=e+2

rootdirs .=.+2

toutt: .=.+16,; touts: .=.+32,

rungs: L)

ID IMO.1-1

Section E.10 Page 1

UNIX IMFPFLEMENTATION

wlist: e=.+40.

cC: e=e+30,
cf: e=e+31,
Cl: 0=0+31 .
clist: e=e+510.
imod: o=t
smod ¢ oe=st+1
mmod ¢ e=ot1

uguant: e=.+1
sysflg: o=.+1
pptiflg:e=.+1
ttyoch: e=.+1

.even ’

e=«+107.3 sstack:
buffer: .=.+[ntty*140.]

o=o+ [nbuf*SZO.]
e = COre-64,
user:
U.sSps oo t2
u.usp: e=ot2
U.xr0: e=e+2
UeCALr: ez=et+2
u.fp: e=a+10,
. fofp: e=e+2
w.divn: o=,t2
U.namep: e=.+2
u.off: e=et+2
u.base: +=.+2
ecounts o=.+2
uenread: o=.+2
Usbreak: e=.+2
u.ttyps e=et2
u.dirbUf: e=e+10,
‘u.pris e=et2
Uelintr: o=.+2
u.qguit: e=e*2
u.emt: exet+2
u.ilgins: o:.+2
Usclevs o=.+2
u.uid: e=et+1
u,ruid: o=.+1
U.bsys: o=ot1
U, 1nos e=s+1
e = COre

Issue D Date 3/17/72 ID IMO.1-1 Section E.10 Page 2

URTY TMPLEMENLIATION

/ sh -~ coumand interpreter
mov SpP,rH
mov rb,shel laro / save oria sp in shel lara
capb B(TJ) $/—- / was this sh calleZd by init or loginx™
bne 2f / no
SYS intr: 0 / ves, turn off interrupts
SYS quits O
SYS getuid / who is user
tst r0 / is it superuser
bne 2f / no
movb ss#,at / yes, set new prompt syinbol
X .
cmp (r5),$1 7/ ttv input?
ble newline / ves, call with /-=(or with no command
/ file name)
clr ro0 /7 no, set ttv
SYS close / close it
mov 4(r5),0f 7/ get new file name
sys opens O0t..3 O / open it
bec If /7 branch if no error
Jjsr r5,error / error in file name
/<Input not found\n\0>; .even
SyS exit
|
clr at / clear prompt character, if reading non-tty
/ input file
newlinet
tst at / is there a prompt symbol
beq newcom / no ,
mov $l,r0 / yes
Sys writes ats 2. /7 print prompt
newcoms
mov shellarg,sp 7/
mov $parbuf,r3 /7 initialize command list area
mov $parp,r4 / initialize command list pointers
clr infile / initialize alternate input
clr outfile / initialize alternate output
clr glflag / initialize global flag
newargs
Jsr pc,blank / squeeze out leading blanks
jsr r5,delim / is new character a 3 \n or &
br 2f / ves
mov r3,-(sp) 7/ no, push arg pointer onto stack
cmp ro,$7< 7/ new input file?
bne I\f / no
mov (sp),infile / ves, save arg pointer
clr (sp) / clear pointer
br 3f
| K]
cmp r0,%$7> 7/ new outout rile?
bne newchar / no
mov (sp)youtfile / ves, save arq pointer
clr (sp) 7/ clear pointer
br - 31
lssue D Date

/117172 1D IMO.1-1 Section E. 11 Page

UNTY PEPLEMENT TTUN

newchars

cmp $7 ,r0 7/ is character a blank
beq 1f / branch if it is (blank as arqg separator)
cmp $2\n+200,r0 / treat \n preceded by \
beg 1f / as blank
Jsr pc,putc / put this character in parbuf list
3¢
Jsr pc,aete / get next character
Jjsr r5,delim 7/ is char a i \n or &
br If / ves
br newchar 7 no, start new character tests
|}
clrb (r3)+ 7/ end name with \O when read blank, or
/ delim
mov (sp)+,(r4)+ / move arqg ect¥ to parP location
bne If / if (sp)=0, in file or out file points to arg
tst -(r4) / so ignore dummy (0), in pointer list
13
Jsr r5,delim /7 is char a 3 \n or &
br 2f / yes
br newarg /7 no, start newarg processing
22
clr (r4) / \n, &, or 3 takes to here(end of arg list)
/ after “delim’/ call
mov r0,-(sp) / save delimter in stack
Jjsr pc,docom / go to exec command in parbuf
cmpb (sp),$’& 7/ get a new command without wait?
beg newcom / yes
tst ri / was chdir just executed or line ended with
/ ampersand?
beqg 2f / ves
12
Sy s wait 7/ no, wait for new process to terminate
/- command executed)
bcs 2f / no, children not previously waited for
cmp ro,ri / is this my child
bne ib
2t
cmp (sp),$’\n / was delimiter a new line
beq newline / ves
br newcom / .no, pick up next command
docoms
sub $parp,r4 / put arg count in r4
bne I\f / any arouments?
clr rl 7/ no, line ended with ampersand
rts pc / return from call
|
Jsr r5,chcoms qchdir / is command chdir?
br 2f / command not chdir
cmp r4a,$4 / prepare to exec chdir, 4=arg count x 2
beo 3f '
Jsr r%,error / o to print error
<Ara count\n\U>3 .even
br 4f
3t :

Issue D Date 3717712 ID IMO.1=1 Section E. 1l Page 2

UNDY Imblizaes TIhun

mov parp+2,0f / more dirceeory name to svs caell
SYS chdirs 0:0 / exec chdivr
bec 4f / no error exit
Jjsr r,error / oo to print error
<Bad directory\n\0s>: .even / this diagnostic
4
clr ri 7/ set ri1 to zero to dkin wait
rts pc / and return
2%
Jsr r5,chcoms glogin / is command login?
br 2f / not login, ao to fork
sys exec; parbufi parp / exec login
sys execs binpbs parp / or /bin/looin
23 / no error return??
Sys fork / generate sh child process for command
br newproc / exec command with new process
bec 1f / no error exit, old process
jsr r5,error / go to print error
<Trv again\n\O0>3j .even / this diagnostic
Jmp newline 7/ and return for next try
1K
mov ro,rl 7/ save id of child sh
rts pc / return to “jsr pc, ocom" call in parent sh
errors
movb (r5)+,och /7 pick up diagnostic character
beq If 7/ 0 is end of line '
mov $1,r0 / set for tty output
sys writes ochs | / print it
br error 7/ continue to get characters
|
inc r5 7/ inc r5 to point to return
bic $1,r5 / make it even
clr r0 7/ set for input
sys seecks. 03 2 / exit from runcom, skip to end of

/ input file
chcomt / has no effect if tty innut

mov (r5)+,r1 / glogin achdir ri, bump r5

mov sparbuf,r2 / command address r2 “login”’
1K : :

movb (r1)+,r0 / is this command /chdir”

cmpb (r2)+,r0 / compare command name byte with “login”
/ or “chdir”?

bne |f /7 doesn’t combare

tst rQ / is this

bne ib / end of names

tst (r5)+ / yes, bumn r5 again to execute login

/ chdir

K

rts r5 / no, return to exec command
putcs?

cmp r0,$77 / sinale quote?

beg \f / yes

cmp ro,s74 / double quote

beq I\t / ves

Issue D Date 3717772 ID IMO.1=1 Section E. 1l Page 3

hic

mo v

rts
l¢

mov
1t

Jjsr

cmp

bne

Jsr

Jmp

cmp
beqg
bic
movb
br
is
tst
7 rts

S1177,r0 7 no, rerove 200,
rO, (r3)+ / stove charncler jv Doy
ne

ro,~{(sp) / push quole mark onto stack

pcyaetec / get a guoted charactel

rO,$’\n 7/ is it end of line

2f / no

ro,error / ves, indicate missing gquote merk
<7 imbalance\n\0>: .even

newline / ask for nevw line

ro,(sp) 7/ is this closing quote mark

1f / ves

$1177,r0 / no, strip off 200 if present
ro,(r3)+ / store quoted character in parbuf
Ib / continue

(sp)+ / pop quote mark off stack
pchy, return

/ thp‘e new process

newprocs?
mov
beqg
tstb
beq
clr
sys
sys
bce

Jsr

sys

i
mov
beq
cmpb
bne
inc
mov
sVS
bec

4
mov
SYS
bec

Jsr

Sys
3:

Sys

Issue D Date

infile,Of / move pointer to new file name

If / branch if no alternate read file given

*Qf

3f / branch if no file name qiven

rO / set tty innut file name

close / close it

opens O:..5 O / open new input file for reading
If / branch if input file ok

r5,error / file not ok, print error
<Input file\n\0>; .even / this diagnostic
exit / terminate this process and make parent sh

outfile,r2 / more pointer to new file name
1f / branch if no alternate write file
(r2),%$7> / is > at beginning of tile name?
4f / branch if it isn’t

r2 / yes, increment pointer

r2,0f

openy O:..5 1 / open file for writing

3f / if no error

r2,0f
creats Ot..3 17 / create new file with this name
3f / branch if no error

rb,error

<Qutnut file\n\O>3 .even

exit

close /7 close the new write file

3711712 1D IMO.1-1 Section E. 1l Page 4

2

| I

delims

3¢
2%
12

blanks

getc?

Issue D Date

mov
mov
SYys
Sys

tst
bne
svVS
SYS

Sy s

bes
mov
mov
SVYS

Jjsr
Sys

mov
sys
br

cmp
beq
cmp
beqg
cmp
beqg
cmp
beqg
cmp

bne
inc
tst

rts

Jsr
cmp
beq
cmp
beq
rts

UNIX IMPLEMENTATION

r2,0f / move new name to open

$1,r0 7/ set tty file name

close / close it

opent Oft..5 | / opren new output file, it now has
/ file descriptor |

seeks 03 2 / set pointer to current end of file

glflag / was *x, 2?2 or [encountered?

\f / ves

execi parbufj parp / no, execute this command
exect binpbs parp / or /bin/this command

stats binpbs inbuf / if can’t execute does it
/ exist?
2f / branch if it doesn’t
$shell,parp-2 / does exist, not executable
$binpbyparp /7 so it must be
execi shells; parp-2 / a command file, get it with
/ sh /bin/x (if x name of file)

r5,error / a return for exec is the diagnostic
<No command\n\0O>§ .even
exit

$glob,parp-2 / prepare to process *,?
execs globs parp-2 / execute modified command
2b

r0,%’\n / is character a newline
1 £

rO0,$“& /7 is it &

I1f / vyes

ro,$7s / is it
If / vyes

r0,$7? / is it ?

3f

ro,$’(7/ is it beginning of character string
; / (for glob) \ :

2

-e

glflag 7 ?2 or *x or [set flag
(r5)+ / bump to process all except \n,3,&

r5

pcyagetc /7 get next character

$¢ ,r0O / leading blanks

blank / ves, “squeeze out”’

r0,%$200+’\n / new-line preceded by \ is translated
blank 7/ into blank '

pc

3717712 ID IMO.1=1 Section E.1l1 Page 5

13

| K

getbuf:

Issue D Date

tst
bne
mov
cnp
bne
Jsr
br

movb
mov
bis

clr

cmp

beq
cnp
beq
rts

mov
br

movb

beq
inc
rts

clr
br

Jsr
sub
cmp
clos
mov

mov

inc
cmp
bge
asl
add
mov
br

mov
mov
mov
dec

mov

Uiy iLBMERD AT TON

param / are we substitutling for on

2t / ves .

inburp,r! 7 no, move normal input pointer to vl
riyeinbuf / end of inrut line?

I1f 7/ no

pc,oetbuf / ves, put next console line in buffer
getc .

(ri)+,r0 7/ move byte from inout buffer to roO

ri,inbufp / increment routine

escap,r0O / if last character was \ this adds
/ 200 to current character

escap / clear, so escap normally zero

r0,$’\\ 7/ note that \\ is equal \ in as

I £

ro0,$7% / is it $

3f / ves

pc /7 no

$200,escap / mark presence of \ in command line
getc / get next character

*param,r0 / pick up substitution character put in
/ r0
If + if end of substitution arg, branch
param / if not end, set for next character
pc 7/ return as though character in ro is normal
/ input

param / unset substitution pointer
getc /7 get next char in normal input

pc,getc / get digit after $

$70,r0 / strip off zone bits
r0,$9. /7 compare with digit 9

If / less than or equal 9

$9.,r0 / if larger than 9, force 9

~shellarg,rl / get pointer to stack for

/ this call of shell
YO / digit +1
ro,(rl) 7/ is it less than # of args in this call
getc / no, ignore it, so this $n is not replaced
rO / yes, multiply by 2 (to skip words)
rol,rO / form pointer to arg pointer (-2)

. 2(r0),param / more arqg pointer to param

getc / go to get substitution arg for $n

$inbuf,r0 / move input buffer address
rO,inbufp / to input buffer pointer
rO,einbuf / and initialize pointer to end of
/ character strinag
r0 / decrement pointer so can utilize normal
/ 100p starting at If
ro,0f / initialize address for reading Ist char

3/11/72 ID IMO.1=-1 Sectyn E. 11 Page 6

Vv R I8 o NTATION
|3
inc Of / this routine filles inbuf with lins fFrom
/ consele - 1f there is one
clr ro0 / set for tty inout
Sy S reads 0:035 1 / read next char into inbuf
becs Xiti 7/ error exit
tst r0 / a zero input is end of file
beq xitl / exit
inc einbuf / eventually einbuf noints to \n
/ (+1) of this line
cmp Ob,$inbuf+256. / have we exceeded input buffer size
bhis xitl 7/ if so, exit assume some sort of binary
cmpb *0b,$’\n / end of line?
bne Ib / no, go to get next char
rts oc / yes, return
xitis
sys exit
quests:
<?\n>
at:
<@ >
qchdir:s
<chdir\o>
glogins ,
<login\0O>
shell:
</bin/sh\0>
globs
</etc/glob\0>
binpbs
</bin/>
parbuf: .=,+1000.
.even

param: ,=,.+2
glflags .=.+2
infiles .=.,+2
outfiles.=,.+2
«=e.+2 / room for glob
parpt «=.+200.
inbufs .=.+256.
. escapt .=.+2
inbufpt .=,+42
einbufs: .=.,+2
ochs o=.+2
shellarg:t.=.+2

Issue D Date 3/.17/72 ID IMO.I=1 _ Section E.ll Page 7

UNIX IMPLEMERTATICN

/ init -- process control initialization

mount = 21.

sys intr; 0 / turn off interrupts
EYS quit- 0
cmp csw,$73700 / single user?
bne 1f / no

help:
clr r0 / ves :
sys close / close current read
mov $1,r0 / and write ,

sys close / files
VS open; ctty; 0 / open control tty.

sys open; ctty; 1 / for read and write
sYySs exec; shell; shellp / execute shell
br help / keep trying
1
mov ¢‘’0,r1 / prepare to change
1:
movb r1,tapx+8 / mode of dec tape drive x, where
svVS chmod- tapx; 17 / x=0 to 7, to read/write by owner or
inc r1 / non-owner mode

crp r1,6°8 / finished?

blo 1b / no ‘

sys mount; rkO; usr / ves, root file on mounted rkoS
/ disk is /usr

sys creat; utmp; 16 / truncate /tmg/htmp

sys close / close it

movb 'x,zero+8. / put identifier in output buffer
jsr pc.wtmprec / go to write accting info

mov $itab,r1 / address of table to r1

/ create shell processes

1: :

mov (r1)+,r0 / ‘%, %x=0, 1¢¢. to x0

beq 1f / branch if table end

movb rO,ttyx+8 / put symbol in

jsr pc,dfork / go to make new init for this teyx

mov r0,(r1)+ / save child id in word offer ‘o, 1,...etc.
br 1b / set up next child

/ wait for process to die

12
sys wait / wait for user to terminate process
mov ¢itab,r1 / initialize for search

/ search for process id

2:
tst (x1)+ / bump r1 to child id location
beg 1b / ? something silly |
cmp r0,(r1)+ / which process has terminated

Issne D Date 3/17/72 ID THO,1=~1 Section E.,12 Pace 1

UNIX IMPLEMENTATION

T 21 / not thig one

oz ooub of utmp

_
(&4
i

2l ¢4,71 / process is found, point x’ to ‘x
/ for it
1,~{sp) / save address on stack

.,
oy
—~

r1),ri / move ‘x to ri
‘0,r1 / remove zone bits from character

LN

x=1 - ri / generate proper
a8l r1 / offset
EEERY ri / for
23] r1 / seek
mov r1,0f / move it to offset loc for seek
ROV szaro,rt
2
clr (r1)+ / ccear-
cmp r1,$zero+16., / output buffer
blo 2b / area
Ve open; utmp; 1 / open file for writing
bes 2f / if can’t open, create user anyway
"oV ro,r1 / save file desc
sys SCLV O:t..3 0 / move to proper pointer position
nov ri, r0 / not required
sSYS write~ zero; 16. / zero this position in
mov rt1,r0 / restore file descriptor
sys close / close file

/ re-create user process

23
mov (sp)+,r1 / restore ‘x to r1
mov (r1)+,r0 / move it to rO
movb rO,ttyx+8 / get correct ttyx
movb r0,zero+8 / move identifier to output buffer
jsr pc,wtinprec / go to write accting into
jsr pc,dfork / fork
mov r0,(r1)+ / save id of child
br 1b / go to wait for next process end
dfork:
mov ri,r2
sub ¢itab+2,r2 / left over
asl r2 / from previous
asl r2 / version of code
mov r2,o0ffset
sYySs fork
br 1f / to new copy of init:
bes dfork / try again
rts pc / return
1: ‘
sys quit; 0 / new init turns off
sys intry 0 / interrupts
sys chown; ttyx; 0 / change owner to super user
sSYSs chmod; ttyx; 15 / changemode to read/write owner,

/ write non-owner

Issue D Date 3/17/72 ID IMO.1-1 Section E.12 Page 2

UNIX IMPLEMBNTATICN

sys open; ttyx; O / open this ttyx for reading
' / and wait until somecone calls
bes help1 / branch if trouble
sys open; ttyxs; 1 / open this ttyx for writing after
/ user call
bes help1 / branch if trouble
sys exec; getty; gettyp / getty types <{logind and
/ executes login which logs user
/ in and executes sh- .

sys exit / HELP!
helpt:
jmp help / trouble
wtmprec:
sys time / get time
mov ac,zero+10., / more to output
mov mq,zero+12. / buffer
sys open; wtmp; 1 / open accounting file
bes 2f
mov r0,r2 / save file descriptor
sys seek- 0; 2 / move pointer to end of file
mov r2, 0 / not required
sys write° zero; 16. / write accting info
mov r2,r0 / restore file descriptor
sYSs close / close file
23

rts pc

ctty: {/dev/tty\0>
shell: </bin/sh\0>
shellm: <-\0>
tapx: </dev/tapx\0>
rkO: </dev/rx0\0>
utmp: </tmp/utmp\0>
wtmps </tmp/wtmp\0>
ttyx: </dev/ttyx\0>
getty: </etc/getty\0>
usr: </usr\0>
.even

shellp: shellm
0
gettyp: getty
: o
itab:

s G0 we V6 e W& Wb W
L]
L]

T R I
ONOUMBWN=20

Issue D Date 3/17/72 ID IMO.1-1 Section E.12 Page 3

Off!iet: cf:"o¢+2
zero: e=etBe) emotDH; omatl

Issue D Date 3/17/72 ID IMO.1-1 Section E.12 Page 4

SYRNENTAT T CH

te Overviaow

The code of UNIX ia di/LuF7 into 11 files, namwed ud through ud
and ux, ux contains the definitions of the system tables and
data arean; the actugl codas is in the other sections. These

files are accenrbled together in the order ud .o v9 ux. The boot
procaedures ction of the UkNM vAplalﬂQ how to test and install a
newly assembled system,

There are three major portions of UNIX: the file system, the
process control system, and the rest. "The rest” refers mostly
to the code implementing several miscellaneous system calls which
do not fit neatly into any category. Unfortunately the various
parts of UNIX are fairly well strewn about its constituent source
fileaz, The following is a rough key:

uC initialization

ut system entry; some system calls

u2 most remaining system calls

u3 procesgs switching, swapping

u4 character-oriented device interrupt time routines, except
DC-11

uS basic file system routines

ut more file system routines

u?7 more file system, character-oriented device non-interrupt
time routines

u8 interrupt and non-interrupt time rou;ines for block structured
devices (disxs, tape)

-u9 almost all code for DC-11 asynchronous communications interfaces

It has been mentioned parenthetically that UNIX is not very modu-
lar. Its lact of modularity is reflected in this document,
Therefore (to paraphrase Fenichel and Mcilroy referring to their
description of TMGL) no single order of reading can be
recommended; instead a chimneying technique is suggested, climb-
ing not one wall at a time, but all simultaneously.

2. Overview of the data base.

A description of each item in the data base is given in Section
F. 1In core data is defined in ux

3. System entry and exit

The syetem can legitimately be entered only by some sort of trap.
The trap caused Dby the trap instruction (that is, sys) and all
otherwise unkncwn traps are directed to one of the synoaymous

labels wunkni or sysent. There the registers are saved in the
following crder: _ R ‘ 41

issue D Date 3/17/72 ID IMO.1-1 Sectioan F Page 1

UNIX [HULEMENTATION

mg
sC

A pointer to the stack {after the save) is retained. Then the

instructicon being orecuted at the time of the trap is examined to
sece whether 1t ropresents a legitirate system call. If so, a
jump is made to the proper routine; if not, to the label badsys.
Whenever the system 1is entered by this route, a flag is set to

indicate that syster code is being executed. No traps, including
cystem cealls, are allowed within the system.

To exit from a system call, a call handler jumrps either to sysret
to error. The only difference is that in the latter case the
error bit (c~bit) is set in the word from which the processor
status will be restored, '

At sysret, a check is made to determine the last-mentioned i-node
the super-block, or the dismountable super block have been
modified; if so, the I/0 to write out the appropriate area is
started via ppoke. Then a check is made to determine if the
user’s time guantum ran out during his execution in the system.
If so, tewap is called to give another user a chance to run. The
registers are restored and an rti is executed to return to the
user’s program.

Label badsys is reached either because the user executed an ille-
gal trap-type instructicn or because a t-bit trap occurred. (The
t-bit is used to implement the quit function.) badsys calls the
appropriate internal routines to write out a core image file in
the user’s current directory, then jumps to the sysexit routine
to terminate the process.

4, Fork, Exit, Wait

Fork and exit implement the creation and destruction respectively
of processes,

There is a fixed maximum number of processes. Each possible pro-
cess has a slot in the process tables and a swap area on the RF
disk asscciated with it.

Label sysfork implements the fork primitive. It searches the
p.stat portion of the process table to find an idle process slot,
and gives an errcr if none is found. An entry for the new pro-
cess 1s placed on the run queue and wswap is called to swap out a
copy of the current process’ core image onto the new process’
disk area. The fsp entry for each file open in the process is
incremented to indicate that each such file is open in another
process.

sysexit implements process destruction. It is more complicated
than one rmight think. First each open file is closed by fclose.
The procecss’ status is set to unused. Then the process table isgs
searched to find anv children of the process. Any of these that
have died but not waited for are marked free. o

Issue D Date 3/17/72 ID IMO.1~1 Section F Page 2

UNIX IMPLEMENTATION

when the wzrent of the dying process is found, it is awakened (by
IULIU) if it is wait%ng. Then the dying process enters a zombie

ate in which it will never be run again, but stays around until
& Jait is completed by its parent process. If the parent is not
found, the process just dies.

syswait implements the process wail facility. It searches the

process table for a child process. If none is found, and error
is returned. If a child is found in the zombie state (terminated
but not buried by wait) its process ID is returned and its pro-
cess slot is freed.

If all children are still active, syswait calls swap to give up
the processor.

The possible states of a process (p.stat values) are:

free, i.e., no process associated with this slot number
active

waiting for a child to die

terminated but not yet waited for (zombie).

WN -0

5. Process swapping

The important routine is swap. When swap is called, the run
queues are searched for the highest priority process. It is not
the same as the process in core, core is written out to the ap-
propriate disk area, the image of the new process is read in, and
swap returns to the point in which it was called in the new pro-
cess.,

If there is no process in the gqueues, idle is called. idle con-
sists essentially of a wait instruction; the effect of wait is
such that idle returns after every interrupt. swap searches the
queues again in the hopes of finding a process entered on a queue
by the interrupt routine, :

The I/0 to write out a core image is done by wswap. It must
operate on a stack internal to the system. wswap uses the pro-
gram break u.break to determine how much to write out. Usually,
the process’ stack area is copied down to the top of the program
area to speed up I/0. The I/0 queue entry reserved for swapping
is set up and ppoke is called to initiate the 1/0.

The core image reading routine is rswap; it also uses the system
stack. The core image is unpacked by unpack.

It is important to realize that running processes are not on the

run queues, Therefore, processes which call swap must already

have arranged to be put back on the run queues in some way.

The tswap entry to swap is used for‘timer funéuts; it puts the
process on the lowest priority queue before flowing into swape.

Issue D Date 3/17/72‘ ID IMOJY=t Section F Page 3

UNTIX I

BRI T
MR

£, Tlle Syztem
& dztailled description of the file system is given in the UPM
under Fermoat of File Zystem and Format of Directories., The di-
agrams on the following pages support that write up.
FORMAT OF FILE SYSTEM
Block
Number
o number of bytes in free storage map 0
. See page 2
free storage
map
number .of bytes in i-node map
L]
. See page 3
L]
inode map
L]
2 inode 1
. See page 4
[]
inode 16
3 inode 17
inode 32
4 inode 33
. L]
f JL . -\L
files See page 6
Notes: |

Issue D Date 3/17/72

ID IMO.$=1

There are 256 words/block

~ Section F Page 4

F PR BN Y AL f1 ™ T
Ul TEDTE i AT TON
vy e TN s A g
RES STORANE MAPR

1. There is 1 bit for esch hiock on Lhe deviao,

2., If thes bit ic o 1, ths block is fred.

3. The bit for bicck X of the devi
of the map; it is offret k (medl) Lits from the
right ex. Find the bit fcr block 100

100 :
- = Dbyte 12 offfiset = 4
8

block numbers f.s. map ' byte

- e . L S S o W I B A B MDD W S A S LA T WD o Lt D N e D A s B LA 1A W
15 8 2 1 0ol o©

, - S e e e em
31 16 2

...... - — e e e
32) 4

‘‘‘‘‘‘‘‘‘‘ D A D s B sl BB SV - A4 ‘
a8l 6

— S S
64| 8

W 0 LD S D YD WA D A S S T S SR atB I lea® D WD | TG W D S 0TS y— S L st S S A TR D R S S N
go| 10

e o e

| 4 13 |2 |1 }o

———tee e e 12

110019938} 97}96

AN (S DS P P s

>~

bit 4 of the 12th|byte

Issue D b“‘j 3/17/72 IR IND -1 Section F Page 5

Notes:

2.
3.
4.

UNIX IMPLEMENTATION
INODE MAP

The map begins with inode 41.
There is 1 bit for each i-node.
If the bit is a 0, the inode is
The byte number for 1-node i is
= (1-41)/8

free.
byte number

The offset or bit position»: (i~41) mod8

Ex. 1 = 100
byte number = 100—41

——w——- = byte 7
offset = (100-41? mod8 = bit 3
i-node number byte
56 41 ’ 0
3 57 2
3 73 4
7 | 312 |1 }o)
- 755558137 ¢ os|
N 6
bit 3 of the 7th byte
Issue D Date 3/17/72 ID IMD.$=4 Section F Page 6

UNIX IMPLEMENTATION

I-NODES

Notes:) ;
1. Each i-node represents 1 file.
2. I-numbers start at 1.
3, Storage begins in block 2.
‘4, 1i-nodes are 32 bytes long.
16 inodes fit in 1 block.
5. The block number for i~node i is found by:
block number = (i+31)/16
The byte number from the start at the block is
found by: ‘ :
byte number = 32 ((i+31)(mod16))

Ex. Find where i-node 50 is.

block number = (50+31)/16 = 5 ;

it begins at byte number 32. ((81)mod16))
= 32 (1) = 32 ‘ .

block number

2 i-node 1 '~ 32 bytes/i-node
i-node 16
3 17
32
4 33
48 |
) 49 32 bytes
50 _ block 5, byte 32

6. i-nodes below 41 are for special files.

Issue D Dlate 3/17/72 ID IMO.4-1 Section F Page 7

byte

25

29 .

Issue D Date 3/17/72

UHIX IMPLENMENTATICN

AN I-NODE IN DETAIL

-~ - v

flags (see below)

user id of
owner

‘size in bytes

number of
links

e —— v o car

41st indirect block or contents block

2nd indirect or contents block

¢ & & o

" 8th indireét or contents block

creation

A . D W I > WIS G B W e S

time

modification

time

unused

‘The flags are as follows:

100000 4i-node is allocated
040000 directory

020000 file has been modified (always on)

010000 large file

000040 set user ID on executlon
000020 executable

000010 read, owner

000004 write, owner

000002 read, non-owner

000001 write, non-owner

byte

20

22
24
26
28
30

‘Sectiéh F Page

UNIX IMPLEMENTATION

FILES

1) A small file is a file less than 8 blocks long. 2) A large
file is crester than 8 blocks long. 3) Byte number of a
file is addressed as follows:

block number =.n/512 = b

a) If the file is small (see flags)

physical block = bth entry in address
portion of i-node

ex., 1ii = 1500

1500 .
b = wmmee = 2
512

physical block = 2nd contents block in bytes
8 and 9 of the inode

b) If the file is large (greater than 8 blocks)
then v
indirect block # b/256

byte offset in 4 '
indirect block = 2 (b (mod256))

word found in this byte is the address of the
block corresponding to b

ex. b = 1000 L

indirect block number = 1000/256 = 3

byte offset = 22 (1000 mod256) = 2.232=464

~inode . byte indirect blocks
.?lock entfy : - v -1
1| | 6 1
| - H start _
2 | i 8 of
e T | block |emwm—mamm—— —emimim |
3 | contains block no. | 10 | . 1
464 L
| of indirect block | ' I . 1
bytes

S S i s S e e L S S S S D e S S i 2 £ i

——— - T > L1 A e e aem - -

Issue D Date 3/17/72 ID IND.1=1 Section F Page 9

UNIX IMPLEMERTATION

DIRECTORIES
Notes:
1) Like a file except no user (except superuser) may
write into a directory.
2) A file is identified as a directory by a bit in
the flag word of its i-node. (See i-node flag
page 5)
3) Directory entries are 10 bytes long.
Entry
1 i-number of directory itself (.)
| 10 bytes
8 character file name
-2 i-number of parent directory (.0)
8 character file name
3 i-number of file represented by entry
8 character file name
4 .
Issue D Date 3/17/72 ID IMO,4-1

Section F Page

10

o GUALE
Notes:
1) The fep table is an iacors tnbles conteining inforaa-

tion
about open fileas.
2) It is 4 words/untrve
3) The same file can be .opsned more than once, and have
more than one entry in the fsp tabla,.

entry 15

1
_— v ——
1 |x/w] i-number of open filc
1
l U

device number

offset pointer, i.e:, r/w pointer to file

flag that says file | number of processes |
has been deleted i that have file open
- o

—— ———

Issue D Date 3/17/72 4 ID IMO.1~1 : Section F Page 11

UNIY¥ IMPLEMENTATION

7. Process Scheduling

Processes are scheduled to run according to a priority structure
which is implemented via the rung table and the p.link table.
These two tables are described below. (diagram on page 9)

rung:

THE RUNQ TABLE

ig a table of length 3, with one entry for each of the three
ready-to-run queues of processes. The low byte of each
entry contains the process number of the first process in
the gueue; the high byte contains the process number of the
last processe. The entry is 0 if there are no processes on
the queue., Each queue is linked by the p.link entry in the
process table. ' e

process number of last process number of first

. process on gqueue process on queue
highest :
priority 7 : 2 rung
queue ’
: 6 ‘ 3 rung+2
lowest ~
priority : 10 T 4 rung+4
queue . - : .

To demonstrate the interaction of p.link and rung:
If the priority of process numbers was arranged as follows: 2, 8,

7y 3,

1, 6, 4, 5, 10, p.link would look like. So, the process 2

is found in the 2nd slot of the p.link table. In this case pro-

cess

8.

slot numbers - ()

(2) 6 (1) p.link :

8

5 (4) 1 (3) p-lihk+2
4 (6) 10 (5) | pelink+4
7 (8) 3 (7) p.iink+6

p.link+nproc (16)

Issue D Date 3/17/72 ID IMO.1-9 ‘Section F Page 12

UNIX IMPLEMENTATION

B 'Términal Control

The handling of character oriented devices (tty, lineprinter,
console tty) is done via several tables and buffers, namely:

The character count table cc , the first character pointer table
cf , _the last character pointer table ¢l , the character :
list clist , the tty control blocks tty , the tty buffers
buffer and the time out tables toutt and touts.

The tables cc, cf, cl are structured

such that each entry is associated with the input or output

of a specific tty or other device. The exact structure is shown

in the diagram for these tables. The clist contains linked

lists of characters associated with each device. See discussion in
Section F.

‘When an input interrupt occurs from a specific device

the interrupt routine puts the character received at the end of
the clist string for inputs from that device. When an output
interrupt occurs the next character on the clist string for
outputs to the device is popped off the list and is transmitted.
If the character being output generates a delay (1f, cr, ht,

vt) the appropriate entry in the toutt table is set no output will
" be generated while the toutt entry is non-zero. Each clock
generated input causes every non-zero toutt entry to be :
decremented., When a toutt entry becomes zero, the associated routine
named in the touts table is called. :

~ The tty buffers are used for editing the input clist strings
for the tty’s. When a sysread on a tty is done the clist input

string for the device is scanned and put in buffer 28 #, @

or deletes are found they are stripped from the input and

appropriate action 1is taken. , ~ -

Issue D Date 3/17/72 ID IMO.1-1 Section F Page 13

UNIX IMPLEMENTATION

TTY BLOCK AND BUFFER

I. TTY BLOCK
column tty is in
sleep queue,wakeup char léft”ovgr
queue, cc offset after 1f
flags
cr, tab, sp, raw, echo
pointer to tty buffer
tty+4: bit 7 - parity 37
6 - parity non 37
5 - raw
4 - cr
3 - echo
2 - caps to lawe cas®
1 = tab to space
0 - no delay
II., TTY BUFFER
S - e
| number of processes
! using this tty
D G O G G - W T W WG) W - H - .
char count
character pointer
- i -
_l - interrupt character
]
- b s —— Lo g i
om ! S S 2 -
char 2 ! char 1
- Y DU
char 4 i char 3
D S Sy Sy > G e S D U S W (D e I I LI ‘ -— - TR LD S N
]
[
—-— e T -
! oo m
———— i nm | J—
]
]
. - — -
! e
" Date . 3/17/72

Issue D

-Section ¥ Page

tty

tty+2
tty+4

tty+6

buffer

buffer+2

buffer+4

buffer+6

buffer+8

buffer+10

data
area

buffer+13D

buffer+138.

14

Issue D Date 3/17/72

UNI¥ IMPLEMENTATION

TOUTT, TOUTS TABLES

- A O A i T 1o R S A e o

- i oA T B R M 5 @ T T Lt e il Nl

ppt entry console tty entry
ey ¢)
T eey2 ¢ " teyt entry
TTfeya ¢ eeys ¢

ctye o | eeys "
S ;;;7 -

an vz

T R T - e e Tu T S 0O S B 008 [

-

console tty subroutine’gﬁkzg ;;I;;-

ppt

"

4 lﬁ%

(4/p) 2

F rmitto
’“"{ﬂ 24%7.1

ID IMO.1-1

d c,f,:‘:y < /d:ftr’#’

/¢/// by 0 <l

toutt Wouh7

toutt+2 otz yodfue

toutt+4

toutt+6

toutt+8

toutt+10

toutt+12

toutt+14

touts (tout+16)

touts+30

Sectioﬁ F Page

15

c1(cf+31)

Issue D Date 3/17/72

LTt
ORI

THPLEHETTATICH

cc, CF, CL & CLIST TAELES

s —ﬁr‘\WA

-

\nle
consolév;utwcount

— - i 4 o o Sz SOV W e Gt WB. T3 ToRY LA 9

[1] "

console in count

BT 2 7 A

" "

ppt ppt
1p " ") T

ttyo " " -ww"ttyo TR
| tty1 " ") tty1 TR
o tty2 " " tty2 " "

tty3 " " - tty3 "o

.” _ ‘ ’ ”. _
tty7 tty7

—
consoléﬁinw1st char offset

free list 1st char offset

ppt inﬁ%gér offset

console ouﬁﬂ;st char offset

- ppt ouﬂdast char offset

) o ol o " " "
tty0 in"first char offset 1p
tty1 L 1] " L] ttyo " ” " "
L] L]
tty? K . '

freelist last char offset

ID IMO.1»1

Section F Page 16

S0
cf+p

UNIX TNMPLEMENTATION

| ek
| = SN -
! consolggout§§a5t char off ccnsoléﬂidriast char off
pp L “. " " (1] v z th
l:p LAl *" " ”
ttyv() ¥ ” [1] ttyo " - [] ”
. []
- *

t ty? ” (1] o tty? ” " L ”
pointer to next char (0) character (0)
pointer to next char (204) character (204)

Section F Page

Issue D Date 3/17/72 ID IMO.1-1

cl+1
cl+3
cl+5

c1+7

cl+21
cl+23

cl+29

clist (c1+3

clist+508

17

UNIY TMPLEMENTATION

active - :
is a word whose bits encode the activity states of the vari-
ous block-sztructured device controllers, If the FK 2is% bit
is on, that device 1is running and sheuld not be rclested.
The devices for the bits are:

pit © device
0] drum
1 diek
2 dectape
bhuffer -

start of the huffers used for block-structured device 1I/0
(there are nbhuf of ther) and tvpewriter input (there are
ntty of ther),

From buffer to huffer + 1116,.,, are the £ tty buffers., TIror
buffer + 1120. to muffer + 1259, ic the conscle tty buffar,
Tach of these buffers is 7C. werds lonc. TFrom buffer + 1260,
to butfer + 4381, are the disk buffers. Thev are 256, words
each plus 4 words which revnresent an I/C gueue entry. Thur
each block is 260. words. Pointers to these 260, wor?
bucfers are contained in bufp. bufo centains rointers to the
I/0 queue entryvs of each buffer., For mcre inforration, ¢cee
E.O0, D« 2.

hufp -
containe peointers to the blcck-structured device ruffers. It
is 9 words long. The first 6 entries point to the I/C gueue
entries of the & buffers, The last 3 words contain:
sho - address of I/0 aqueue entrvy for the suner
block of the PF Jdisk,

sbi - address of I/O oueue entry for the suver
block of the dismountable device,

swp — address of I/0 queue entry for the core image
being swapped in or out.

cc -
is a 30. byte table. Fach entry conterins a ccunt of the
nunber of characters in the asscociated gqueue for that entrv.
The characters have either been received from a character
oriented device, or are waiting to be output.

cdev -
The current device number. It is set up during the scan of a
file name, and is an implicit argurent tc the routines whic
do I/O by device bleck nurber, cdev= C-drur, 1-disk, 2...
dec tape. This parameter is 1 word.

cf -
is a 231. bvte table, Fach entrv points tc the first charac-
ter in an associated character queue, The first entry refers
to the free 1list’ of character blocks. The pointers are
offsets, divided tv 2, in the clist tahle.

Issue D Date 3/17/72 ID IMOut=1t Secticen € Page 1

UNIY IMPLTMENTATICN

cl -
is a 31. byte tahle. Fach entry points to the last character
in its associated character gueue. The pcinters are offeets,
divided by 2, in the clist table.

clist - ~
is & 510. byte table ccntaining linked lists of inbut or cut-
put characters., Fach entrv is a word; the low byte contains
the chazracter; the hich byte contazins a vointer to the next
byte in the list. The pointer is a word offset in clist .

clockp -
pcints to one of the cleck cells in the suvper block (1 word).

core - _
address of the beginninc of user core.

dae -
'~ disk address extension error reg. for RF-11 disk. (See Sec~
tion C, pg 35)

adcs -
Aisk contrel and status reqister., (See Section €, ng 34)

deverr -
a seven word table containing the error cstatus of dJdevices,
The index into this takle ic the device no. ‘cdev’,

word device codes
1 dArum C= no error, 1= error
2 Adiek "
3 dectape units "
g " "
6 " ”
7 ” . "

ecore -
address of the end® of users core,

fsp -
this table contains 8 bytes for each currently open file., It
rmust be kent on a per-svetem basis since the samre instance of
an open file can bhe referred to by more than 1 process. This
table has 1 entry for each open or creat call, Each
entry cont2ineg information about an open file. The fcso table
is indexed by the u.fp list., (See Section F, pg & feor de-

D]

tails.) The table is 400 bytes long. ;

idata - :
This 448. byte ar=a contains assembled root, device, bhinary,
etcetra, user and temporary diresctories and the cold bhooct
initialization prograr directory. (Seer Section F, ovzge 7 for
a description of directoryvy structure,) Preceediny ea2ch of
these asserbled Airectories establishing 1i-noides for the
directories, Namely: ‘

Issue D Date 3/17/72 ID IMOyt-t Section G Pace 2

UMIX IVMPLEMENTATION

A = i-node nurbher
B P = i-node flags (See Sectien F, n. 5)
D Cc C = number »f linke
F D = user id of owner "
E = directory size in bytes

Followind the 4 word area is the directorv associated with
it, These AJdirectories are used in initializing the system
during cold boot,

idev -
the device number of the current i-node (1 word). See ii,

ii -
the i-number of the i-node currently in the ‘inode’ area of
core (1 word).

imo? -~
a flag set when the current i-node (ii) is modifie?,
Whenaver the current inole is chanced, or whenever an exit to
a user nrogram takes place, this fiag causes the i-node to he
written out., This flag is 1 byte.

inode -
lays out the structure of an i-nod=, Fach i-nod2 (32 bvvtes)
speclifies a file, Yhile a particnlar file ie under con-
sideration, a copy of its i—noge gesid@s here, The gurrégt
i-node number 1ig Kept in ii and its device in idev .
Labels beginning "i. refer to locatiens in this area. (See
Section F, »g. 5.)

i.ctim -
creation time of the file., (2 words)

i.dskp -

start location of an 8 word ‘address’ pcrticn of the i-noie.
Fach word contains a physical block nurber, frem which a phy-
sical klock address can be calculated, The index into this €
word section of the inode can he considered a logical block
nunber . if the file associated with the i-node is srall (¢ ©
blocks). If the file is large (> 8 blocks), the phvsical
block number indicates an indirect block which contains 256,
words, each of which ccntains a physical block no. for a
block asscciated with thie file. » zero physicel hlock no.
in either the addrgss words of the i-node or in an indirect
block indicates that the corresponding tlecck has never been
allocated.

Issue D Late 3/17/72 ID IMO,1-1 Section G Page 3

UNIY IMPLEMFNTATION

flags (1 word) for the file are ccied as follows:

Bit C set indicates - write, non-cwrer

" 1 " - read, non-cwner

" .2 , - write, owner

: 3 ,; - read, owner

" 4 " - executable

, 5 " - set user ID on execution

L 6 " - These bitg are not assigned
7 -

. 38 . - .

” g " - "

[1] 1 O " - "

" 1 1 " -
12 - large file

: 13 : - file bhas been modified (alwave on)

, 14 " - directery

! 15 - i-node is allocated

modificaticn time of the file (2 words).

i.nlks -
number of links (directories) this file appears in. (1bvte)

i.size -
size of file in bytes. (1 word)

i,uid -
id of the file cwner (1 bvte)

lke -
cfock status register. (See Section G, pg 36)

mmod -
corresponding byte flag of imed above for the currently
mounted desmountable file syster.

mntd -
ie the internal device numrher corresponding to the device on
which a remcvable file system is mounted. It is wused with
mnti . (1 word)

mnti -
records the i-nurber of the (inique) cross device file. That
is, whenever this i-number is referred tc on the FF 3diek, it
will be translated intc the roct directory on the mounted
device. (1 word) :

mount -
ies the in core imace of the suner block for the diesrountable
file svyesterm currently mwounted. It contains the i-ncde mwap
and free map for the device. :

Issue D Date 3/17/72 ID IMO.1-1 Section ¢ Paqge 4

UNIY IMFLTMFEITATION

mpid -
ie the source of unique identifiers (nares) for nreocesses,
It is incremented as each process is created, (1 word)

nbui -
nunber of block-structured I/0 buffers. Presently its 6 (fer
cold hoot 2).

nfiles -
allowable nurber of cpen files in system., Presently 5C.

nrroc -
number of nrocesses, Presently 146,

nttv -
number of tty’s, Presently 9

crig -

partab -
128, bvte table.

opb -
papertave punch buffer recister. (See Section G, p. 3e)

ops -
paner tave punch status register (See Section ¢, p. 37).

pptiflg . -
indicates the status of the paper tape file., (1 byte)
- file not cpen
- file just opened
- file is normeal
- file not closed, error situation

N NO

prb -
paper tape reader buffer register, (See Section G, p. 37).

proc -
is a table with an entry for each poscible process. The
number of processes is given, by ‘nprec’. Its length lirite
the nurber of processes which can be created, since it is
always in ccre, Subtables in the process table have names
beginning with p.

ors -
paper tape reader status register. (See Section G, p. 37).
proccessor status register. (See Section G, p.)

D.break -
a 16 word table. FEach word is asscciated with a unique opro-

cess and centains the first core address not used by the ovro-
CesS.e ’

Issue D Date 3/17/72 ID IMO.1-1 Section C Page S

UNIY IMPLEMENTATICH

n,daka =
is a table of d4di
procerses, pl.dska is
plock nurter for eac

sk addresces for the swan aree of the 15
6 words lons. Fach word contains =2
[

Pelink -

is a 1% byvte table indeved by process number, Given that a
procese is on the run queue, its p.link bhyte is O (in which
case the process has no cuccassors) or it contains the nre-
cese nurnber of the next rnrocess to be run after the process
that owns that slot. If process nurber 2 wag runninc next on
the queue and precess number £ was next, the 2nd bvte cf the
p.link table would contain an R, This is how the next pro-
ceae in line is linked to the cne ahead of it.

Pel nid -
ic a 16 word table that contains the unigue identifier (or
nare) of a process, Tt is 4indexed bv 2 X (the process
nurber). The name of the process 1is actuallv 2 uniocue
number.,

is the unique identifier (nare) of the parent of +he varticu-
lar process, The takle is 12 words leng and is indexe? by 2
X (the childs nprocess nurher). Thie ie where a chilA
cearcles for its narent., Process nurber 2 woul? lock in the
2nd word of the v.prid table for its varent,

pe.stat -

€ 1% bvtes long. Fach bvte represents the status of a pro-

cess, Fach byte is indexed by the process nurber,. The

status’s are as follows:

C - indicates the process is unused or free.

4 - indicates the prccess is active sF=Swee,

2 - indicates the process is waiting for a process to die.

3 - indicates a zombie (the process has died hut it has not
been waited for.)

rcbr -
receiver buffer register for the DC-11.

rcsr -
receiver status register for the DC-11. (See Section G, ©v.
2€)

fap - .
addres of the drum buffer I/O queue entry. It is passed as

an argu Whnt te trayt .

rkap - _
address of the disX buffer T/0 queue entry. It is used as an
argurent to trant . ‘

rvcs =
control status reagister of the disk. (See Section G, p. 30)

Issue D Date 3/17/72 ID IMO.d=1 ~ Section C Page £

URIY IYPLTMERTATICN

rkda -
disk address regicter., (See Sectien G, ». 29)

.
rxds
.

Jisy register., (See Efection G, p. 28)

~
~d
H
i.l.
<
b
n
r?
al}
t
=
3]

I

rootiir - ,
ije the i-number of the root diractory. It is set tc 41. by
the initizlization code and is never chanced.

runa -

is » table of lenctkr 3, with cne entry for each cf the three
readv—to-run queucs of nrocesses., The low byte of each entry
contains the nrecess nurber of the first »process in the
queue; the high hvte contzins the »rocess nurber cf the lart
process, The entry is O if there are no »procesges on the
gueue, Tach queue ie linked by the p.link entrv in the pro-
cees table (see above).

is the I/O cueue entrv for the suver bleock for the wnermanent
device (PF disk). It is 4 words leona.
sh1 -

, is the I/C queu= entry for the suoer block for the dierount-
able device., It is 4 words long.

smod -
is 2 byvte flag that is set whenever the super bleck is medi-~-
fied. During an exit to a user program, the super-block is

written out if this flag is set.

SWp -
ie the I/C queue entry for the cecre imace being swapped. It
is 4 words long.

sysflag - _
telle whether execution is coing on inside the svetem or not.
It is 0 if a system routine is executing and-1 if a user pro-
cram is running., This is a byte flag.

sstack -
ie a tempeorary stack used to store the stack during swans,

systm -
is the in-core image cf the super hlcocck for the RF fixed head
disk. It is updated ontc the RF wherever it is changed.

Tris area consistse cof 130. bytes cf free-ctorage map
(descriked in Section F, n». Y, 64. bvtes of I-nede rwap

(descrived in Ffection F, p.), and 22, bvtes of tire ac-
counting and error count inforration. Labels 1in this area

. ’

start with "s.

s.Chargt -
is the tire charged te users.

Issue D Date 3/17/72 ID IMO,1-1 Section ¢ Page 7

UNIX IMPLEMRNTATION

Sesyst -)
is the overhead time during which the processor is executing
in the operating svstenr code,

s.time -
is the total time since the system was last ccld booted.

s.wait -
ie the Aisk I/0 wait time,

tcap -
is the vointer to the dec tape I/O queue entry (1 word).

tcha - ;
is the bus address register of the DEC TAPE., (See Section €,
p. 32,)

tchr -

is the transritter buffer register of the DC-11,

tcem -
ie the comrand register for the DEC TAPE. (See Section €,
32)

i)

tcit -
is the data register for the DEC TAPE, (See Section G, op.
23) '

tcerrc -
(1 word)

tcsr -
is the transritter status register of the DC-11. (see Sec-
tion ¢, r. 27)

test -
is the control and status register of the DEC T2PE, (See
Section C, v. 31)

tcstate - _
ie the etate of the DEC T2APT, e.2., i9ling, searching doing
T/C. (1 word)

tcwe -
is the word count register of the DEC TAPE, (See Sectimn C,
n, 32)

touts -
is a 16. word table. Tack word, if non-zero, is the entrv
noint of 2 subrcutine, The table 1ig used to irnlement

Issue D Pate 3/17/72 ID I¥C.1-1 fection C Page ©

UMNIY IMPLEMENTATIOCON

bt b 5 o, bt
Yeoch es 2ero

interval timino in conjunctien h the ‘toutt’ tadhle
descrilbed kelow,

toutt -
is a 16. byte table, Fachrbyte is a count. At each ¢clock
interrupt each non-zero,dthe corresnonding touts subroutine
is called, 2ll entriec in these tables are fixed,

tkb -
is the tty reader buffer register. See Section ¢, p. 3%

tkes -~
is the ttv reader status register. €ee Section C, p. 3%

tph -
ie the ttv punch buffer register. See Section G, p. 39.

tps -~

"~ is the tty nunch status register. See Section G, p. 39.

tty -

contains 8 bytes for each DC-11 communicaticns interface cen-

ficured. Control and cstatus
These are referred to as tty blocks,
them .
tents see F, nace 11.

The last one is for the consold ttv.

infermation is keont therein,
There are ntty

(@) of
For their con-

ttyoch -
is used during ocutput to the conscle typewriter. (1 hvte)
usey -
is the start of each users data base, It resides just below
the wusers core area and is swavped with the user, All loca-
tions in this section bhegin with u .
u.base - " .
helds the users buffer address in core during read and
write calls. Alsc points to u.dirbuf in rkdir .

u.'.br‘:)a.k -
holds

the process procram break point as set by sysexcc or bv
p prog I Y SY ;

a sysbreak. It is the location at the end of the users oro-
gram used in the swap routines. (1 word)
U, bhsys -
is set while a process is ahout to be t=rminated for sore
error, B core image is produced. (1 byte)
u.,cdev - ,
holds the device number of the users current directory. (1
word)
cdev device
0] drum
1 disk
other dectape
Issue D Date 3/17/72 Section € Paqge ©

ID I'10.1-1

UNIX IMPLEMENTATION

u,cdi
is the i-nurher of the nrocesses current directorv, (1 word)

2 B

i

U.CcOint -~
ie the nurher of hytes to bhe transferred during resd or write
operations., This variable is 1 word,

ue.dirbuf -

" ”
usuallx holds the i-nupbh=r c¢f an i-node in ma¥no? and
" . . ~
mkdir . (The i-number of a new i-node) u.dirbaf + 2..,
u.,dirbuf + g hold the namwe of the file in the Jdirectory en-
try.
u.d i -

o

is either an offset within a directory for a file menticned

by the user or a vointer to an emrpty directory slgt during a
creat . It also points to a directory entry in namel . (1

word)

u.fofp -
is a word that contains a pointer to the 3rd word of an fsp
table entry. This (3rd) word ccntains an offset (in bytecs)
into the file asscciated with the fsp table entry, and 1is
used during read/write overations. In initializing enecial
files, u.fofn pointe tec v.,o0ff. For bread and bwrite, uw.Zofp
containe a hlock nurber.

u.f{) -

is a 1list of users open files. 2n entry is either O, for =2
non open file, or is an index into the svstems feso table
(table of open files). Fach byte in the list contains an
entry. The list is 10 bytes long, bhecause 10 is the maxirurm
nurer of files a user can cpen at once. The index into thie
u.fp list is called a file describtor . It has a value from
0 to 9.

Ve ilgins -
determines handling of illegal instructions. If u.ilgine is
O - the normal instructicn trap handling is done the process
is terrinated and a core irmage is precduced.

If u.ilgins is

a locatiocn - control is pasced to that lccation when the trap
occurs. This feature is used to implement the floating voint
instructicns. (1 byte)

U.intr -
deterrmines the handling of interrupts. If u.intr is zero -
interrupts (ASCII delete5 are ignored.
is on - interrupts cause there normal result, ie, force an
exit, :
ie a 1locaticn -~ control ic passed to that locaticn when an
interrunt coccurs. (1 word)

u.namep -

Issue D Date 3/17/72 ID IMO.1-1 Section C Page 10

TITTY IVPLTMEFNTATION

in 2 vointer tc a file nam~ menticne? by 3 urer to the eyvetom
during system calle, (1 word)

v.nread -
accumulates the nurber cf bvtes tranermitte? “uring read or
write calle. (1 word) It is prssed b=ack in r0 on return.

u. Off -
ic eithcr a pointer to a file offsect mentione? »w a user Jur-
(1] ” - " " . .
ing seck and? 21l calls or a peinter to #n emntv directo-

F
" - . > 3 2
v slct in LJrkdir cr & pointer te a directorvy entrv =235 in
clink . (1 wer?)

rclis the wrocess prioritv exprescsed as = vointer to cne of
the three run aueuee (in cne word). If anothsr prccess with
hicher woriority hecomes readv to run while this nrocees is
running, the remainiig tirmc covantum is cet tc zero.

vexuit -
determines the hendline of aquits. If usauit i,
O - guit signals are icnecred (ASCIT TC),
1 - gults are re-enabled and czuse execution to ce»rce and 7
coera imags te he producaod,
& lccation - control is trancferre? tc that lccation whken a
guit sigrnal is receive? (1 hvyte).

U r(d -
neints to the location where the users N was stored on entrv
intc the svstem (an? where it will be restored con return).
It ig used to pick up and pass arcumentzs. Most often it
nasces file descrintors. (1 werd)

ueruid -
holdie the real user id nurber.,. It is not changeﬁ Ty "the
set—user 17 bhit being cn in an inode during a sysexsc (1
byte)o

Ve =
is uced to cave the value of the users sp recister »ftar =11
the cther recicters have heen saved, It is used to restore
the ez when returning to a user so the svster need not trkn
care) to mnep evervthing off the stack tefore returning (1
word).

u.ttyvn - :
ie a pointer to the huffer of# the tty that is in control of
the orocecss, The control tty (typewriter) is the cnlvy cne
which may quit or interrunt a process,

U.Uiﬁ Laad
holds the user id nurber used to Adeterrine protectien (4
wte).

Ve nNo -
is the orocess number. In gvsfork it is the parent n»nrocess

Issue D Date 3/17/72 IN IMC.1-1 Section ¢ Pace 11

nurh e

nrocaes

~
Sl e

IMTTY IMDPLEUENTATICN

In AOFchs! it is the numker of

swansed out,

Icaue D

It
nlace

2 contentes of the en a2t the rorent the
ruet be, caved so that the Pﬁ““ﬂori
oftcr the user is swapoed hack in, (1

s tire guwantum. It is sct
ins 2t every cleck tic
e a

" ”
A0. Yvte table of wait channels ,

idered =&

» particular event, Vhen a preocess w
f thrse Fvonts, it celles & routine (s
rocese numpaer in the aonrepriate chnw

%0

th‘x

Date

channel, Fach entry in this

event occurs, ancther rouvtine (w

3/17/72 ID IMC.1-1

xe In eyorxit it is the »rocees nurher of the “vin~
«

the rreceese heing

ueer iS ewanne?
2 nturn can

« when a new user
’ocromonta~. “hen

b?’to’) .

~ch »vte ie con-
tabhle ig arcoci=ted
shes tc wait for
lboh) which enterc
el - this tabhle,

¥=2up) wakes un the

Section C Pace 12

UNIX IVDPLEMENT2ATION

ID - vo; 2/allccate tty buffers

TINCTION -

Fach DC-11 interface is assigned 140, hvtes of bufifer rnace,
he Ffirst 140.-Byvte block beginning at lacation huffer .
Alco for each interface a 4 word bhlock of contrel and ctatus
tvpe infermztion is maintained, Th=ee Z—wor? blecks Trecin
at locaticn tty , the fourth word in each hleoek is 7
pointer to the heginning of the 14C.-bvte buffer recicne? to
that device. This section of cede loade thesc nointeres inte
the nreoper pnlaces in the tty blocks, The results are shown
in the fiacrams on H.O, nags 3.

CALLIIC SEQUENCE -
ARGUMENRTE =

INPUTS - ,
' ntty (number of NC-11 interfaces)

OUTPUTSE -
(cee diagrars 1.0 page 3), rC, r1

Issue D Date 2/17/72 ID IMO.1-1 Section H.C Pace 1

I - uog

FUNCTIOKN -

Elecck 1I/0
25€. words Thus
words rmust be assig

U

3/allccatr Ais

for each of
ned.

IMPLE

Luf s«

"nbuf" block
In addition to the 256,

TUTATION

devices (drum, disc, degtepe) use dlocks of rize
I/0 buffers

256.

words for

data each block has fou* additional words which rernresent an

I/0 queue entrv,

blccks becgin at leocaticn

nointers s
starting at bukﬁ o
entries

ccde loads
locations
toe I/0 gueuve

ﬂcl 1onal
"1’ , and
lcaded

"swp

locatiocnes
Zirngramws on

are

1.0,

CALLINC SECUENCYE -

25}‘(TYrAvASIT

AR RSP AR

IRUTE

rc (oo

Y’TI‘ T’T(‘ -—

lecaouns D Date

3/17/72

E.C cace 3) ri

Thus each block contains
buffer + 1260. .
to thesge 260 Whrd
Thue
the first
blcck represent the I/C queue entry for
I/O queue

since
entries

Finallw,

word ccunt ant® 2 bus
initializea

])
3.

(in

ID IMCe1-1

lecaten
p lﬁo exiet an? pointers to
into hJ&L
guenc entry contain
The

bufo

the

260 words.,
This eecomrent of
olocks in consecutive
centains pcinters
four words in each
rlock.

2t locations
them

Thece

Three
L] o "
sk0

are alan

the l=st 2 words of an I/C

results

first bhleck I/C buffer)

Scectien

addresse,
zye chown in

V.0

thece
tha

tzrnal ccuater, r2 (internal

Pagn 2

UNI¥ IVPLEMENTATION

Iscue D Date 3/17/72 ID IMO.4-1 Sectien T, Pace 2

UNIY IMPLDMENTATION

ID - voy 2/freec all charachtar klocks

FURCTION -)
this scament of codz initializes the cf, cl and clicst “leocks
in core te the following state:

255. 2%5. cf
(cf+31.) c1 1
clist (cf + 21,)
1 .
253, clist + 506,
254,

CALLINC SECUENCE -
RRCUNEKRTS -

INPUTS -

CUTPUTIS -

CALLED RBRY -

CaALLS - PUT

Issue D Tate 3/17/72 ID THO.1 -1 Section H,0 Page 4

CALLIXNG SEC

2RCUM

UNIX

ID - uc; 2/zet up drum swap addresses

TUNCTICH
The drum 1is divided into 1024,
hichest €4. blecks ar~ get aside for

Preocesses cswapned to and from core
The area in ccre reginning at locat

bleck nurber whieh ie
drum whniere tre process is

swapped to.

[]
950 ,.,~-noroc*17.

CURINCE -

FITT'S -

. .
INPUTE —

CUTPUTE -

p,dska - [p.dska + 2*nproc -2] , r1,

Date 3/17/72 ID IMO.%-1

bleckes

storing
are stored on the
tion

There
con the Jdrum assigned as swapping area for each nroces

This segment of ccde initializes the p.dsk
suscplying the block numbers for each of
The results anbvear as follcws:

r2

of 288, vorlis,
rvv-r--

ALY

'D.(’Ska .

are

iteelf,

A

a area"in core

"nproc

p.dska + 2%pproc -2

Section 7,0

rume
centaines
thhe number cf thre first bhlock on the
17 blocks

processes,

UNIX IMPLEMENTRATION

I - uo; 4/free rest of Arun

FULICTION -

This nortion of cecde iz executed Auring ‘cecl?’ hoot. (See
UNIX Programmers Manual - Poot Procrdures VII,) Tt initial-
izes the core irmace of the super block for the fixed heard
disk. =~ System (which represents the numbar cof hvtes in the
free storage map) is set to 1289, Svetem + 13C, (vhich
represcents the number of hytes in the i-node rap) ie set to
64ee See Section F, pPe 1,2)e PRlocks 34.,...687. on the
drun are freed (the corresponding bite in the free storage
map are set). These blocks are for user files,

CALLINC CSECUENCE -
RAPCUMENTS -
INpPUTS -

r1 contains the number of the hichest block to be freed.
(See inputs for ‘free’; H.5, p. 2)

systm, systm + 6, systnm + 8,.44, svstm + 85, svstm + 130.
(see outvuts for ‘free’; H.5 p. 2)

Issue D Date 3/17/72 ID IMO.1-1 Section Y.0 Page 6

UNIX IMPLEMENTATION

ID - uo; 4/zero i-list

FUNCTION - ~

This vportion of code is executed during ‘cold’ boot. (See
UNIX Programmers Manual - Poot Procedures VII), It =zeros
blocks 1,.4s, 33, on the drum. Block 1 is the 2nd block of
the superblock for the drum. (Block O is the 1st block of
the superblock. -However, since the in core imace of the
superblock (see UNIX Implerentation Manual - p. 3) is updat-
ed onto the RFO3 whenever it is changed (can be changed by a
call to ‘free’, updated by a call to ‘sysret’ it does not
have to be zeroed.) Blocks 2,ess, 33. are used for i-nodes 1
thru 512 (see Section F pp. 1,3,4,5.)

CALLING SEQUEKCE -

ARGUMENTS -

.INPUTo -
r1 contains the number of the highest block to be zeroced +
1. (See inputs for ‘clear’ H.3, p. 1.) :

OUTPUTS - |

Blocks 2,.ss, 33. on disk are zerced. (See outputs for
'Clear' H03, Do 10)

Issue D Date 3/17/72 . ID IMO.4-1 Section H,O Page 7

UNIX IMPLEMENTATIOXN

ID U1:;3 tadsys

UI\'C’II Cli -

"ba dsys" is called either hecause the user executed an ille-
gal trap type instruction cr because a t-bit trap occured,
(xhe t-bit is used to implement the aguit ‘unctlcn.) bwaeyc
first turns on the t=2d systerm flag (u reyve) and the calls

namei with u.narep pcinting teo coro . The core irzge
file ies then oonened for writing via 1ooan « If the file is
nct found, and i-node whose rode is 17 is made by maknod ,
and the i-numker for that node is put in r1. Parameters to
write out core area then set un and the core imace is writ-
ten cut in the usere directcry. Then the users area of ccre
is written cut and the file closed, svsewit is entered to
terrminate the process.

CALLINC SECUZNCE -
bhis bhadsvys

AECUMENTS -
INPUTSE -
r1 - i-number of core image filees i-node wu.dirhuf centains

1-numbpr of new i-node mode bhv "raknod" .

OUTPUTE - :
U.ksys - turn on. Its the userg bad syster flag,

u.base - holds address of core , and user during write i-calle.

u.,count - users hvte count to write out,
uv.fofpr - contains file offset,

u.cff - set to zerc.

r1 - has i-nurber of core image file.

.Isgue D Date 3/47/72 - ID Iyg;, - Section H.t ‘Page 1

UNIX IMPLEMENTATION

ID U137 error 2

FUNCTION - See ‘error’ routine

CALLINGC SEQUENLCE - "
ARCUMENTS - . "
INPUTS - "

OUTPUTS -

Isaue D Date 3/17/72 - ID IMOwtsd Section H.4 Page'?

UNIY IMPLFPMENTATIOCN

Il U135 errcr 1

FUNCTION - See ’‘error’

LRCUMENTS - "
CALLINC SECUENCP -
ILFUTS - "

CUTPUTS -

"Igsue T Date 3/17/22 . -ID IMO.%»%. Sectiem H,1 Pace 3

UNIX IMPLEMERTATION

ID U132 error

FUORCTION -

error. rmerely sets the error bit of the nrocessor status
(e-rit) and thren falls richt into the svsret, sverele return

sequence,

CALLINC EERCUZENCE -
conditioral tranch to errcr.

AECUMENTS -

Isesue D Date 3/17/72 ID IMOst-1

-
l -
prccesscr status - c-bit is set (reans error).

Section F.4

Page 4

UNIX IMPLEMENTATICN

ID U1;9 gtty

FUXCT;OH o " o - "

gtty is called hy sysgtty and sysstty . It takes the
first argument of the above calls and puts it in r2. This
argurent is either the socurce or destination cf inform~ticn
about the tty in question. The file descrinter is put in r1
and the i-number cf the f£ile is ohtaineld wvia cetf ., The
nurber of the tty is gotten by (the i-nurbher-14). If nc tty
with this number exists an error occurs., £ X (i-number-14)
is the tty blcck offset, This is outputed in ri1.

CALLINC CECUENCE -
jer r0, qgtty

ARCUMENTS -

IKPUTS -
(u.r0) - contains the file descriptor for the tty file
r1 - i-number of file

CUTPUTE -

r1 - tty hlock cffset
r? - source cr destination of information

Issue D Date 3/17/72 ID IMO,1=1 CSecticn Hod Page 5

UNIY IMPLT™IENTATION

ID U1-4 intrack

FUNCTION -

"intract” checks tc see if the process owns a quit cor inter-—
rupt fror the typewriter, If it owns a auit, the quit flag
ie cleared and the T bit (trace trap) of the processor
status is eet, If'the interrupt chraracter iz a del (177),
d.inty is chacked to see if it is enmual teo the procesc
core « If it is, contrecl is transferred to core . If
not, sysexit is taken,

CALLING SEZCUENCE -
br intract

EPCUMENTS -~

INPUTS -
(sp) - containe the instruction RO is pointinc to
u.tty - nointer to buffer of ttv in control of the process
(r1)+€ - interrupt character in the cecntrol tty’s buffer
U.intr - deterrines handling of interrunts (See syeintr in
the UKIY¥ Preogrammers Manual),

cuTPuUTE -
clock pointer is popoed.

~ If the interrurt char is a quit character,

(r1)+6, the interrupt character in the control tty’s buffer, is
u.guit is cleared

T bit of ps is set

- If the interruot char is a del” (interrurt)

(r1)+46 is cleared .
" ”
control is transferred to core if (u.intr)= core

Issue D Date 3/17/72 ID IMOL1-1 . Section F.,1 Trce 6

cleard

URIY IVPIEMENT2TICON

ID U136 rwi

FINCTION -
rw1 is called by sysread and syswrite, It nuts the Yuffer
pointer . (buffer) inte u.base and the nurher of characters
(nchars) into n.count, If then finds the i-nurber of the
file to bhe rgad by getting the file descripter in *¥u,.r0 and
celling getf o The i-number is returned in rt. '

APCUMERTS -
\
INPUTS -
ruffer - buffer pointer
ncr2r - numher of characters
*u,rC - file descrintor

CUTEUTS -
v.base - buffer pointer
u.count - nurber of characters
ri - contains the i-nurber of the file to be read

]

o
2
9]

'
|

Issue D Date 3/17/72 D IMO.4-1 Section H.1 Page 7

UNIYN IMPLEMENTATIOCN

ID U138 sysclose

I'URCTION - w
sysclose , given a file descrintor in u.rC, closes the

associated file, The, file descriptor (index to the u.fn
list) is put in r1 and fclose 1is called, (See fclese
He2.) ‘

CALLINC SECUERCE -
sysclose

ARCUMENTE -

INFUTE -
(u.r0) - file descrintcr

CUTPUTE -
Sec fclose outputs

, .
Issue D Date 3/17/72 ID IMO.1-% Secticn H.1 Paage ©

UNTIX IMPLIMENTATION

I U137 syecreat

FUE} CT f'[. oN - "

syscreat ie eallel with two a2rguments; name and mode,
u,namep oolnts te the nare of tre £ile and the mode is n»ut
cn the stack, namei 1is calle? to get the i-nurher of tre
file., If the file-alrerldy exists, ite ro?e and cwner reomain
unchanced, bhut it is truncated te zero lencth., If the file
did ncot exist, an i-node is create? with the new mele via

raknced whether or not the file a2lready existed, it ie onen
for writing, %he fep table (see F pace £) is then searche?d
for a free entry. Vhen a free entry is found, the prcper
Gata is nlaced in it (see outpute belcw), an? the
nuntber of this entrv is placed in the u.fp list, The index
te the u.fo (mAlsc kxnown as the file descrirtor) is rnut in
the users r0. For more informaticn, see svscreat in the
users manual, '

CALLINC SECUINCE -
syscreat; narej; mcde

LRCUMENTE -
nare - narme of file to hbe create?d
" " ” " (1]
mode - rode

INPUTE -
r1 - i-number of file if found
(sp) - contains the mode argument
u,dirbuf - if file not found, contains i-number of new file
fso - table of cpen file entries

OUTPUTS - .
if file not found - new i-node is created (see mrakned
r4{ - contains i-number of new file
r3 - index intc £e» table (file descriptor)
r2 - index into u.fp list
in free fsp entry - 1st word i-number of new file
2nd word device number
3rd word o]
4th word o
u.fp list - entrv nurker cf new fsp entry
*¥u.r0 - index to u.fp list (file Adescriptor of new file

Issue D Date 3/17/72 ID IMC.1-1 'Section E.1 Page ©

In

FUNCT

CrLLI

UnNIY IMPLEMENTATION

37 sysentjunkni

ICLE -

unkni or svsent is the system entry from various trans., The
trap tvne is determined and an indirect jump is rade to the
appropriate cystem call handler. If there is a trap insi”e
the system a jump-to penic is made. 2ll user registers are
rsaved and u.cp points to the end of the urers stack, The
cys {(trap) instructer ie Jdecoded tc cet tre system code vnart
(see trap ‘instruction in the PDP-11 handbook) and from thirs
the indirect jumd address ie calculated. If a bhad svstem
call iz rade, i.e., the limits of the jurp table are exceed-
ed, radsys is called, If the c211 is lecitirate contrcl
prasses to the appropriate svstem routine.

NC EECUENCE -

LR vy

through a trap causced bv any sys call outside the svster,

PRCUMELRTE -

INPUT

arqgurents of the marticular system call,

S =
s.eyst+2, r, sp, rt, r2, r3, r4, rs5, ac, my, sC

OUTPUTS ~

Issue

clcckp - contains, $s.svast+2

u.rC — points tc the lccation cof the users r0 cn the stack.
r0 - s¢ saved on the stack .

u.sp - points tec the end of the users stack.,

D Date 3/17/72 ID IMO,4~1 Section F.1 Page 10

UNIY IMPLEVENTATION

ID U133 sysexit

FURCTION -

sysexit terrinates a process., First each file that the nro-

cess has opened is closed bv "fclose2". The process status

is then et tc unuced, The p.poid tadble is then searched to
find children of the dving process. If any cf the children
are zcmbies, (died but not waited for) they are set free.
The p.pid table is then searched to find the dvinc process’s
parent, When the narent is found, it is checked to cee {if
it is free or it 1is a zorhie., If ites one of these, the
dving procees jurt dies, If its waiting for 2 child te die,
it ies notified that it doesn’t have to wait anvrore by set-
ting its status fror 2 to 1 (waiting to active). Tt is then
awakaned and nut cn the rung by putlu o The Aying nrccess
enters a zombie state in which it will never bhe run again
hut stays around until a ‘wait" is cormplsted hy ite narent
process, ITI£ the parent is not fcund, the process just dies,
This reans swap is called with u,uno = ¢, What this does is
that wswap is not called to write out the process and rswap
reads a new process over the one that dies..i.e,, the dving
process is overwritten and decstroyed,

CALLING ESLCUENCE -
veexit or conditional branch

ARCUMENTS -

INPUTS -
u,1no - the nrocess number of the dying vrocess
P.nid - contains the name of the process (See F, vage 10)
p.ppid - contains the name of the parent process.
p.stat — the status of the process.

QUTPUTE -
U, intr - determines handling of interrupts - it is set to O
2ll open files of the process are closel
the process is freed
r3 - containes the dying process’s name or number
r4 - containg ilks parents name
r2 - is used to scan the nrocess tables
children of the dying process are freed
r1 & r5 are used to hold the parente process nurber 2
If the parent of this dving process is waiting, it is set to
active and the dying process is madn a zeorhie an? the narent
is put on the rung. '
u,une is cleared and the process is killed

Issue D Date 3/17/72 ~ID INMOLt~-% - Section H,1 Page 11

UNIY IMPLFMFITATION

Ib U135 sysfork

FUNCTION - -
syvsfork creates a naw process. Thies process is referred to
as the child process. Thaﬁ new droces< core image is = coow
of that cf the caller of "sysfork . The only Aistinction is
the return lccaticn an? the fact that (u.r0) in the ol? pro-
cess (parent) contains the process id (p.pid) of the ney
process (child). This id is used by qy3wa1t . qufork
works in the fcllowing manner:
1) The procees status table (p.stat is searched to firnd a
prccess nurbker that ie unueced, If none sre found an error
CCCuUrs.
2) ¥hen one is found, it bocores the child process numker
and its stetus (p.s at) is set toc active.
2} If the parent ha?l a control tty, the infrrruot cr=racter
in that tty buffer is cleared.
4) The clllﬂ process is put on, the lcowest priocrity run
gueue via Uutlu .
5) 2 new process name is gotten from mpid (Actually its a
unigque number) and is put in the child’s uniqgne icdentifierg
the process id (penid).

6) “he process nare of the parent is then obtained and

place? in the unique identifier cf the parent process of the

?hild (peppid). The parent Dprocess name is then put in
U.rO)o

Z) The child process 1is then written ouvt cn dick hy
vewap , i.e., the pmarent process is copied onto Jdisk ana

the chil? is born.

€) The parent process nurber is then restored to u.uyno.

a) The child vrocess name is out in (u.r0).

10) The pc on the stack sp + 18 is increrented by 2 to

create the r=turn address for the parent preocess,

11) The u.fp list is then searched tc see what files the

parent has opensd, Fcr each file the parent has cpened, the

correspending fsp entry must be updated to indicate that the
child process also has opened the file, 2 branch to svysret

is then made.

CrRLLINC SECUENCF -
from shell?

AFCUMELRTS -

INPUTE -
p.stat - status of a prccess active, dead, unuscd,
u.unoc - nNarent process numher,
U.ttvp = pcinters to narents process contrcl tty huffer.
mpid - process nawme generator
Uefo — list index inte the tsp tatrle.
fep ~ table of open files,

QUTPUTS -
p.stat - hyte for child, process is set to active 1f control
tty for parent exists buffer + 6 iz cleared child nrocess
arher 1o ut on oruno ¢4,

Issue D Date 3/17/72 IP IMOJt=t Section H.% Page 12

UNIY INPLTYWEUTATICN

vepid - appropriete entry in this table contains the rare of
the child nrocece,

Tre child process is written out on “rurm with u.unc heing
the chilic orocess number and (u.rC) containing the warents
pPrecess nane.

U.uno - is restored tc the parents nrcocese number.

(u.rC) - contains the childs vnrocess nare,

sp+1f - cets 2 added to it tc chance the return address cof
the parent.

fep+6 - nunber of processes that have opene? this £file
byte cets increrented in the particular fsp entry.

Issue I Date 3/17/72 XD IMO.$~1 Section H.1 Pace 13

THNIY IMPILTMENTATION

ID U130 sysgtty

FUNCT;OS - "
cysgtty qgets the status of the tty in question. It stcrecs
in the threce words addressed by ite arcurent tre status of
the tygewriter whose file descrintor is in (u.r0).

CLLLINC SEZLULLCE -
sysctty; crc

EECUMINTE -
ara - address of 3 word destination of status

ILPUTS -
r1 - ttv block offrcet
r2 - destinaticn of status data
rcesr+r1 - reader control stetus
tcsr+r1 - rrinter ceontrol status register
tty+4+r1 - flag byte in tty bleck which centains the mofe,

QUTPUTS -
(r2) - centoins the reader control status
(r2)+2 - contains the printer control status
(r2)+4 - contains the mode contrcl status

Issue © Date 3/17/72 ID IMO.4=1 Section Hu1 Page 14

UIIY INPLENENTATION

ID U138 sysmrdate

eysmdate’ is given a file nare. It gets the i-node of this
file into ccre., The uger is checke? to sce if he ie the
guner or the super user, If he is neither =2n error cccure.

cetimodl is then calle? to set the i-ncde meodificaticon hvte
and the wmoZification tire, but the ro?ification tirme ir
overyritten by whatever get put on the stack during a
tire call (see systime).
super ucer.

sye-
Thecge calls are restricted to the

CALLINC ETQUERCE -
syerdate; name

PECUMTNIE -

name - pointer tc 2 file nare

INPUTS -
veui? ~ ucgers id
i.uisd -~

ownere id
sp+4 - tipe sef by super usey -
sp+2 -

QUTPUTS -

i.mtir - new modificztion time of the file
ie.mtir +2 - new mcdification time of the file

Iesue D Date 3/17/72 ID IMO.i-1 Section H.1 Page 15

URIY IMPILETURNTATICON

ID U0 cysmkiir

FUNCTION - " :
sysmkdir creates an empty dircctorv whose name is nointed
to by arg 1. The role of the directory is arg 2. The soe-
cial entries . and .. are not prescnt, TFTrrers are indi-
cated if the directory alreadv exists, or the wurer is not
the super user.)

CALLINCG SZCUENCFE -
syerkdir; name; mole

AEGUIMTITC -
name points to the name of the directorvw
role - mrode cf the Airectory

ILPUTS -
u.,ui? - user id; if its O the user ig the suvper urcer
(ep) = contrins the second arcument mede

OUTPUTE -
rakes an i-nede for the directory via "mrknod”
sete up the flag in the directcry i-node
set user id on executicn
exaocutable
directory

Issve D Date 3/17/72 ID IMO.1=1 - . Section H.1 Pace 16

UNIY I"PIL=MENTATICN

ID Ch6

m

veosen

FUNCTION -
” (1]
svsopen opens a file in the following renner:

1) The sgeceond arcurent in a sysopen calls savs whether to

onen the file to read (0) or write (£0). ’

?) The i-ncde for the particular file is obtained via
1L(‘:L .

2) The file is then copened bv "iopen”.

4) Lext housekeeping is performed on the fsp table and the

users open file list - u.fp,

a) vu.fp 2n? fen are scsnned for the next available clot.

b) 2n entrv for the file is create2 in the fep tadle.

c) The nurber of this entry is put on the u.fp list.

@) 1The file descriptor index tc the u.fp list is nointed
te by u.r0.

CALLINC EFQUENCE -
eye openg name; mode

3 RCUMFNT

LN -

name - file nare or pnath name
mode - 0 - open for reading
1 - open for writing

INPUTS -
r1 - containe an I-number (positive or negitive depeniing
on whether and open fcr read or open for write is
desired, :

QUTPUT -~
entry in fsp table and u.fp list
*u.r0 - index to u.fp list (the file dnascripteor) is put
into r0‘s locaticn on the stack,
r2 - uced z2g a counter throuch the u.fp list.
r2 - used as a pointer to the beoinning cf =n fen entrv,

Issue D Date 23/17/72 ID IMO,%&4 Section Y.1 Prge 17

URIY IMpILEMENTPRTION

ID U136 sysread

TULICTICH -
sysread is given a huffer tc reoad inte and the nurher eof
crarncters to e read., It finde the £file fror the file
descrinter lecated in *u.r0 (r0). This file Adeescrintor ir
returned frem a successful open c21ll, (See sy=open .1,
page 1.) ‘The i-nurter cf the file is chtained via rvi and
the data is rea:d into core via readi .

) ads buffer; nchars, 2PRCUMENTE -
vuffer - 1lccaticn of centigucus bytes where input will he
nchars - number of bvtes or characters tc be read,

IRPUTE -
r1 - containe i-nurber cf file to be read,

ouTPUTS -
*u,r0 contains the number of bytes read,

Issue D Date 3/17/72 ID IMD.4-% Section V.1 Page 1°

e

NIV THDPLEMTIITATICN

ID U132 sycsrele

FUNCT;ON - "
sysrele first calls tewern it the time cuentur for a usor
is =zerc (meec rveret)., It then restores threc users rezi
and tornc cff the syster flag., It then checke? to s
herc is an interrupt from the urer by callirg isintr .
there is the output gets flushed (see isintr) =nd interruot
action is takXen bv a Ytranch to intract, If there is no

interrupt frem the user a rti ie rade,

CELLINC STCUEKCE - " "
fell through a bne in syesret & ?

PECUMENTS -
INPUTE -

stack

(sechrgt+2) 2
OUTPUTE -

sc, mg, ac, r5, r4, r2, r2, ri1, rC restcred,

eveflac - turned off
clcckp - pcints to s.chrgt+2

Issue D Date 3/17/72 ID 1”0'151, Section H.1 Page 19

o

IMIX IMPLEVENTATION

ID U132 sysret

FUNCTICH -

sveret first checks te see if the process is 2hout to he
terrinated (uebhsye)e If it is syeexit is called, Tf not
thie folleowine heppens:

1) The users gtack peinter ie restored,

z) r1=0 and icet ie czlled to see if the last renticned

i-ncde hae keen rodified, If it hag it is written out,

3) If the suner block has been rodified, it is written out

bia ppoke .

4) If the Aisrcuntalkls f£ile syst@m's surer hlcck hars heen

modifigd it is written out to the cne cified Fdevice via
nooKe . .

&) I chec¥ is madle to sec
guant) ran out Jduring h
called to qive ancother user a chance to run,

€) evsret new coes into sverele, (ZSee swvsrele for conclu-
sion,)

h

the ucers tire quantum (u-

’ i
s execution., If so, tewap i=s

I3

i
i

CALLINC EZQUENCE -
jumrn tahle or bhrsvysret

ARCUMENTS -~

INPUTE -
u.bsys - user’s had system flaqg
user’s stack pointer " "
nternally - set to 0 for iget c¢all
t if surer block has been modified
mmed - set if disrountable file systers super kleock has been medified
u.cuant - user’s time guantur

oUTPUTE -
sp - pointe to users stack
srod - cleared if it was set
mined - cleared if it was set
sh0 - write bit is set during execution of svsret
eb1 - write bit is set Aduring execution of sysret

Issue D Date 3/17/72 ID IMO.1~1 Section H.1 Pace 20

TNIY

ID U1;5 cysret 1
il .
PINCTION - see ‘sysret
"
CALLINC SEQUERNCE -
FECITMENTC i
T AP G PRES A S
'Py‘Y\Ur‘rr_w "
RINAY off VS ST o
”

QUTPUTS -~

H
n
0

£
?
J

Date 3/17/72

INPLOMEMNTATION

ID IMO.t-1 -

Se

NIy IWPLPMENTRTICN

IN U137 =sveret 2

TUNCTIOCH - csee ‘sveret’ routine
CALLINC STEQUENCT - "
ARCUMENTS - "
INPUTIS - "

"

CUTPUTE -

Issue D Date 3/17/72 ID IMOs4=% = Section F.1 Page 22

NIy IMPLEMFNTATION

ID U1;9 sysstty

TUNCTION -
"

sysstty" cets the status 2nd mode of the tvnewriter whose
file Adescriptor is in (u.rN)., Firect "qttv" i called to gert
ghe tty block and the esource or the status informetion.
getc is called until trc input clist is flushed., The ocut-
put character 1list 1ies checked, If scre characters ~re on

it, the process is put to sleep and the input 1list

ie

checked again., If there are no characters, the information
in the source is put intc the reader control status, printer

control status registers and the tty’s flag byte in the

block,

CALLINT EWCUENCE -
syesttyvy arg.

ARGUMENTS -~
arge. — address cf three consecutive words that contain
source of the status data.

INPUTS -
r1 - offset to tty block.

r2 - noints to the source of the statue information.
arg. above,
ri+tty+3 - contains the cc offset,

r3 - used to transfer the source information to the

status registers an? block,

QUTZUTS -
ps = sect tc 5
reer+r1 — contains new reader control status
tesr+r1 - contains new printer centrol etatus

tty+4+r1 -~ contains new mode in the flag bvte of tha

block.

tty

the

™
D
)

ttv

tty

Issus D Date 3/17/72 . ID IMO.1~% ~ Section H.1 Page 23

UNIX THMPLEMENTATION

ID Ut;4 syswelt

FUNCTION - :
syswait waits for a process to die., Tt works in the follow-
ing wav:
1) from the parrnt process nurbnr, Y2 parents process name
is found. The p.p:id table of psrent nares ic then searched
for this nprcces name. If a match occurs r2 contains the

childs prccecs nuw«or. The child’s status ic checked to see
if its a zombie, l.e., fead but not writed for, (pest=t=3).
If it ie, the child process is freed and its name is put in
(uex0). ’ return ic then maie via eysret . If the child
is not a zeorkie, nottring hapnens and thre gearch geoes on
throuch the ».ppid tekle until all processes are checked or

a zcrhie is found.

2) If no zormhies are found, a check ies made to cee if there
are anv children at all. If there zre none an error return
is madc,. If there are, the ©perents status is set to 2
(vaiting for child to die), the parent is swa) :ed out and a
branch tc syswait is made to wait on the next »nrocesg.

CALLINC SFCUENCE -~
?

ARCUMNENTSE -

INPUTE -
u.uno - parent process number (process number of process in

corc) p.pid - table of names of processes p.ppid - tadble of
parcnts nanmes of processes. Dbe.stat - contains status of
process ' ‘ :

0 - free or unused

1 - active

2 - weiting for procees to die

3 - zomrbhie

CUTPUTS -
r2 - uced as index to n.pid, ».pnid, r.stat takles
r3 - used tc kerp track of the number of children
r1 - has varents process nurber
If zorkie fcund - ite status p.stat is freed (set to c)
— its name is put in (u.rQ)
If no zombies found -~ status of parent is set to 2
(waiting for child te die)
- parent 1is swapped out

Issue D Date .3/17/72 ID IMOst~1 Section H.1 Page 24

MITX INPLEMINTATION

I'UKCTION -
syswurite is given 2 huffer to write, onte an cutput file and
the number of charzcters to wirite., It finds the file fror
the file Adescriptor locrted in *u.r0 (r0). Thie file
descrivtor is returned fror a2 succrossful onen or creat call
(see sysopen or syscreat). The i-number of tre file is
cbtainad via rwi and the buffer ies written con the ouknut

. L] . "

file via writei .
CALLINC ESFECUENCE -

syswrite; buffer; nchar

LECUMENTE -~
buZffer - lccztion of contiguous bytes to be written
nchara - nurber of characters to he written

INPUTE -~ r1 - contains thre i-number of the file to be writ-
ten on

CUTPUIE - ' ,

¥u.r0 = contains the nuirber of bytes written
\

Isrue D Date 3/17/72 ID I¥O4-4 Section F,1 DPase 25

Uiy IVPLTHMEIITATION

ID U2-9 anvi

TULCTION -
:anyi: is called if a file has Dheen deloted while open,
anvi checks to sec if soreone elesc hre opene” thise file,
It secarches the £gp teble for an i-nurber contained in 11,
Z that i-number is foun? (if commonr else opened the file)
the file “eleted flag in the urper hyte of the 4th word of
the fso entry is increwented (see T, pace 8). In cther
werds the feleted flag is paseed onto tre cother entrv of
this file in the fap tabhle, llote: The same file mrv 27pear
mere than once in the fan tahle.
If +the i-nurber is not fourd in thre fep takle (ne one else
has orvenad the file) the correspeonding hit in the i-nede rmao
ie cleared freeing trnt i-nede and all blocks related to
that i-ncde.

CALLINC SECURNCE -
jer r0, anvi

IXrUTE -
r1 - contrine an i-nurber
fep - ctart of table containing open files
r2 - pointes to the i-nurber in an feo entrv

oUTP U:i" S - "
Celete? flag set in fsp entry of another occurence of thie
file and r2 points to 1st werd of this fep entry. 4

if file not found - bhit in i-node man is clerred
(i-ncde is freed)
- all blecks related to i-ncde are freed
- all flacs in i-node 2re cleared

Issue D Date 3/17/72 ID IMO.%-1 Section H.2 Page 1

UNIX INPLEMENTATION

in U2-6 arg
FUNCTION -
ers extracts an arcument for a routire whose coll is of

P
ioxr

sve ‘routine’; aroit

or
sye ‘routine’; orgit; arc2
or

sys ‘routine’; arclj...; arg10 (svsexec)

CRLLILG CLCUERIC®E -
jsr r0, rg; ‘address

x)

BRCUMIZNTE -

‘Aldress’ - address in which extracted arcurent is stored

ILPUTE -

Veen+1Z ~ Contains a peointer to cne of 2rg1,e.., 2rgn. This
ncinter’s wvalu~ is actually the value of the uowntod ne at
the timwe the trap to svsent (unknl) ie made tc process the
sve instruction,

rQ0 - Contains the reoturn =23drecs for tre routine that called

args The data in the werd pointer to by tre return 2949ress
is urged a2s the address in which the extracted arcurent is
stored,

OUTPUTSE -~
addresse’ - Contains the extracted argurent
V,es0+18 -~ is increrented hv 2.
r1 - Containe the euxtracted arcument
r0 - Foints to the next instruction tc he executed in the calling
routine,

c‘]\ L.LJQ -

evsmdate, cttv, sveounlink, sysfstat,
ysbreak, seektell, sysintr, svsouit,

(9]
o
4
[

H

-

]

ty U
9]
N

-

U)
N
ne

Issue ™ Date 3/17/72 ID IMO -t | Section .2 Pace 2

UCUTY IPTLTMTITATION

In U2=7 arg?2

TIMCTICY ~
Takes first arg. in sveterm call (pcinter to neme of file)
an? puts it in lecaticn u.nermep; takes soceond arg and pute
it in v.cif #nd on tcp of the stack,

CLLLINC SECUEICE -
jer rC, arg?2

ATCGUHMENTE -

IXPUTES -
Qesp, r0

QUTPUTE -
u.narep

u,off
u.off pushe? on stack
r1

Issue D Date 3/17/72 ,ID;IMQw@vgfl , Section H.,2 Page 3

UHIY INPLIIVUNTATICH

FJICTION - Seoe 'érrcr' routine
CALLINC SECUNNCE - "
APCUMINTS - | "
INPUTS - "

"

Irssue D Date 3/17/72 ID IMO.1-1 Section H.2 Page 4

UIITY IMPLEMELTATION

In 152-1 arror 4

TUNCTION - See "error’ routine
CALLING STOUFKCE - "
ANCUNTNTS - "
IIFUTE "

”n

Issue D Date 3/17/72 ID IMOst1=1-

Cection ¥.,2

Tace §

UiTIY IVPLTMTNTATION

I 112-1
2 orror 9

TUNCTION - S ’ (o) ro e
T Seoee 3
2 error’ routin

n -
C/"Z\IJIJT‘ « ’?"“0’77"“”"7 -
~ "

wedah 2
B RAEFRE

IUCUYTINTD -~
"
IMPUTE -
"
[

cUTPUTS

Tgesue D D
: ate 2/47/7
: . Seoction ¥,2 T
| ¥ . PAace €

L Bl ar
. .,-'I."L

TIPLTUTNTATION

In u2-2 fclocse

IUHCTICH - , ,
Civen the file descriptor (infex to the u.fn lict)" “felone
first gets the i-number oI the file via getf . Tf the
i-ncde iﬁ act1vp (i-nurbar £) the entrv in the nu,fn list
is clear Tf ‘21l the nprecessces that opennd thet file
cler2 it, then the fsp entry 1ic freed and tre file i=
closed. ' If not, a return is taken, If the file hars heen
delcted while open (sce "deleted flag" F, page E) anl is
called to see if anyene else has it cpen, i.e. 869"1f it
arpears in ancther entry in the fsp teble {sre . anvi for
details K.2 page OC). Upon return from anvi a check is
rade to see if the file is svecial.

CALLINCG SECUTNCE
jsr r0, fclese

ARCGUMINTS

INPUTS -
r1 - contains the file descrintor (value = 0, 1, Zeeee?)
Uefn - liest of entries in the fen table
fen - table cf entries (4 word ds/entry) of open files,
(see ¥, vage &)
CUTPUTE -
r1 - contains the sarme file Adescrintor it entered with
if 21l processes that open £ile close it, the fs» entrv
is freed and the file is closed. " .
if znyi ie called the gutouts in "anyi occur (.2, naze 0)
the number of nrocebnpe hyvte in the fsn entry 1s decremented
(sce F, page €)
r2 - contains i-number.
Issue D Date 3/17/72 ID IMOstet Section .2 Pace 7

TNIY IMPLEMPNTITION

---- LA

ID U2-4 qgetf

JUNCTION -
go*f first checkzs tc see that the user has neot exceeded
the maximar nurker of ovnen files (10.) If he has an error
OCCUrs.,’ IZ not, the index into the fen table ic celculated
fror the u.fp list: vuv.fof» contains the addiress of the 3r?
word in that fs» entrv. (The file offcet. See F, pace 8)
cldev and r1 contain the device and i-nurber cf the filo.

CALLINC SEQULENCE -
jsr r0, getf

INPUTS -
r1 - contains index inte v.fp list

CUTPUTS -~
u.fofip - contains address of 3rd word in that 'sp entry.
cdev - conteing files device numher
r1 - contains fileg i-number.

Izssue D Date 3/17/72 D IMC5141 Section H¥.2 Page R

UNIY TYPLTMTENTATION

e

Iin uU2-=3 isdir

I‘UL?CT oLl -

"isdir" checks to see if tha i-node wheso i-nurlker 5”,’ﬂ r1,
is =a directorv. If it is, an errcr cccurs, hecevse 1ﬂﬂir
ic called by svelink and sysunlink te make cure Airecteorinsn
zre not linked, I the urer ie the rfuner user (ueni® =),

isiir deoes nct bother chrecking, The current i-nede is not
disturbed,

CALLINIC CECULNCE -~
jsr r0, isdir

""L’ITC -—
r1 - containeg the i-numdber whress i-nede iec beins checked,
u.,uid - ucer id
ii - current i-node number
isflgs = flac in i-node (this ie tested to se: if the i-ncde
is a directory i-ncde)

CUTPUTS -

ri - contains current i-nurbher upon exit
currant i-node hack in core

Issue D Date 3/17/72 ID IMOpt=t Section F.2 Page o

T TUDLEMTNTATION

TUNCTIOCY -
"iscun” is given a file name, It finds the i-nurler of thox
file wvia narei then gets the i-node into core vie 1qnt .
It then tects to see if the user is the suner user. If nct,
it cheocks to see il the user is the owner of the fllP. I

he is not, an error cccurs., If user is the owner "setired’
is called to indicate the i-ncde has keen mo?ified and thre
2nd argument of the call is put in r2.

CALLINCG SILCUENCF -
jur rC, isown

ARCUNENTS
INPUTS -
argquments of syschrod or syschown ca2lls

CUTPUTS -
umid - i@ of user
imol - s2t to a 1
r2 - contains second arcument of the esveter call

Issvue D Date 3/17/72 ID IMDsts=

Section ¥.2 Pace 10

I u2

=

runceT

CALLI

ARCUMTITTA

NPUTS

UNIY THMPLPMWNTAMTION

~7 makncd

10N -

maknol creates an i-node and makes a directerry entrvy fo
thie i-ncde in the current directorv. It gete the mcle of
the i-node in r1 the name is ured in mkair for the directory
entry (see pakdir ¥.2)e The i-node iz made in the follawing
ranner., First the allccate flag is set in the wede, B ecan
of i-nodes above 0 bexgins, The i-nole rap is checke? to sen
if that i-note is active. I it iz the next i-nods in the
bit map 1is checked until a free one is found. 1If one is
foun? a check is made to see if it ir olready 2llocated., If
it is, the search continues, If not the i-number is ot in
un.dir bit and a directory entry is made viz mkdir. Then the
new i-node is featched into cor=2 and its parameters are set
(sce outvuts).

NG SEQUENCE -~
jsr r0, mknod

PRI

aQ

ri1 - contains mole ii - current i-number - should he at the
curreant directory mg, r2 - hit position & hyte address in
i-nole map

CUTPUTE -

Iscue:

u.2irbut - "OntPan i-number of free i-node
i.flgs - clag in new i-node

1.1 = £illed with uaid

i,nlks - 1 is put in the number of lin1
i.ctim - creation time

i.ctim+2 = modification time

imel - set via call to setiwoAd

\

D Date 3/17/72 Section Hi2 Page 11

UNIY IMPLTUROTMTION

ID U2-2 mkdir

m<dir makes a directory entry from the nam2 tointed to
u.unames inte the current directorx. It firct clears
lecations u,dirbui+2 - u.dirbhuf+10, mizdir thrn moves
character at a tire into u.dirbuf+2 - v, irtaf+10, chechins
each tine te sec if tre charccter is a /. If it is
error occurs, Lecause / shrould nct anpear in 2 2

Name »

7 pointer to an emnty Jdirectory slot
The current directory i-node is »roucht
entry is written into the directcry.

irte ccre

AFCUIENTE -

I7pPUTE -
r2, u.namen - points to a £ile name that is about to
bacome a2 directorv entry.
~ points to u.dirbuf lecetions,
- current directorv’s i-nurbter.

r2

ii

ouTruUTS -

u.,dirbuf+2 -~ u.,dirbuf+10 - contains file name

u,0ff - points to entrv to be f£illed in the current directory

U.base = pointes tc start of u.dirbuf
r1 - centaine i-number of current directory
See wiir fecr others.

Issue © Date 3/17/72 ID IMOJt-1 Cection V.2

Airecctory

is then puvt in n»,0ff,

-
anc

Pace

tre

CEIN IMDILTUITATION

namei takes o file path name (address of shring in
W.namep) and sezrches the current directorv or the rect
dircctorv (if tre 3 harscter in the strinc pointsd to
) s a 1 returre the i-nurher for the file

LY Uenamen i ‘
in r1. namrei opera in the following ranner:

E'h H

l{

cr o
3 (.)4

2 file may be referenced in cne of twe waves; cither relative
to the users directeory or relative to the roctdir dAircctorvg
in the seccon? care the file path nare rust wegin wit» the
char /. %“henever a / is enccuntered in 2 nazth nare it indi-
cates that the characters preceeding it represent the nath
name of a Jdirectery, and the file name following the / is
stored in that directeorvy.

LCirecteries contain 10 byte entries, the first 2 hvtes con-
tain an i-nurker, +the last € bytes a £ile rnre zssocintr”?
with the i-nurber.

namei sczns the file path narme until it reaches & /" or a
nul it reads the current directorvy until it finds a file name
which rmatches the scanned portion of the file nath nare.
Yhen a match iz found, tre i-number ies taken fror the
matched directory entrv. If namei has scarned to 2 nul thren
the i-nurkor is that for the file specified by the file nath

- - L " L] (]
name. If nenei scanned to a / then the i-nurter ic that
cf thec next directcry in the path, narel scene the file

N - e
path name until it reaches 2 / or 2 nul, etc, If no file
is found return to ncfile; otherwise normal,

CALLINC SLCUZNCT - -
jer r0, namei; nofile; normal:

ARCUMEITS -

INPUTS -
u.namep (points tec = file path name)
wecdir (i-nurber of uscre firsctory)
v.clov (Gevice number on which uecer directory resides)
r1 - conteine the i-nurber of the current direcctory (u.edir)

QUTZUTE -

r1 (i-nurmbher of file referenced by file path rare)

clev ‘

r2, r2, r4 (internal)

u.irb - noints teo the directory entry where a match cccours
in the search fcr the file path name,
If no rmatch u.,dirb points to the en? of the
Airectory and

r1 = i-nurber of the current directery

Izsue D Date 3/17/72 ID IMO.1 Section H,2 DPace {2

UMY TMDPLTMENTATICH

TUNCTICN
Sﬁc'toll nuts tre arcurents fror a syscesk and svetell c=21)
in u.base and u.count. It then geote the i-nurber cof the

file from the file descrintor in *u,r0 an? bv calliny cetf .
The i-necde is brought inte corsz 2nd +hen u.count is checke?
to sce if it is 2 0, 1 or 2.
If it is 0 - u.count stays the rame

‘ 1 = u.ccunt = offset (u.foip)
2 - u.count i.cize size of file

CALLINC STCURICE -
jer rC, ceektell

pl‘CIe&A \ [oad

IITUTE -
Nehase — nuts offset from sysreck or systell call
u.count - nut pfrnere from "veconk or °v”t¢]l call
*fu,r0 - containe file descriptor (index to uv.fp list)
i.8ize = gize of file in byter
*¥y,Z0fp - peinte to 3rd word of fsp entry
CUTPUTE -
an i-node in cors via "iget”
ri - i-nurher of file in questicn
u.count - see function above

Iccus D Date 3/17/72 ID TMO,1-1 Secticon H.2 Prge 14

NIy IVDLTMENTATION

b -~
csycbhreal

‘E‘IJ::CT};CZ‘I - -
syverreall gsts the prograrws
curreat breaX peint (usbreak) to see
zn? the stack (en). If it is, it
(if it wac odd) and the arca hetween
is cleared. The new breakpoint is
contrel is nncsed to syrsret .
CALLING SRQUFICE -
syekreaX; addr
ARCUNTITE -
addr - address of the new bhreak point
TPUTS -
u.break - the current break point

QUTPUTS
vebroals = containg new hrea
srca hetreen old ul.bhreak

" ” .

Y-

¥ peint
nd stack i
” 1]

k2
<l

Toturoen core an’” the stack sp .
\

Ircve O Dote 3/17/72 ID IMO, 11

hreat seint.

It chocgs t%g
hetorn Core
even Areac

the stack

u.brea ar?d

it ire

3
=~
™ ‘e

iF
is an

Ve threrl: and
then put in

-
o

g clonred i€ nhrezk

o
b

Saction H.,2 Page 15

T TETTOMENTATION

.
I -5 gvechdir

TUNCTION
syroctir malkes the dircctory srecified in its argurmant the
curr-nt worlzing directory,

AT T T~ AT
CrLLINC 53 \FJL'.J.,\CJ. —-—

syschdiry nome

ANCTUHENTE -
nrame - address of the path name of a directory terminated b
a nul byte.

-

TITNTIT O
ES X SN

i.£1g8 - i-ncde flag
r{ - containg i-numher
cdeov - contains device numbher of i-nofe

QUTPUTE -
- conteins i-nmurher
U.clir - i-numker of users current directery (same as r1)
v.cdev - device nurber of current Jdirectorv

Terue D Date 23/17/72 ID IMOJt=Y Section K.2 Pace 16

17

T~
-

D

U

UrIyY INMPLEMmRTATION
L2-2 syzerec
MCTIOHN -
csysaied initiatcs execution of a file whose path nare if
pcinted to by ame in tre cvsoxec call., svserac performs
the followiny oper ra iono.
By : . . . "
1. oktaine i-nurker of £ile to be executed via narei
- 3 . . " (1}
2. obtaine i-nocde of file to be executed via icet
3. sets tran vectors to system routines,
4, loads argurents to be passed to evecuting file inte
highest locaticne of uvesr’c core,
5. puts pointers to arguments in locaticons immedistely fol-
lo 1ﬂq argurents,
£. cave numbaor cf arguments in next locatien,
7. initializes ucer’s stack area so that 2ll registers will
e zerced a2n’ the P8 clesared and the PC set te core whren
svweret reosteres reglsters and deose an rti,.
f. initializes u.ro and u.zvs.
8, zecres nmser’s core down to u.ro.
10+ reads in executable files from storage device into core
starting et locatien "core”.
11, s2ts u.break te noint to end of user’s code with Aaxn
area appended,
(1] " . A "
12, calls sveret which returns contrecl ot locaticen core
via rti instructicn.
centinued on pacge 17
sue D Date 3/17/72 ID IMO.t~t Section ¥,2 Pace 17

UNTN IUPLENTETATION

The laveut ¢f core whon svsereo calls sveret is:

———————————— -——| core

e m e e} (UL break

zercs .

——

[
o~
0
'g
~

—————————————— (u.sp)

ZeT0s .

——————— e (vex0) ¢ (u.sn) + 18

0

]

- ——
n

! argp1
[]
[]
*

o]
La)
[Le]
g
=

i
i
|
|
i
|
]
1
I
{
|
1
i
i
v
H
Y}
o]
-

<oco\9> .

SR — % 2oge]0

T) ' .

- --| ecore

l~u
']
o]

Terue T Dato 3/17/72 IP IMCet-4 . ~ CFection V.2

TUTY TUPITMIOTANIICN

CrALLINC CEQUTICE -

P

sYS oMEeC; narep; 2rop

\v~'p—~\,r-.(,

o A

VINTE -
nrren (Doints te fila path name of file te he executed
run (addrees of trkle of argurent pointers)
rctl,ees, argon (Eable of arcument pointers)
argot: <...C>, arggZ: CoevslDy eoey, arapn: <eeofd> (arsument
stringe) :

INPUTS -

narep

= yrerin
2 ARV

QUTPUTS -

D Date 2/47/72 ID IMO Y

Section H.2 Pace 19

UNIY, IMPLTVENTATION

IN U2-4 syeistat

--.,.Twcr—-,-pw -

” ”
°yg~ubat iz identical to svestat ercent thot it onerates

i
cn onen files instcad of files civen by name, Tt pute the
huffer address on the stack, cets the i-number and checliz to
cec if the file is.open for reading or writing., If the file
is open for writing (i-nurhcr is negitive) the i-number is
set positive and a bhranch into sysstat ic rade,

ARCUMENT -

vuff = buffesar address

INPUTS -

(u.xr0) file descriptor

QUTPUTS -

buffer 1is leoaded with £ile information, Ser UNIV DPro-
grarmers !anual under sysstat (IT) for formst of the huffer,

Issue D Date 3/17/72 »1&’1H9@&f&; .~ Section ¥,2 Page 20

UMIY IMDLEMTITATIOCN

U2-2 gvegetuid

TITCTION -~
.

'sysgetuid" returns the real user ID of the current nrececs,
The real user ID identifies the person who is le~ge” in, in
contradictinction to the effective user IND, which deterrines
his accegs nermission at each rormgnt. Tt is thus usefvl oo
prograre which overate using the set user ID mode, tn fin?
out who inveked thenm,

CALLILIG CEQUINCE -~

sysgetulsd

ARRGUNMTITS -

INPUTS -

Veruid - real users id

OUTPUTS -

(uer0) -~ centaine the real users 14,

Issue D Date 3/17/72 ID IMOsA=t. Section ".2 Page 21

THD

I IMPLEMTNTATION

cysintr

FUNCTION —

cysiankty sets the interrupt handling velue, It o»ute the
aroumont of dite cfll din n.intr, svcintr then hranches
into Yha "SVSqUit" routine, m.ttv is checka? to ere 15 A
control tty exists., If onc does the interrunt character in

e thty bhuffsr is cleared and sysret is
not oxist sysret is just called,

RLLINC SECUENCE -
sysintr; arg

called, If one doas

control

IBPCmERT -
arg — if 0, interrupts (ASCIT DHWLETRT) are ignored.
- if 1, interrupts cause their normal result,
i.ns, force an exit,
- if arc is a location within the procram,
is nassed te that location when an interrupt
OCCUrs.
INFUTE -
u.tty - pointer tc contrel tty buffer.

Ueintr hacs value of arg.
(r1)+5 (interrupt char in tty buffer) is
coantrol tty exists,

Issue D Date 1D IM

3/17/72

cleared if

)

Seection H,2 Pace 22

IVDLTNENTATION

IN U2-1 syolink
TUHCTICI ~
evyelinls is ~iwven Tro arcuments, nawxe 1 and name 2, name 1
iz a file that already exiscts, nerme 2 ie the name given to
the eontry tlet will ge in the current diroctory name 2
+i1l then be a lin¥ to the name 1 file., The i-nurber in the
name 2 entry of the current directory is the same i-nurber
for the nare 1 file. 2t the end of a syslink call the fol-
lowing structure is constructed,
i-node nam~ 1
——————— e for file
current nare 1
directory ——— file
i
|
nare 2 entry
1]
R ! — J——
]]
S — ———]
! some other |
! directory |
1
- !
! name 1 !
1 !
== - i
CALLIIC STCUENCT -
cvelink; namel; name2
LCU”’U?’I‘S -
nare 1 = Zile name to which link will he created.
name 2 - nane of entry in current directervy thet 1links to
name 1.
/
II’pUTE -
U.nameR - points to the arguments above.
)
QUIPUTS - ’
entyy in the current dircctory with name, nare 2.
r1 - contains i-nunber of neme 1 on exit and i-numker of
current direcctory interrmittently during subr.
1.nl“h - incremented by 1 to indicate another link added,
irod - set by call tec setimod.
Issue T Date 3/17/72 ID INO,t=% Section M,2 Pace 23

D samT e
“ N e Nre
sye~uit turns off the guit signale Tt puts the arcurment of
tho call in uequit. ul.tt is chacke? to see 1f 2 control
tiy existes, If cone does, the interrunt chnracter in the tty
Ltuffcr is cleared anl) sveret is cnlleds If cone doec not
cxist, cvsret is juct calle?,
CALLINC SLCULNCE -
sysquity arg
AVCUVENT -~
arc — if ¢ this call dicables quit sicnels from the tyrewriter
(rec11 Fe).
- if 1, cuite zre re-enabhled and coucse executicn tc cease
and a core irage to be produced,
- if an 28ress in the prograrm, 2 quit causes contrel tc
e cent te that locecticen.
INPUTS -
u.ttv - pointer tc centrol tty bhuffer,

T IMPITVRITTATICN

sycouit

s Tac valve of 2ry
(r1)+¢ - (interrunt chor in tty buffer) ie cleared if
trol ttv exists,.

Iccsue T

Date 2/17/72 ID INOA-1 Section .2

2 con—-
Page 24

TUUICTION -

CrLLINC SUQUZN
“CU»iﬂTS‘—
InUTeE -
CUTDUTS -

Izsue D Tate

k)

—

2/17/72

T

"
svoret

”

"

TOPLENRIT R TION

routine

TMOut=t o

Section H.2

Page 2§

UNIY IVPLIMENTATICH

In U2-1 czyeret 4

” " +

TUTCTICH - Cec cveret routine

- - - .- Rand "
CALLIVC emQUDICT -
s . ~ "

. - e n
ALCUNDITTD - .
- ”
IUFUTE -
"

cUTrUTeE -

Issue D Date 3/17/72 ID IMOst=4 Sectiocn H.2 Pace 26

TiN T}’z_

TURCTICH

1

CLLLIIC

[T ad & SR% nih stk ol
FEDRCER O O RN

syoret @

[okalabhenliralnl
A0, W e

—

Drte

2/17/72

Sec "sysrat" routine
_ "
oom
”
"

ID INOst~1

IMPLEMINMTATION

Section H.2 Page 27

7Ty INDPILONTMTATION

ID U2-C sysseok
FUNCTION -
sycsenk chances the r/w wointer (3rd werd in »n fop ontry)
of an oren £ilc whece file descriptor is in u.r0.
The file deocripter refers to a file open for reading or
writinoe., %he read (or write) pointer for the fila is set as
fellows:
if ptrnere is €, the pointer is set to offset.
if »otrname ies 1, the pointer is set tc its current loca-
tion plus ffsrt.
if »trname is 2, the nointer is set tc the size of the
£ile plus cffcset
The error bit (e-hit) is set for an u~defined file

dagcriptor.

CALLINIC CEQU -
sycoeeky offsot; ptrnare
PRCUNTNTS -
of‘ﬁot - number of bytes desired to meve
ptranamre - a switch indicated above
IIPUTS -
u.hasze
u.ccunt (Sec seextell)

CUTPUTE -~

the r/w pointer

v.fofp - peints
The r/+w pointerx

-

n <.

T-sue D Date

3/17/72

to the r/w pocinter in the fsp entrv,
is changed zccording to offeet and ntrnare.

Section Y,2 Pace 29

TIOLTMTRTATION

UNTIY

I UJ2-1 svestat
e171;~cr:-ﬂr\‘v -
ryn:tat" sets the strotur of 2 file,
neme of the Zile 2nd a buifer address,
brtes leng and inforrztion about the
cveetrt calls narei to cet the i-rumh
" - L] . o
i-ct ir c2lled to get tre i-ncde in
theén loaded and the results are civen
grzmrers Manual svestat (IT)
CrLLIIC CEQUERCT -
syectoty nare; buf
?,ﬁ(“r’ fw\-rr‘s - .
nars - ncints teo the name of the file
f - address of a 24, hyte huffer
IPUTE -
s = containe the address of the buffer
r1 - i-nurkcr of file
OUTFUTE -

bYbuffer is loaded with file information.

3/17/12

THe ~rouments are thoe
The Wuffrr ic 24,
filzs is ploes? in it,

Then

er of the file.

corc. The huffer ir
in the MIY Pro-

Section H.,2 Page 29

UNIY IVPLEMEITATION

"evesetuin” sete the user i u. uwd of the current nrocasa o
the process i3 (u.r0). Toth the effactive ucer an? veui?
an? the rezl user u.ruid are set to this, Cnl the curer
uze on? raXe thig call,

CALLIIC SECUDNCE -
sysocetuid

MOCUHITTTS -

I8PUTE -
(uerC) - co
u,ruid - re

s

1,01 = eff

"
e
<
0
9]
o
2]
5
D
o]
=t
C.
”)
(2]
l—lo
o7}

OUTPUTE -
- sst qual to the process id (u.r0)

.
Wy v :
Ve XNIL
- .

u.uid = esot lhl to the process id (u.re)

Tssue D Date 23/17/72 ID N0 iwt Section H.? Trae 30

this

usaoe

ucer can

A 3
cvnoer

TION

tre

i

7*1"‘\ A

10

Onlsyr

Sadli

THDTY T

-~

-

T
tine

9!

12

RN
-

ccte

-

P

.Co

L0

b
P

4

e

2L Ea
e w2

\

T

B]

crey,

1

T
%

'C

T
a.d

[o

el
&

Cection Y,2

In. Ifﬁo;i ‘

3/17/72

Date

sue D

Te
N3

o CeTy P Tt rean I M T AT
UITT T AT O

T UU3-7 eorotire

TULCTION -
v

K. s oy e 1. ey
ovretime Cots pele! ol R satol
-) $e A
out cn thoe otack,.
T RTINS .
CARLLIIC L_-,..f,.‘_«.,x CT -

:
svstine

LR Tk RitAnE R
ADGUUENTS

TUpUTS

. ' .
setire, cetire+l ent

+
|
(9
La]
Pl
%]

ouT»UTe

sp+2, sp+4 - present tire

Issve B Date 3/17/72 IN INOL

h

l.h
D

Cection ¥,

Page 22

™

T2-1

ey —
TurcTIor

TITY

sreunlink

NPT mITITTr

TICN

" N 2 - b
"ﬂysuvliﬂk rerever the ontry for the file pointed to >
nare from its dirccterve TL this entry trac the last link to
the file, the contentr of the file are freed and® tha file ir
destrcyod. IZ, Thowever, the file wes cpen in any nrocess,
the octual destruction is Aelaved until it is closed, even
trough the directory entrv has disadpeared.
The error bit (e=-hit) is set to indicate trat the file Adces
no- exist cr that its directory cannct he written. Vrits
permisaion is not reaquired on the £ile its~lf. It is aleo
illegzl to unlink 2 directorv (except for the super-uvser).
CALLING CTIQURNCE -
gsyclink; nenme
ARCUMEITTE -
name - nare of directory centry te he reroved
IVFUZIS -
ue.namen - voints to newe
r{ - i-numbcr acsccciated with nare
cUTPUTS -
ienlks = number of linke to file gets decremented
u.cff - gets moved vackt 1 directory entry
imod - gets se: by call tc setimod
if name was lacst link contents of file freed and file Jes-
troyed "
entrvy nerme in Jdirectory is free (its firct word that usu-
clly ccntaine an i numher is zeroed,
Iseuc D Dat~ 3/17/72 ID IMOAwt Section ¥.,2 Pace 23

ID U2-2 wiir

TULCTICH -

™Il

IMDLT UM ATION

Airectory

wiir - write @ directorv eontry into the current
whose i-nurmher is in ii.

CEALLINC CZECULICE -
jer rC, wdir - in syslinX
fellows mikdir dirsctly

ERCUMPITE -

z.\.l’ U‘_P -
We:lirhuf - z23Adress of vhere name of “directory is kept

ii - c”nbfi.ﬂ

QUTDUYS -

an eantry in the current directorvy
points to ’

UN2SH -
uva,\’nt - = 10
ri - contains

N Date 3/17/72

v, 2irhu’

I IM0L~t

the current AdAireccteries i-nurmher

the current Jdire ctorv ¢ i-numher

Section V.2

=

UNIX IMPLEMENTATION

ID U3-3 cClear

FUNCT;ON -
clear zero’s out a block (whose block number is in r1) on

the current device (cdev). ' clear does this in the follow-
ing manners

1) w slot’ is called, which obtains a free I/0 buffer (See
‘poke’ H.8, page 5) via ‘bufaloc’.

Bits 9 and 15 of the 1st word of the I/0 queue entry are set
to set up the buffer for writing.

2) The buffer is zeroed and written out on the current dev-~
ice for the block (indicated by rt1) via ‘dskwr’.

" CALLING SEQUENCE =
jsr r0, clear

ARGUMENTS «

INPUTS -
r1 - contains block number of block to be zeroed
cdev - current device number

r5 - points to data area of a free I/O buffer
See inputs for bufaloc, wslot, daskwr

OUTPUTS -
a zeroed I/0 buffer onto the current device
r5 - points to last entry in the I/0 buffer

r3 - has 0 in it. It counts from 256-0., It is used as
a word counter in the block.

Issue D Date 3/17/72 ID IMO.1=1 Section H.3 Page 1

UNIX IMPLEMENTATION

ID U3-3 copyz

FUNCTICN =
clears core from argi to arg2.

CALLING SEQUENCE -
jsr r0, copyz; argt; arg2

ARGUMENTS -

arg! - address of lowest location in core to be cleared.,
arg2 - address of highest location in core to be cleared.
argt < arg2

INPUTS =

r0 - return address for the routine calling copyz. It |{is
used to access argi, then arg2 and, finally, set to the
actual return address of the calling routine.

OUTPUTS -

r0 - points to the next instruction to be executed 1in the
calling routine,

Issue D Date 3/17/72 ID IMO.1-1 Section H.3 Page 2

UNIX IMPLEMENTATION

ID U3-3 idle

FUNCTION -

idle saves the present processor status word on the stack
then clears the processor status word.
clockp is saved on the stack. It points to one of the clock
cells in the super block. clockp is then made to point to
another set of clock cells specified as an argument in 1its
call.
When an interrupt occurs clockp and the prccessor status
word are popped off the stack thus being reset to their
values before the call took place,

CALLING SEQUENCE -
jsr r0, idle

ARGUMENTS =
s.wait + 2

INPUTS =
ps = process status
clockp « clock pointer

OUTPUTS -

ps - restored to original value
clockp restored to original value

Issue D Date 3/17/72 ID IMO.1-1 Section H.3 Page 3

UNIX IMPLEMENTATION

ID U3-3 putlu

FUNCTION -

putlu is called with a process number in r1 and a pointer
to the lowest priority Q (rung+4) in r2. A link 18 created
from the last process on the queue to the process in r1 by
putting the process number in rt1 into the last process’s
link. (The last process’s number slot in p.link.) The pro-
cess number in r1 is then put in the last process pgsition
on the queue. If the last progess on the queue was L and
the process number in r1 was n then upon return from putlu
the following would have occured:

{ n ”“—l rung+4 % n ‘l p.link + L-1
|previoualy neld "L° B '1 byte in length
ARGUMENTS -
INPUTS -

r1 - user process number
r2 - points to lowest priority queue

OUTPUTS -

r3 - process number of last process on the queue upon
entering putlu

pe.link-4 + (r3) - process number in rt

r2 - points to lowest priority queue

Issue D Date 3/17/72 ID IMO,1-1 Section H.3 Page 4

UNIX IMPLE™CNTATION

ID U3-2 rswap

FUNCTION - _

rswap reads a process, whose number is in ri, from disk
into core. 2 * (the process number) is used as an index
into p.break and- p.dska. The word count in the p.break
table is put in the 3rd word of the sawp I/0 dqueue entry.
The daisk address in the p.dska table is put in the second
word, The first word of the swp I/O queue entry is set up
to read. (bit 10 set to a 1) and ppoke i8 called to read
the process into core.

CALLING SEQUENCE =
jsr r0, rswap

ARGUMENTS -

INPUTS o
r1 - contalns process number of process to be read in
p.break - table containing the negitive of the word count
for the process
p.dska - table containing the disk address of the process
u.emt - dete:rmines handling of emt’s
u.ilgins - determines handling of illegal instructions

OUTPUTS -
10 = (ilgins)
30 = (u.emt)
swp = bit 10 is set to indicate a read (bit 1520 when reading
is done)
swp+2 - disk block address
swp+4 -~ negitive word count

Issue D Date 3/17/72 ID IMO,1-1 Section H.3 Page S

UNIX IMPLEMENTATION

ID U3=9 swap

FUNCTION -
swap is the routine that controls the swapping of processes
in and out of core. It works in the following manner:

1) The processor briority is set to 6,

2) The runq table is searched for the highest priority pro-
cess., If none are found, idle is called to wait for an
interrupt to put something on the queue. Upon returning
after an interrupt, the queues are searched again.

3) The highest priority process number is put in r1. If it
is the only process on that queue the queue entry is zeroed.
"If there are more processes on this gqueue the next one in
line is put in the queue from p.link (see F, page 9).

4) The processor priority is set to O.

5) If the new process is the same as the process presently
in core, nothing happens. If it isn’t, the process present-
ly in core is written out onto its_corresponding disk block
and the new progess is read in., wswap writes out the old
process, rswap .regds in_the new one. For more informa-
tion see wswap , rswap , unpack and p17 of Implementa-
tion Manual. ;

6) The new processes stack pointer is restored. The ad-
dress where this procesg left off before it was swapped out,
is put in r0. So when rts r0 1is executed this new process
will continue where it left off, ’

' ARGUMENTS -

INPUTS =
rung table - contains processes to be run., See F, page 9.
p.link - contains next process in lone to be run. See F, page 9,
u.uno - process number of process in core.
s.stack - swap stack used as an internal stack for swapping.

OUTPUTS «
present process to its disk block
new process into core
u.quant = 30. (Time quantum for a process)
u.pri - points to highest priority run Q
r2 - points to the run queue
r1 - contains new process number
ps - processor status = 0
r0 - points to place in routine or process that called swap
all user parameters

Issue D Date 3/17/72 ID IMO.1-1 ‘ Section H.3 Page 6

UNIX IMPLEMENTATION

ID U3-1 tswap

PUNCTION - - -
tswap is the time out swap. tswap is called when a user
times out., The user is put on the low priority queue. This
is done by making a 1link from the lasf user on the low
priority queue to him via a call to putlu . Then he {is
swapped out.

CALLING SEQUENCE -~
jsxr rO, tswap

ARGUMENTS -

INPUTS -
U.UNO - users process number
rung+4 - lowest priority queue

OUTPUTS =

r0 - users process number
r2 - lowest priority queuc address

Issue D Date 3/17/72 ID IMO,1-1 Section H.3 Page 7

UNIX IMPLEMENTATION

ID U3-2 unpack

FUNCTION -

unpack unpacks the users stack after swapping and puts the
stack in its normal place. Immediately after a progcess 1is
swapped in its stack is next to the program break. unpack
move the stack to the end of core.

If u.break is less than “core” or greater than ue.usp nothing
happens. If u.break is in between these locations, the
stack is moved from next to u.break to its normal location
at the end of core.

CALLING SEQUENCE -
jsr rO, unpack

ARGUMENTS -

INPUTS -
u.break - users break point (end cf users program)

OUTPUTS -
stack gets moved if proper conditions stated above are met.

Issue D Date 3/17/72 ID IMO,1-1 Section H,3 Page 8

UNIX IMPLEMENTATION

ID U3-1 wswap

FUNCTION -

wswap writes out the process that 18 1in core onto its
appropriate disk area. The process stack area is copied
down to the top of .the program area to_speed up I1/0. The
word count is calculated and put in_ swp+4 , The daisk ad-
dress (block number) is-put_in swp+2 . swp is set up to
write by setting bit 9 and ppoke is called to initiate the
writing. The area from user to the, end of the stack is
written out. The I/0 queue entry swp is shown below just
before the process is written out by ppoke.

When the writing is
bit 9 among others 1is set swp done, bit 15 is
cleared,
disk block address swp+2
neg. word count swp+4
constant | user (address to start Swp+6
writing from)

ARGUMENTS -

INPUTS -
u.break - points to end of program
u.usp - stack pointer at moment of swap
core - beginning of process program
ecore - end of core
user - start of user parameter area
U, uUno ~ user process number
p.dska - holds block number of process

OUTPUTS -
swp I/0 queue (see above)
p.break - negitive word count of process
r1 - processes disk address
r2 - negitive word count

Issue D Date 3/17/72 ID IMO.1~1 Section H,3 Page 9

UNIX IMPLEMENTATION

ID U4-1 clock

FUNCTION - ‘)
clock handles the interrupt for the 60 cycle clock. It
incremente the time of day, increments the appropriate time
category and decrements the users time guantum. It then
searches through the toutt table and does the following:

1) If the processor priority is high (>4) and the ¢time in
the toutt entyy is not zero (£0), the time in the entry is
decremented, If it turne O when decremented it is 1incCre-
mented 80 that it will turn O next time when the priority
might be low (zsee 2 below).

2) If the processor priority is low and (1) the user is not
timed out or (2) we are presently inside the system and a
toutt entry gets decremented to 0, the corresponding routine
in the touts table is called. If the toutt entry was O
before decrementingy nothing happens. If the user is timed
out and we are outside the system the users r0 is restored
‘to him and sysrele 1s called to swap him out and bring in
another process,

CALLING SEQUENCE -
interrupt vector

ARGUMENTS -

- INPUTS = :

1ke « clock chatus register

g.tinet? = timo of day

clockp - points €0 one of the clock cells in the sunor block
U,uaal - ussrs time guantum

gy afile \ 5 Tlag - 1 ig outside systen, 0 ig duside
toatt - tabls of byitse. Yach byte s a Tion ¢ount

touats - taklie of entry points of subroutliacs

QUTPUTS -
8. 0lmed2 « fncrocanted
clogkp = incremsnced
uaunnt = decserented
touct - entvics decrsomeniad
rd - containg users 0 Lf cenditions of (Z2) nhove are met

Issue D Date 3/17/72 ID IMO.{-4 - Section He4 Page 1

UNIX IMPLEMENTATION

ID U4-3 ppti - paper tape input interrupt routine

FUNCTION - " -
ppti does one of following depenJent on value of pptiflg

1. If “pptiflg” indicates file not open (=0), nothing is
done.

2. If “pptiflg” indicates file just opened (=2), a check is
pade to _determine if the error bit in prs is set. If it is
pptito is called to place I/0 in the toutt entry for ppt
input. If_the error bit is not set, pptiflg i1s_changed to
indicate ' normal ooeration (set to 4) and wakeup is
called to wakeup process identified in wlist for ppt input.
Also, the character in the prb buffer is placed in clist if
there is room. If there is no room, the character is lost,
Finally a check is made to determine if the character count
in the ppt input area of c¢list has less than 50 characters.
If it does, the reader enable bit is set.

3. If "pptiflg” indicates file normal (=4) the_ procegs in
the ppt input entry of wlist is woken up (via wakeup)e A
check is then made to determine if the error bit in prs is
set. I£ 4t is, the pptiflg is set equal to 6. If it is
not the contents of prb are placed in the clist via pate .
If clist is full, the character is lest. In addition if the

. character count for ppt input in the clist is less than 50,
- the ranler enzhle bit 4 ner,

Lo et e

4, 1If "pptiﬁlg" indicates the file iz not closed (=6), this
is an indicaticon that t¢he error bit was 2ot when pptiflg
equalled four and therefore nothing is done.

CALLING %.‘:\, SHTE e
ppti i“ %nc papaer tape input interrnpt routine

INPUTS =
pptiflg - f£iag ﬁh*uh indicates Functicn tube parformed
prs = waper Laps 2d status bits

ce+2 -~ character cnant fo& ppt input in clist
prb ~ input character

OUTPUTS -
pptiflg - (see above)

Issue D Date 3/17/72 ID IMO,%=1 Section H.4 Page 2

UNIX IMPLEMENTATION

ID U4-4 isintr

FUNCTION - '

“taintr” checks to see if an interrunt or quit from a tty
belongs to the current user, If so, it won’t skip on
return; if not it will skip. When the interrupt does belong
the output list in clist is erased via calls to getc. This
prevents output coming out after the interrupt key is hit.
Nothing happens except the return 1s skipped when:

- Case I

1) u.tty, the tty buffer pointer = O

2) interrupt character in buffer = 0

3) interrupt char = “delete and u.intr = O
4) char = fs and u.quit = O

5) no tty block is found that matches u.tty

Case II
The return is not skipped and_the output gets flushed if:
1) 4interrupt character = fs u.quit 0 and the tty block in
control is found - -
2) interrupt character = delete and u.intr £0 and the tty
block in control is found.

CALLING SEQUENCE -
jsxr r0, isintr

AT LA AN
ﬁl.\\.# LT YWY POES B

INPUTS -
u.ttyp -~ polinter to buffer of tty in control of the currant process
U.intyr - determines handiing of iﬁtﬂrrupts 1£ ¢ - nothing havpens
u.quit -« determines handliing of fvterrupes 1f ¢ « pothing havpens
tty+6 - pointer to bhuifer ol fx**“ tey block

OUTPUTS =
Cacge I -~ nothing except roturn is skipped
Case II - processor priority = §
gets - erases Uiz output character list

Issue D Date 3/17/72 ID IMO.1-1 Section H.4 Page 3

UNIX IMPLEMENTATION

ID U4~4 pptito - paper tape input touts’sdbroutine

FUNCTION - R |
If pptiflg 4indicates the file has just been opened (=2),

pptito ‘
1« places 10 in the toutt entry for ppt input

2. checks error bit in prs and sets reader enable bit if
error bit not set.

For all other values "pptiflg' pptito does nothinge.

CALLING SEQUENCE =
jsr r0, pptito

INPUTS - _
pptiflg - values of this parameter indicates to pptito the

function it is to perform
prs - status of ppt reader

OUTPUTS -
toutt+1 - contains tic count (= 10) for ppt input

prs - read enable bit

Isguve D Date 3/17/72 ID IMO.1-1 Section H.4 Page 4

UNIX IMPLEMENTATION

ID U4-3 ppto - paper tape output interrupt routine

FUNCTION = ‘
Calls starppt to ocutput next character in clist ppt outpute.

CALLING SEQUENCE -
interrupt routine

INPUTS - - -
see inputs for starppt

OUTPUTS -~ - -
see outputs for starppt

Issue D Date 3/17/72 ID IMO.1=1 - Section H.4 Page §

UNIX IMPLEMENTATION

ID U4-5 sleep

FUNCTION - ‘
sleep puts the process whose process number is in u.uno on
the wait list (wlist) and swaps it out of core. It works in
the following ways

1) A wait channel number is given as an argument to sleepe.
The process number occupying that chamnnel is saved on the
stack. The process number that is getting put to sleep
(ueuno) is put in that wait channel,

2) A call is made to ' isintr to see if that user hag any
interrupts or quits. If he doez a return to him via 8y 8-
ret is made. If he doesn’t swap ig called to swap out the
procegs so it can sleep,

3) A check iz made on the new user (the cne who got swapped
in) to see if he has any interrupts or quits. If not, a
link is created to the old procesg number that first occu-
pied the wait channel by a call to putiu a normal return
is then made.

CALLING SEQUERCE -
jsxr »xC, sleep; arg

ARGUMENTS -

mwow . evrvadd Alimemm Y ‘Qirvumu
-y T o Ry A A S R OL- D -2 S F S

INPUTS =
U.nilo - proorss number that gets put to sleep
Welist « walt channel liet
rung¢t « Lowosnt priovity run Q

CUTPUTS -~
Siasning proo
LDanny Pl

nto wlist

3 number ¢
E

T onte 4

Issue D Date 3/17/72 ID IMO.1-1 Section H.,4 Page 6

UNIX IMPLEMENTATION

ID U4-2 ttyi

FUNCTION - _ , |
ttyi puts a character from the tty reader buffer in ri
sets the enable bit of the tty status register, and strips
the character to 7 bits. Depending on what the character is
the following things may occur:

1. If the character is a letter (A-Z), It is changed to
lower case and put on the clist yia putg . It is then put
on the tty output buffer via startty . If the number of
characters on that clist (cc) exceeds 15 a call to wakeup
is made to clear that list, If less than 15 nothing else
happens.

2) 1If the character is a '}" or a "del”, 1If also, the last
tty blocks buffer pointer is zero wakeall is called and all
processes are put on the low priority queue,

If the last tty blocks buffer pointer to the char (}or del)
is put in the 7th byte of the buffer and wakeall is called.

'3) If the char is an eot” or "ni1”
cc is not chazcked and wakeup is called,

CALLING SEQUENCE =

‘a OIS TTRETV AT N

P R e W e A

INPUTS =
tkb - tty roader buifcr
tks = tty reader status reglister
c¢c - number ¢ charzctzxz on the character list

OUTPUTE =
r1 ie used to contain the character
ttyoch = hag the chapracher
see functiocn for other cutputs depending on what the character 1is.

Issue D Date 3/17/72 ID IMO.1-1 Section H.4 Page 7

UNIX IMPLEMENTATION

ID U4-3 ttyo

FUNCTION - :
ttyo 4is the console typewriter output interrupt routine,
It calls setisp to save registers during the interrupt then
calls startty to put the character in the tty output buffer
and then restores the registers and returns from the inter-
rupt,.

CALLING SEQUENCE -
interrupt routine called via trap

ARGUMENTS -

INPUTS -
character in ttyoch

OUTPUTS -
see gtartty

Issue D Date 3/17/72 ID IMO.1=-1 Section H.4 Page 8

UNIX IMPLEMENTATION

ID U4-2 wakeall

FUNCTION - . |
wakeall wakes up all the processes on the wait 1list by
making consecutive calls to wakeup going through all the
wait channels. The processes are linked to gether on the
lowest priority queue (runqg+4) used to notify the world when

a quit or interrupt happens from a typewriter,

CALLING SEQUENCE -
jsr r0, wakKeall

ARGUMENTS -
INPUTS -

OUTPUTS -
all sleeping processes are put on the lowest priority queue.

Issue D Date 3/17/72 ID IMO,1=1 Section H.4 Page 9

UNIX IMPLEMENTATION

ID U4-5 wakeup

FUNCTION -

wakeup is calied with two arguments: argt! is one of the run
gueues and arg2 is a wait channel number. wakeup wakes the
process sleeping in the specified wait channel by creating a
link to it from the last user process on the run gueue
specified by argi. This is dene by a call to putlu « If
there i8 no process to wake up, (wait channel contains a 0)
nothing happens.

CALLING SEQUENCE -
jsr r0, wakeup; argi; arg2

ARGUMENTS -
argl - points to one of the three run queues
argz -~ is the number of the wait channel of the process to
be awakened.,

INPUTS -
wlist - wait channel
u.pri - users process priority

OUTPUTS -~
if ue.pri > argt uguant = 0
wlist (r3} » O = eatry in waelt channel = O
r2 - is used Lo point to core of the run gueues
- r3 e~ conraine the nurbar of the wait channel

Issue D Date 3/17/72 ID IMO,1-1 ~ Section H.4 Page 10

UNIX IMPLEMENTATION

ID U4-5 starppt

FUNCTION -
starppt checks the character count for ppt output in LLhe
clist, If it is greater than 10, starppt uses wakeup to
wakeup process identified in "wlist’ entry for ppt output.
starppt then checks the ready bit in the punch status
word, If it is set, starpp_ uses getc to fetch the next
character in the clist and then places it in prbe.

CALLING SEQUENCE -
jsr r0O, starppt

INPUTS -
cc+3 - character count for ppt output in clist
pps -~ contains ready bit

OUTPUTS -

See outputs for getc and wakeup
ppb - ppt output buffer

Issue D Date 3/17/72 ID IMO.1~1 Section H.4 Page 11

UNIX IMPLEMENTATION

ID U4-3 retisp
FUNCTION -~ ‘ : -
retisp pops the stack and restores the values of r0, ri,

r2, r3 and clockp to what they were before the interrupt
occured., retisp then executes an rti and returns.

CALLING SEQUENCE -
Jmp retisp

ARGUMENTS -
INPUTS -

OUTPUTS -
r0, r1, r2, r3, clockp

CALLED BY -
trapt

CALLS -

Issue D Date 3/17/72 ID IMO.1-1 Section H.4 Page 12

UNIX IMPLEMENTATION

ID U4-1 eetisp

FUNCTION - ;
setisp stores rt, r2, r3 and clockp on the stack. Puts
8s.evstt2 in clockp and returns via a jump without popping
the stacke. v

CALLING SEQUENCE -
jJsr r0, setisp

ARGUMENTS -
INPUTS -
OUTPUTS -

CALLED BY -
drum

CALLS

Issue D Date 3/17/72 ID IMO.1-1 ‘ Section H.4 Page 13

UNIX IMPLEMENTATION

1D U4-4 startty
FUNCTION - - , :
startty prepares the system to ocutput a character on the
console tty, It performs the following operationss
1 - some fooling with wakeup?

2 - tests console output status register read bit, if bit
is clear; return.

3 - 1f bit 18 sget check time out byte for console
(toutt), if non zero; return.

4 - if toutt ie zero, put char to be output in ri.
5 - load character in console data buffer register.
6 - 1if char = 1f, make next char to be output a cr.
7 = if char = ht or cr, set time out to 15 clock cycles.

CALLING SEQUENCE -
Jsr r0, startty

ARGUMENTS -

INPITIS
ttyoceh (character to be output), toutt

QUTPUTE ~
tpd (loads a character in tty output data buffer register),
r1 (character output), toutt,

Issue D Date 3/17/72 ID IMO.1 =1 Section H.4 Page 14

UNIX IMPLEMENTATIOR

ID U5-3 access

FUNCTION - - -
reads in section of core beginning at location inode the
i-ncde for file with i-number n. Checks whether user is
owner and whether user can open file for reading or writing
based on file protection bits in i.flgs (see Section G).

CALLING SEQUENCE -
jsr r0, access; arge.

ARGUMENTS -~
arg0 (user, owner flagmask)

INPUTS -
r1 (i-number of file), u.uid, i.uid

OUTPUTS =
inode, r2 (internal)

Issue D Date 3/17/72 ID IMO.%1-1 Section H.,5 page 1

UNIX IMPLEMENTATION

ID U%-2 alloc

FUNCTION - _
alloc scang the free storage wmap of the super block of a
sgpecified device. When it finds a free block it saves the
physical block number in r1, it then sets the corresponding
bit in the free storage map and sets the super block modi-
fied byte (smod, mmod). g

CALLING SEQUENCE =
jsr r0, alloc

ARGUMENTS -

INPUTS -
cdev (current device), r2, r3

OUTPUTS -
r1 (physical block number of block assigned), smod, mmod,
systm {(drum super block), mount (dismountable super block),
r2 (internal), r3 (internal).

Tssue D Date 3/17/72 ID IMO.1-1 Section H.5 page 2

UNIX IMPLEMENTATION

ID US-2 free

FUNCTION -

Given a block number for a block structured I/0 device,
‘free’ calculates the byte address and bit position of its
associated bit in the free storage map of the in-core image
of the superblock for the device (rf fixed head disk or
mountable device super block). It then declares the speci-
fied block free by setting this bit. Then a flag is set to
indicate that:

1) the super block for the rf-fixed head disk has been
modified (smod = smod+1).
or

2) the super block for a mountable device has been modi-
fied (mmod = mmod+1).

CALLING SEQUENCE -
jsx x0, free

ARGUMENTS -

INPUTS -
byte mask table:

| ! I
Mack for bit 1 | 2| 1} Mask for bit
- w o 3¥ 10’ 4‘ " w "
i L @ " g ! 405 29! [.- [J
" T T 200 100§ ° .
! ! !
r1 -~ block number fer a hlock structured device
cdev = current device:; Gedrum, ninzerommcuntable device
OUTPUTS -
mount = systm+(r2) word in free storace map portion of the
in core image of th: supor biock for a nountable device. IT

the device 1is mountable the appropriate bit is set to free
the block. If the device is not mountable, the bit remalns
unchanged.

systn+2+(r2) same as above, but for drum with the super
block for the fixed head disk.

mod - i8 incremented if the superbiock for the nmountable
device was modified,

smod - is incremented if the superblock for the Adrum was

r2 - saved on stack and restored on return
r3 - saved on stack and restored on return

Issue D Date 3/17/72 ID IMO.1~1 Section H.5 page 3

UNIX IMPLEMENTATION

Ip US5-4 A{icalc

FUNCTION -

icalc calculates the physical block number from the i-number
of an i-node. It then reads in that block and calculates
the byte offset in the block for the i-node with the partic-
ular i-number, then depending on whether the argument in the
icalc call is a 0 or a 1 it reads the_ inode in the data
buffer in core starting at location inode (argument =0).
Or it will take the inode informatien currently stored at
l?cation inode” and write it out on the device (argument =
1).

The physical block number and byte offset for an inode 1s
calculated as followss

let n = i-number, pbn = physical block number, bc = byte
offset

then pbn = (n+31)/16 ' :

and bo = 32.% ((n+31.,) mod 16.) (See Section F for gen-
eral discussion of inodes,)

CALLING SEQUERCE =
jexr r0, icalc; arg
ARGUMENTS =
BUY —- ayg = 0 read inode
arg = 1 write inode

TLUTS -

inode - ri (i-nurber)

. AT Y P g
F PR O AR A ¥

innde - ri (intermal), r5 (internal), r3 (internal)

Issue D Date 3/17/72 ID IMO.1-1 Section H.5 page 4

UNIX IMPLEMENTATION

ID U5-4 iget

FUNCTION -

iget gets a new i-node whose i-number is in r1 and whose
device is in cdev., If the new i-number and its device are
the same as the current i~number and its device (ri=ii ard
cdev=idev) no action is taken. If they do not agree, iget"
checks to see if the current i-node has been changed (imod
£ 1)e If it has been changed the current i-node is written
out ¢to its device. Then if the current device is the drum,
the new i-node i-number is checked to see if it 4is the i-
number of the cross device file, if it is the current device
becomes the mounted device and the i-number is set to 41,
(thuis the root directory for the mounted deyice ig refer-
enced). Then the new inode is read into the inode block
in core via icalc .

CALLING SEQUENCE =~
jsr r0, iget

ARGUMENTS -

INPUTS -

ii (current i-number), rootdir
cdev (new i-node devica)

idev (current i-ncis device)

incd {(current i-nule wxdified flag)
mnti (cross device file i-number)
rt (i-number of new i-node)

rntd (mountable device nacior)

QUTPUTS = .
cdev, idev, imod, ii, ri

Iscue D Date 3/17/72 ID ITMD, %=1 Section H.5 page S

UNIX IMPLEMENTATION

ID U5-3 4imap

FUNCTION -
imap finds the byte in core containing the allocation bit
for an i-node whose number is in ri. This core area is 2
copy of the super block and happens to be the i-node map.
The byte address is calculated as follows: ’

byte addr = addr of start of map + (i-number-41)/8
The bit position = (i-number-41) mod 8

CALLING SEQUENCE -
jsr r0, imap

ARGUMENTS -

INPUTS - ‘
ri -~ contains i-number of i-node in question

OUTPUTS -
r2 -~ has byte address of byte with the allocation bit
mq - has a mask to locate the bit position.

a 1 is in the calculated bit position
r3 - used internally

Issue D Date 3/17/72 ID IMO.1-1 Section H.5 page 6

UNIX IMPLEMENRTATION

ID US-5 4itrunc

FUNCTION -

itrunc truncates @& file whose i-number is given in r1 to
zero length. “itrunc’ gets an inode via iget, It 1incre-
ments through the 4.dskp (list of contents or indirect
blocks in the inode) table and frees the blocks specified
there. If the file is small, the block numbers in the
i.dskp list are freed. If the file is large, i.dskp con-
tains pointers to indirect blocks. The block numbers in
these indirect blocks'are then freed and the indirect blocks
are freed,

CALLING SEQUENCE -~
jsr r0, itrunc

ARGUMENTS -

INPUTS -
r1 - containsg i-number for use by iget
i.dskp - pointer to "contents or indirect blocks™ in an inode
1.flgs - contains flag for large file. See Section F, page 5
i.8ize - size of file A

OUTPUTS w - -
i.flags - larqo file flag is clecred
& s ~ha B

fedlaz - BSL 5 O

i.dskp ~ 1dskp+i6 ~ the entire list is cleared

getimed « get to indicate i-nhode has been modified
ri - contains i-~number on return from thls subr,

r3 - used in pubroutine

Issue D Date 3/17/72 ID IMO.1-1 Section H.,S page 7

UNIX IMPLEMENTATION

ID U5-1 mget

FUNCTION -
mget takes the byte number of a byte to be read/writtern in
a file and obtains the phyazical block number of the block in
whichk 1t occurs. The file offset for the byte (i.e. the
byte number) is npassed by passing a pointer to the offset in
wefofp. The block number for the byte is returned in ri.

Along the way several things can happen:

1. The file is small (Less than 8 * 256. words) and the
byte number extends beyvond the current size of the file but
does not exceed 8 * 512, In this case mget assigns a new
block from the free area of the file device and updates the
i-node for the file by addirg the physical block number of
the new block and modifying the free storage mape

2 The file is small and the byte number exceeds 8 % 512,
In the case the status ¢ the file changes from small to
large. mget sets the large file bit in i.flgs of the i-
rode, Next an indirect hlock i¢ assigned to the file, The
blaoax pointerg ia f-node ars noved into the new indirect
block and & pointer to the indirect block 4is put Iin the

gtale Next a new Jdata Ll i assigneld wia the lorge file
iling logie, deseribed

belowe

3. e file i1y laxge and the Dbyte nunmber exceeds the
currece eizne of the file,. Put doss ot exosaed the capacity
G Uhe higbest indirooh olook. my2t zgsigns a new file
bleock and addg a new entry to the indirect block,.

oy Tne f£ile is e and the hyte number exceads tho

gize oFf the f4le¢, and also cweeady ¢he Mplt of the
Indizrect Dicok. A rew sndivec: bloekt is sseiqred
. }'V v i

IOEnG Loerit

Eo

] ot 5 E 3 de '
£ alock ic it stored
1o e neyw Inddoeet hlo

YVa

(cen Pdle §

tracture writse up in the UNIY Programner’s Mamye
ala) :

CALLING SUQUENCE -
jsy 0, mget
ARGUMENT'S ~

INPUTS - ‘
u.fofp (file offset pointer), incde, u.off (file offszet)
OUFPUTS =
r1 {vnyveiczal klock numbar), r2 (internmel), 3 (internzl), rS
(internel)

Issue D Date 3/17/72 ID IMOete Secticn H.,5 page 8

UNIX IMPLEMENTATION

ID U5-3 setimed

FUNCTION - " .
sets byte at location imod to a 1, thus indicating that

the i-node has been modified. Also puts the time of modifi-
cation into the i-node.

CALLING SEQUENCE -
jsr rO0, setimod

ARGUMENRTS -

INPUTS -
s.time, s.time+2 (current time)

OUTPUTS -
imod, f.mtim, 1 emtim+2

Issue D Date 32/17/72 ID IMO.1-1 Section H.5 page 9

UNIX IMPLEMENTATION

ID Uo~4 cpass

FUNCTION - _
cpass gets the next character from the user into_ ri. A
non-local return takes place (to the caller of writei)
when the users count (u.count) becomes zero.

CALLING SEQUENCE -
jexr x0, cpass

ARGUMENTS -

INPUTS - \ ‘
ve.count ~ users character count
u.base - points to a users character buffer

OUTPUTS -
if u.count £ O
u.count gets decremented
r1 contains the next character
u.nread gets incremented
u.base - gets incremented to point to next character
if u.count = 0 - "
r0 -~ return address to program that called writei
rt - i-number of file under consideration

Issue D Date 3/17/72 ID IMO.1-1 ' Section H.6 Page 1

UNIX IMPLEMENTATION

ID U6=1 readi

FUNCTION -

readi” reads from an i-node whose number is in ri. If the
file in i-node 1is special a transfer is made to the ap-

propriate routine. If not dskr is called and the file
read into user core. See dskr for details.

CALLING SEQUENCE =
jsr r0, readi

ARGUMENTS -

INPUTS =
u.count - byte count user desires
u.base - points tc user buffer
u.foft - points to word with current file offset

OUTPUTS =
ue.nread - LJaccumulates total bytes passed back
see dskr'

is

Issue D Date 3/17/72 . ID IMO.1-1 Section H.6 Page 2

UNIX IMPLEMENTATION

ID U6~2 dskr

FUNCTION - : - -
dskr gets an inode into core via iget . It then sets
u.count according to the following rules. If the number of
bytes left to read in a file is greater than the number of
bytes he wants to read u.count is unchanged. If the number
of bytes left to read in the file is less than u.count,
u.count gets set to that number. .

If the user offset u.fofp ies greater than the file 1length
there is nothing left to read so dskr returns. Once u.count
is established a block address for the file 1is calculated
via mget, the file is read into system buffers and the data
is transferred to user buffers in core. If u.count is not O
the process is repeated until u.count 1s 0. Processor
status is then cleared.

CALLING SEQUENCE -

jmp dskr
ARGUMENTS -
INPUTS -

r1 - contains i-number
iesize -~ file size in bytes
u,ccunt - byte count desired
- uesfofp = offset in file telling how many huhes have heen rosd

OUTPUTS -
data in user bhuffers in core
r2 -~ internal register
pE =

i < L ol e
r3 ~ .nterral reglister

‘Issue D Date 3/17/72 ~ ID IMO.1-1 Section H.6 Page 3

UNIX IMPLEMENTATION

iD U6-4 dskw

FUNCTION —_
dskw writes user specified 4ata into a file on the drum,
as follows:

“"dskw obtaing an i-node number from the stack. If the
i-node currently residing in the i-node area of core has
been modified, this i-node is written out onto the drum in
its appropriate position in the i-list. In any event, the
i-node specified in the stack by the caller is read into the
i-node area of core. A file is composed of blocks. The
caller can modify several blocks in several passes thru a
single call to ‘dskw’, The number of the block to be modi-
fied next 38 calculated by ‘dskw’ from the file offset
(relative to the start of the file in bytes) specified by
the caller in (u.fofp). ‘The caller specifies the number of
bytes to be modified in u.,count, If the number of bytes the
user specifies plus the offset into the file is greater than
the present size of the file in bytes, i.size, then the size
of the file is increased to incorporate the data overflow by
changing the file size field in the i-node for the file
(which is currently in the i-node area of core). The time
that ¢this file size change occurs is also inserted into the
i-node and the i-node modification flag (imecd) 1z set,
*dskw’ then uses (u.fofp) to calculate an offset (relative
to the start of the block) which specifies the 1st location

© within ¢he block ot wvhich the callers data iz &0 b writhen.
Wote that the offset determines the maximum number of bytes
of user data that can be written oca the file during this
pass thre ‘dekw’, 592.-file offset. If the number of data
bytes +he <caller specifles is less than a block, the block
ig read freom drum into 2 svatem buffer, then ths appropriate

£

hytes o0 CYVRIMEDLULEN. she aurcer of date Tytes i& 1488
than z hiook, but excesds 812.-file ofiser, only 512.-¥ile
offger T aa are cverwritiean. Succsed.ng proses thru “dskw’
are npeasarary Lo write out the rest of the datoe. After each
pass, Gthe edi i #Llle bdloek (in the system butter) is

written out on &oum, When all required blocks are wrltten,
counters and peinteys are returned to the caller.

CALLING SECULICE -
Jer 0, daxw

ARGUMENTS -

‘Issue D Date 3/17/72 ID IMO,1~1 . Section H.6 Page 4

UNIX IMPLEMENTATION

INPUTS -
sp - i-node number

(u.fofp) - file offset
u.count « number of bytes of data the caller desires to write

i.size - size (in bytes) of file to be altered (this parameter
appearg in the i-node yhose number is §in gp). . - -
see inputs for iget , setimod mget , dskrd , wslot , slioreg

r1 - pointer to callers data area
(rt1), (r1), *15¢00, (r1) + (u.count-1) - the callers data

OUTPUTS -
i.9ize - file sige (may have been modified by (dskw)

gee outputs for iget , setimod mget dskrd’, wslot', "sioreg"
ri - points to the location succeeding the last caller data byte

transferred ‘
r2 = points to the location (in the system buffer) succeeding the

last system buffer byte overwritten.
r3 - 0
u.count = 0
modofied drum file

Issue D Date 3/17/72 ID IMO.1-1 Section H.6 Page 5

UNIX IMPLEMENTATION

ID U6-2 passc

FUNCTION -~ _

"passc’ moves a byte of information specified in - the lower
half of r1 to the byte address specified by (u.base). It
then increments u.base to point to the next byte address,
increments u.nread, the number of bytes passed, and decre-
ments u.count the number of bytes yet to be moved. If there
are no mgre bytes to be moved, a “non-localvreturn to the
caller of readi = (through which control was .eventually
passed to passc) is taken. The current i-number if popped
off the stack into ri. If there are more bytes to be
transferred, the processor status is cleared and control is
returned to the caller.

CALLING SEQUENCE -
jsr r0, passc

ARGUMENTS -

- INPUTS -

ri - contains a data byte in the lower half

u.base - contains a pointer to the user area of core to which
the data byte is to be transfierred.

ue.nread -~ the number of bytes transferred

u.count = the number of bytes to bevread

(sp) = the non=iccal return aadress

(sp+2) -~ the value of r1 prior to calling passc’

OCTPUTLE o= '
(uvbase) ~ Oyeee, (ucbase)={u.count-i] contain the transf&rtad
irnformation
v.hase - points to the last hyte transferred
u.nread - containg the nurber of bytes transicrred and original
value ©f u.nread
Hetrount = containg the nunney of bytes thab still maust be read
{gp) = if non-local return popped twice
pa = clzared

Issue D Date 3/17/72 ID IMO,1-1 Section H.6 Page 6

UNIX IMPLEMENTATION

ID U6-2 recrxd

FUNCTION - Seé 'error' routine

CALLING SEQUENCE -

ARGUMENRTS -

INPUTS -

OUTPUTS -

Issue D Date 3/17/72 ID IMO.1=1 Section H.6 Page 7

UNIX IMPLEMENTATION

ID U6=2 ret

FUNCTION -
ret is a special subroutinevreturn, used by the following

subroutines:
1. reti
2. TIPDt
3. dskr
4., passcC
Se dskw
6. Dbread
7. burite
8. rcvt

in place of the standard return. In addition to performing -
standard return functions, “"ret” pops the stack and putg itg
vihlue in r1i. It also clears the program status worde. “ret”
can be used simply to clear the program status word by
entering via its 2nd entry point.

CALLING SEQUENCE -
control should be passed to this routine by either a condi-
tfonal or non conditional transfer to ret (the 1st entry

€ e

point), or to ‘1%, the secondary entry point.
ARGUMENES =
INPUTS o

A. for primary encry s (sp)
B, for secondary entry § emeeeome

sydmary entry 3 oo
o ®
- L]

¥
%
-
F-3

secondary entry

Issue D Date 3/17/72 ID IMO.1-1 Section H.6 Page 8

UNIX IMPLEMENTATION

ID U6~-2 rppt - read paper tape

FUNCTION -

rppt uges pptic to get a character in ppt input section
of clist and to set reader enable bit in prs. If the ppt
input section is empty and pptiflg = 6 (ipdication that the
error bit was set during normal operation) return is made
to rppt to instruction “br ;et which eventually causes a
return to the caller of readi . _If a_character is avajl-
able in clist, return is made to rppt” at ' jsr r0, passc .

‘Upon return from pptic ¢ rppt uses passc to place the
character fetched by pptic into the users buffer area. If
the number of characters that were specified by the user to
be read in has been read in, return from passc is made to
the caller of readi.

It 1is appropriate at this point to describe how all the ppt
input routines and subroutines are tied together to -read
ppt. First of all the ppt file must be open., To do this a

sysopen for reading which sets the pptiflg indicating-
file open. It also sets the reader interrupt enable bit in
the prs and empties the ppt input portion of tlist.

Once ¢the file is open, a "sysread" of the ppt file is made.

A pointer to the location where the characters are to be

placed along with thg nunber cof gharactegs to bevresag arg

passed ag argumcnts to ”wysxﬂad ° ﬁvsread then uses rwi
to get u.count equal to the rnuemier of characters to be
read and u.baze o the location where the ahnracters are
to hb plac&du readi ig then called which jumps to rppt
whic Aewrpilbed above, It should be notied that when
p;ti‘ L Cailed Lo o Wnoa Cosretner foom oliste , the
process w11 be peut to gl if no chrracters are in clist

cwith o menifls ¢ 31 apd all charecters o we read in have not
been el kico fhe readsr enable it is sels Tron conple-
tion i the input of the next character (ready bit set) the
gpt fupon dntersupt routine (pptl) is started which uses

wakeuip to wake up the process previcusly put Lo sleap.

CALLING SECUR:
Jmp wppn

INPUTS - - "
see 1nputs for pptic s Ppassc

OUTPUTS -
see outputs pptic and passc

Issue D Date 3/17/72 ID IMO.1-1 Section H.6 Page 9

UNIX IMPLEMENTATION

ID U6-1 rtty

i

FUNCTION -

essentially, 'rtty' transfers characters from . the console
tty buffer into a user area of core, starting at byte ad-
dress (u.base), If there are_no chgracters in the console
tty buffer, rtty calls canon , which gets a line (120
characters) from the console tty clist and puts it 1in the
console tty buffer. The caller specifies the number of
characters to be transferred 1in u.count. If the number
specified is greater than the number actually in the console
tty buffer, a synthetic return is taken to the caller after
the characters in the buffer have been transferred. If the
number specified is less than or equal to the number actual-
ly 1in the_console tty buffer, a non-—localized return to the
caller of readi (which is the routine wvia which control
was actually transferred to rtty) is made when all the
gharacg?rs have been transferred to the users core area {via
passc).

CALLING SEQUENCE - '

[conditional or unconditional branch, or jmp] rtty

- ARGUMENTS =

INPUTS -

Liy + 70 = COntaius pointer to the header of the console
tty buffer,
2(ety+70.) = Znd word of console tty buffer header; containe
a count of charactereg in tho bufler.
4(tty+70,) - containg a pointer to the next chraracter in the
: miffer. Pointer values can incluls (tey+70.) +
- S

, 4 - e a &t \
’m’{.‘i.é * f’g&ot& LT g +70e;

PEEO , DAasEn 4 reld

e

r of consonle thy buffer
o6 ¥ v W 2]

o i ®
saee oubputs for canor passc 4, reti

Issue D Date 3/17/72 ID TMO.1-1 Section H.6 Page 10

UNIX IMPLEMENTATION

ID U6-~3 wppt - w;ite paper tape

FUNCTION -~
wppt uses cpass to get a character from the users buffer
area and pptoc to output the character on the punch.

It is appropriate at this point to describe how all the ppt
output routines and subroutines are tied together to output
data on the ppt punchg First the ppt file must be open.
This 1is done via a sysqpen for writing. This places en-
tries in the fsp table and the user’s fp area.

Once the file is open a syswrite of the ppt file is made.
A pointer to the location where the characters are stored
along with the number of characters tQ be punched are passeqd
as arguments to syswrite. Then uses “rwi” to set u.count
equal to the number of characters to be punched and u.base

equal to the location ¢f the characters. writei” 1is then
called which jumps to wppt .

“wppt"® as mentioned above uses "cpass’ to get a character
from the usar buffer area. If the nupber of characters ag
specified in quwrite « If not pptoc is called. rotoc
first ghecks to see If character count for ppt output in the

“elist” is 250, If it is the process is put to JSleepg If
1t isn’ t the character 18 bplaced in the "sliet and

“starppt” iz called.

'starpw?" uses "qetc' to get a character from ¢list and
1nsertm it into the ppb if the ready Dbit iz set. if it
ian’t, control {3 passed hack to pptoc .

Upon cowplebion of mutpwr of the character in pod {ready bit
get’ i““ nErer tape cutput interrups crueutine (puto) isg
startoel via o orn Lnﬁ&rrVﬁta This rpouting ~ells Lorpet

which perforws the following functlon on an luterrupt in

addition to thosa describasd in the previous pavagraplie It
checks €0 see 1l the ¢raracter count for ppt cutput is lees
than 10, If it ie it will wake up the process in the wlist
entry for ppt outpub. ‘

As secn from mbove a process puts itself to sleep when it
has 250. characters in clist and is awakened by the paper

tape output interrupt routine (ppto) when the count becomes
less than 10,

CALLING SEQUENCE -
jmp ppt

(see inputs for cpass and pptoc)

OUTPUTS - . i, . .
(see outputs for’ cpass and pptoc)

Issue D Date 3/17/72 ID IkO.1-9 Section H.6 Page 11

UNIX IMPLEMENTATION

ID U6~-5 sioreg

FUNCTION =
1. calculates the first byte location (in the I/O buffer

assigned to the caller) into which the callers data is to be
written.

2. calculates the number of user data bytes to be
transferred into this I/O buffer.

3. performs bookkeeping functions, supplying the callet
with information pertinant to the data transfer.

CALLIRNG SEQUENCE -
jsr x0, sioreg

ARGUMENTS -

(u.fofp) -~ specifics the byte in a file (relativ° to the start

of the file) at which the user wants to start writing

data.
r5 - address of data area of I/0 buffer assigned to the user,

u.base - address of 1st byte of user data.
u.count -~ number of bytes of data to be transferred from user

_ data area to I/0 buffer.
- usnread -~ number of hytes of data written owt on the file for

this uszer previously.

oUTPUTS -

(usfofpi ~ mpeciiies the byte immediately folleowing the last byte

o’ ke file area in walch the w.couni: bytes ¢l user

Zrxta s owo De owritia:

r{ - addrang of {ov wie of s

Netzge ~ spaeciiilas che byte Lo tetei fallow

oE drtr to e tranzferved ke tho

vecount. bbkL&L?(u tne nunber of bytes of user deta ler to be
transierred after the prevecdiing ool is transiorred,

r dats .

iry the last byte

“TE"“

Uenread - wxinves to incliude the count oFf to be wransferred bytes.
r2 - gpecifies Lnoe byte in the l/O buffer assiogned to tne callerx

seh the transfer of user’s duba ig Lo start.

e

Issue D Date 3,17/72 ID IMO.1-1 Section H.6 Page 12

Z? wytes of user data to be transferred to users I/0

UNIX IMPLEMENTATION

ID U6-2 writei

FUNCTION -

writei checks to see if there is any data to be written
(on any device)e If not, it does nothing more than: return
to the routine which called it. If there 1is data ¢to fbe
written, “"writei” saves the i-node number of the file to be
written on the stack, so_it can_be used by the appropriate
output routine., Then writei checks to see if the'output
is to a special file (those files associated with i-nodes
1900¢40,, or to a non-sgecial file. Vrites for none—special
files are routed to the dskw routine., Writes for speciil
ifiles are routed to appropriate routines, as follows:

Special File Write Routine
ASR-33 ¢ console tty wtty
PC11 : paper tape punch wppt

core wmem
RF11/RS11 : fixed head disk (drum) wrf0
RKO3/RK11 : movable head disk wrko
TC11/TUS6 : dectape unit 1 wtap
2
. . 3 -
” ” 4 []
- 5
" s :
‘ 7
(any std. tty) : tty unit 1 xmtt
] " 2 .
o *® 3 -
”» L33 ‘é -
- e 5 .
(] L _J 6 -
7

CALLING SEQUENCE -
n srvrQ, writel

INPUTS -
u.count - contains a count of the number of bytes tofbe written
vri -~ containa the number of the l-node for the output file

OUTPUTS - , '

A: to the calling routine if return is made to itfby “writei®
u.nread - is cleared

B: to the write.routine for non-special files
u.nread - is cleared
(sp) - contains the i-node number

C: to the write routine for special files
u.nread - cleared
(sp) — ccntaing &he in2" nuvber
r1 = contains the index LHLO the special filevroutine : jump table

Issue D Date 3/17/72 ID IMC.% =1 Section H.6 Page 13

UNIX IMPLEMENTATION

ID U6-3 wtty
FUNCTION =—

wtty' uses cpass to obtain the next character in the user
buffer area. If the character count for console tty is
greater than 'or egual to 20, the process is put to sleep.
If not, it then_uses put¢ to determine if there is an entry
available in “freelist” portion of "clist". If there is
putc places the character there and assigns the location
to the console tty portion of “clist” . JIf there is no place
available in the freeliet portion of "clist” s the process
is_ put to ole@p e If there was a vacant location, starte

ty is used to attempt to cutput the character on the

Upon return from startty , the next character is obtained
from the user buffer. If the buffer j8 empty, control |is
passed via wcpags back to syswrite . When the process is
awakened by wakeup » it again tries to find a location
available in freelist® and the character count for the con-

sole tty less than 20 so it can output the character.

CALLING SEQUENCE -
jmp wtty

ARGUMENTS -

INPUTS =

L. G b B o
cad+t — oonkainc characker ccuni fpr condclc ity ougpute

(see inputs for cpass , putc N startty ’ sleep

OUTRPUTS
1 - {character from user buffer)
ps « LEOCessor pltswity zel to § . e w \
(Ba2g ostputs for Cpass pltc y startty , sleep .

Issue D Date 3/17/72 ID IMO.1~-1 Section H.6 Page 14

UNTX IMPLEMENTATION

ID U7-1 canon

FUNCTION -~

canon handles the erase kill processing on the teletypewrit-
ers. (console tty). r5 points to the start of the tty
buffer. The argument fgllowing the call is where the char-
acters are ottained. canon returns only when, (1) a full
line has been gathered, (2) a new line has been received,
(3) an eot (004) has been received, or (4) 120 characters
(the length of the buffer) have been received.

canon works in the following way:

1) The address of the start of the characters is put in
buffer + 4 (4{(r5)).

2) buffer + 2 (2(r5)) is clearéd. This 1is the character
count,

3) a character is gotten off the queue. If it is a kill
character ‘2° a return to the beginning is made. Actually
one starts over,

4) If the character 1is an erase ‘#°’, the next character
will overwrite the previous one and thereby erase it,

. 5) If the character is an eot (004) the bvie pointer ia
raecet to the €iret character and a return ie made.

6) If cher 48 none of the above, it is put {n the bulfer
when thae character pointer tells Lt to go tg{rs,

- # e e P LA O T L T
T e sroracter roent 20rSloard ahe oherpoter sointes

4{r5) are than increrented,

£} TE rhe erars ds e orew line (\n) the char poirntsry is raeael
and & return e mEdd,.

9) I7 the buffer ds full - (byte count » 1:0) the char
pointer is reget and a retuwrn {5 made.

10) If the ruffer $za’t full, the next charscier off the
queve iz pul through the above tests.

Note: canon should only be called when the number of zl-
ready treated characters is zero, i.e., when the char count
= 0; 2 (r5) = 0. If the char count is # O the character
pointer, 4 (r5) points to the first character not yet picked
up.

CALLING SEQUENCE -
jsxr x0, canon, araq

ARGUMENTS -
arg ~ where characters are to be obtained from

Issue D Date 2/17/72 ID IMO,1-1 Section H.7 Page 1

UNIX IMPLEMENTATION

INPUTS - A _ A
r5 - points to tty buffer address
10(r5) - start of character buffer
2(rs) - character count
4(r5) -« points to next character position in data area

OUTPUTS -
a full buffer, or a full line
r1 pointers to buffer + 10
4(r5) - character pointer reset to start of data area buffer + 10

tty buffer
number of char in buffer +2
!
char pointer (buffer +10 to]| +4
start)
+6
+8
! +10
|
: S O WL D S 2
characcer |
storage :
gy ea

Issue D Date 3/17/72 ID IMO. 4~ Section H.7 Page 2

UNIX IMPLEMENTATION

ID U7-1 cesc

FUNCTION -
cesc is called by canon to check for an erase “#" or kxill
"8" character. ri contains the character being tested. If
the character is not an erase or kill the return is skipped.
If the char is8 an erase or kill the character count and
character pginter are decremented. If the previous charac-
ter was a '\ the # or 6 are taken literally and the return
is not skipped.

CALLING SEQUENCE -
jsr r0, cesc; arg

ARGUMENTS -
arxg 100 - @ means kill the line
. 43 - # means erase last character

INPUTS
r1 - character to be tested
2(r5) - character count
#4(r5) - previous character

QUTPUTS
skip return if test char is not erase or kill
1% character was erase or kill
2(r%) - character count gets decremented
4{r5) - character pointer gets decrementod

Issue D Date 3/17/72 ID IMO.1-1 Section H.7 Page 3

UNIX IMPLEMENTATION

ID U7-7 cppt - close paper tape file

FUNCTION -
cppt agsigns all ppt input locations in clist to freelist

‘and sets ppt, flg to indicate file closed (=0).

CALLING SEQUENCE -
jmp cppt

INPUTS -

OUTPUTS -
See outputs for getc o
ps - processor priority set to 5
pptiflg -~ set to "0" to indicate file closed

Issue D Date 3/17/72 ID IMO.1-1 Section H.7 Page 4

UNIX IMPLEMENTATION

ID U7-6 ctty

FUNCTION -~ |
ctty closes the console tty. All it doee is decrement the

number of processes that have opened the console tty file.
The first byte of the console tty buffer is the numbe;: of
processes that have opened this tty byte. See F, pages 11.

A return is made via sret .

CALLING SEQUENCE -
jmp table in i-close

ARGUMENTS -
INPUTS -

OUTPUTS -
r5 - points to console tty°’s buffer

(r5) - first byte of buffer gets decremented.

Issue D Date 3/17/72 ID IMO.1-1 Section H.7 Page 5

UNIX IMPLEMERTATION

ID U7-8 error a

FURCTION - See “error” routiné
CALLING SEQUENCE — "
ARGUMENTS -
INPUTS -~

OUTPUTS -

Issue D Date 3/17/72 ID IMO.1=~1 ‘Section H.7 Page 6

UNIX IMPLEMENTATION

ID U7-3 get

FUNCTION - i
Removes the first clist entry from the 1list 4identified by
r1, makes the second entry the first. Puts_the clist offset
of entry removed from list in r2 return to normal .

If the list identified by r} is empty, r2 is returned equal
to zero, and return made to empty .

If the list has just one entry, the entry is removed and the
first and last character pointers for the list are zeroed.

CALLING SEQUENCE -
- Jsr r0O, get; empty:? s normal:

ARGUMENTS -

INPUTS -

r1 (list identifier), cf+1(ri), cf+1(r1) (see Section G for
_general description of tty I/0 handling)

OUTPUTS -

r2 (offset into clist of ent just- removed from 1list r1),
cf+1(xri), cl+i(r1), clist (r§¥

Issue D Date 3/17/72 ID IMO.1-1 Section H.7 Page 7

UNIX IMPLEMENTATION

ID U7-2 getc

FUNCTION ~_
getc removes the first clist entry from a list identified
by arg, via call to get; decrements character count for
list; puts the clist entry removed onto the free list; _puts
the character in the entry into ri1 and takes normal re-
turn. If list is empty take empty Teturne.

CALLING SEQUENCE -
jsr r0, getc; arg; empty: s+ normal:

"ARGUMENTS -
arg - list identifier

INPUTS -
r2 (clist offset from put)

OUTPUTS -
r1 {character on top of list), cc(arg), clist (r2)

Issue D Date 3/17/72 ID IMO,1-1 : Section H.,7 Page 8

UNIX IMPLEMENTATION

ID U7-8 getspl

FUNCTION -

getspl'" gets a device number from a special file name.

u.namep points to the name. "namei” is called to get the
i-number. i-number -4 is the device number. If it is less
than or equal to zero or it is greater than 9 an error oc-
curs, If not the device number is returned in ri.

CALLING SEQUENCE -
jsr r0O, getspl

ARGUMENTS -

INPUTS -
u.namep - pointg to the name of the special file

OUTPUTS =~
r1 - device number of the special file

Issue D Date 3/17/72 ID IMO.1-1 Section H.7 Page 9

UNIX IMPLEMENTATION

ID U7=5 4iclose

FUNCTION -

iclose checks to see if the file, whose i-number is in rvi,
'is special. If it is, a transfer is made to the appropriate
routine. If it isn’t a return is made.

CALLING SEQUERCE -
jsr r0, iclose

ARGUMENTS -

INPUTS - .
r1 - contains i-number of file being closed

OUTPUTS -

If special file, r1 is put on the stack, i.e., the i-number
is put on the stack.

Issue D Date 3/17/72 ID IMO.1-1 Section H.7 Page 10

UNIX IMPLEMENTATION

ID U7-4 1iopen

FUNCTION - ‘

iopen” opens the file whose i-pumber is in r1. If the file
is to be opened for reading access is called and the i-
number is checked to see if the file is special. If it is
special, a jump table of transfer addresses takes care of
transferring control to the correct special file routine,
If non-special file a return is made. If the file is to be
opened for writing, access is called and a check is made
to see if the file is a directory. If it is, an error oc-
curs, because users cannot write into directories. Special
"files are handled in the same manner as above. :

CALLING SEQUENCE -
jsr r0, iopen

ARGUMENTS -

INPUTS -
r1 - contains i-number of the file to be opened

OUTPUTS -
files i-node ieg in core

rt{ - if i-number was negitive upon entry it is positive on
exit

Issue D Date 3/17/72 ID IMO.§-1 Section H.7 Page 11

UNIX IMPLEMENTATION

ID U7-5 oppt - open paper tape file for read or write

FUNCTION = -
oppt performs the following functions:

1., Setz the reader enable bit in prs.
2. Assigns all ppt input locations in "clist” to freelist.

3. Sets 'pptiflg” to indicate file just open (=2) and
places 10 in toutt entry for ppt input.

CALLING SEQUENCE -
jmp oppt

INPUTS - '
pptiflg —~ used to determine if file already open

OUTPUTS - _
pptiflg - set by oppt to indicate file just open
ps - processor priority set to 5
prs - containg reader enable bit
toutt ti -~ contains cgunt for ppt input
See outputas for getc .

Issue D Date 2/17/72 ID IMO,1-1 Section H.7 Page 12

UNIX IMPLEMENTATION

ID U7-5 otty

FUNCTION -
otty opens the console tty for reading or writing. The
interrupt enable bits are set in the tks and the tps. If
the console is the first tty opened in this _procegss assign
its buffer address to u.ttyp return through sret .

CALLING SEQUENCE =
{conditional or unconditional branch, or jmp] otty

ARGUMENTS -

INPUTS - - -
gsee inputs for sret
u.ttyp ~ points to the buffer header for the process control
typewriter
(tty+70.) - lower byte of 1st word of header contains the number
of processes that opened the buffer
tty+70., - contains pointer to the header of the console tty buffer

OUTPUTS - :

u.,ttyp - points to the console tty buffer header if it was the
1st tiy opened by the process, therwise points to ?

r5 -~ points to header of console tty buffer

(r5) ~ lower byte (numier of procusses that opened the buffer)

. incraewented by one.
tke « reader status regiaster interrupt enable bit set, rest of
bits zeroed.
tpa - punch status register
See outputs for sret

Issue D Date 3/17/72 'ID IMO.1-1 Section H.7 Page 13

UNIX IMPLEMENTATION

ID U7-2 pptic - paper tape input control

FUNCTION -
pptic performq the fol’owing functions for ppt input:

1. If the error, busy and done bits are not set in the prs
and the character count for ppt input in the clist is less
than 30, pptic sets the reader enable bit.

2. Uses 'getc to get character from paper tape input area
of clist, If this area of "elist’ is empty, 2 check is made
to see if "pptiflg is set equal to six (indication that
exrror flag in pre is set during normal operation). If it
is, return is made to the calling routine Jwhich in turn
vreturng to its calling routine. 1f “pptiflg does not egual
six, the process is put to sleep.

CALLING SEQUERCE -
jsxr ro, pptic

INPUTS
cc+2 - containa clist character count for ppt input
prs - contains status bits for ppt reader
pptiflg - indtcates conditicn of ppt file

CUTPUTS -
. prs - contains reader _enable bit
see outnutg for ne*c

P8 = processor priority set to 5 and then to 0.

Issue D Date 3/17/72 ID IMO.1-1 Section H.7 Page 14

UNIX IMPLEMENTATION

1D U7-2 pptoc - paper tape output control

FUNCTION — : ‘

pptoc first checks to see if the character count for ppt
output in the clist is greater than 50, If it is, the pro-
cess is put to sleep. If it isn’t putc is used to place
the character which is in r1, in the clist. If the clist is
full, the process is put to sleep. If the character is
placed in clist, starppt 1is called to output the next
entry in the ppt output section of clist.

CALLING SEQUENCE -
Jsr r0, pptoc

INPUTS -
cc+3 - character count for ppt input in clist

OUTPUTS -
ps - processor priority aet equal to fluf -
see outputs for starppt and sleep and putce

Issue D Date 3/17/72 ID IMO,1-1 Section H.?7 Page 15

UNIX IMPLEMENTATION

ID U7-3 put’

FUNCTION -
Takes a clist entry pointed to by r2, and makes it the last
entry in the list identified by ri.

If this is the first entry in a currently empty list then
the first char pointer in c¢f is also updated.

CALLING SEQUENCE -
jsr r0, put

ARGUMENTS -

INPUTS -
rt (list identifier)
r2 (clist offset)

OUTPUTS =~ A
cl+1{r1), clist-1(r2), cf+1(rt)

Issue D Date 3/17/72 ID IMO.1-1 Section H.7 Page 16

UNIX IMPLEMENTATION

IDb U‘7-3 putc

FUNCTION -

Puts a character at the end of a list identified by the
argument in the putc call.

In detail it takes a clist entry from the free list via call
to get . Appends the entry to the list identified by arg
via call to put . Then £fills in the new entry with a char-
acter passed in ri.

CALLING SEQUENCE -

jsr r0, putc; arg

ARGUMENTS -

a;g)- list identifier (see discussion in G on tty device
I1/0

INPUTS -

r{ - character from device buffer.

OUTPUTS -

r2 =~ clist offset where character stored, cclarg),
clist-1(r2) ‘

Issue D Date 3/17/72 ID IMO.1-1 Section H.7 Page 17

UNIX IMPLEMENTATION

ID U7-~7 sysmount

FUNCTION - -

sysmount announces to the system that a removable file
system has been mounted on a special file. The device
pumber _of the special file is obtained via a call to
getspl”. It is put 4in the I/0 queue entry for the
dismountable file sgystem (sbt) and the I/0 queue entry is
get up to read. (bit 10 is set). ppoke" is then called to
read the file system into core, i.e. the first block on the
mountable file system is read in. This block is the super

block for the file systeme This call is super user res-
tricted,

CALLING SEQUENCE -
sysmount; special; nami

ARGUMENTS -
special - pointer to name of special file (device)
name - pointer to the name of the_ toot directory of the

newly mounted file system. "name” should alwasy be
a directory.

INPUTS =
mnti -~ records i-number of unigue cross file device
sp ~ containe the name of the file
sb1 -~ I/0 gueue entry for the dismountahlia file eyotem

OUTPUTS -
mntd - jenurber of gpeclal £ile
mntd - device nunmber of epecial file
8L1 - ﬁﬁs cevice number in lower byte
Tt S S T At S S

- e - - - ~L,<v,

4

file systan 13 read into core via pooke

Issue D Date 3/17/72 ID IMO.,1-~1 Section H.7 Page 18

UNIX IMPLEMENTATION

ID U7-8 sysumount

FUNCTION - - -
sysumount announces to this system that the special file,
indicated as an argument, is no longer to contain a remov-
able file system. getspl gets the device number of the
special file, If no file system was mounted on that device
an error occurs. mntd and mnti are cleared and control |is
passed to sysret.

CALLING SEQUENCE -
sysumount; special

ARGUMENTS -
special ~ special file to dismount (device)

INPUTS -
mntd - device number of mounted device
sb1 - I/O queue entry for the dismountable file system

OUTPUTS -

mntd - zeroed
mnti - zeroed

Issue D Date 3/17/72 ID IMO.1-1 Section H,7 Page 19

UNIX IMPLEMENTATION

ID U7-8 sysreta

FUNCTION - See 'syeret' routine

CALLING SEQUENCE -

ARGUMENTS -

INPUTS -

OUTPUTS -

Issue D Date 3/17/72 ID IMO.1-1 Section H,7 Page 20

UNIX IMPLEMENTATION

ID U7-1 ttych

FUNCTION -
ttych gets characters from the queue of characters input-
ted to the console tty. If there are none, sleep is called.
ttych works in the following manner:

1. the processor priority is set to S

2. a character is gotten off the gqueue via 'getc' if the
list is empty, sleep is called.

3. if not the process status is cleared and a return is
made.

CALLING SEQUENCE -

Jsr 0, *(ro) ttych was an argument in the call to
canon . '

ARGUMENTS -

INPUTS -

OUTPUTS -
ps = 0

r1 - character on top of list
See getc number 7, page 2 for others.

Issue D Date 3/17/72 ID IMO.1-1 Section H,7 Page 21

UNIX IMPLEMENTATION

ID U8-=1 Dbread

FUNCTION -
bread reads a block from a block structured device (rk,
rf, tape). It operates in the following way:

1. If "cold” =1 (cold boot) the block specified in ri1, 1is
read into an I/O buffer via preread’. If its a warm boot
(cold=0) the block in r1 and the next consecutive block are
read into I/O buffers via preread . The reason two blocks
are read in is to speed up the overall reading process. On
a cold boot, however, only two I/0 buffers are available, so
only one buffer us used.

2. The block number is always checked to see if the maximum
block number allowed on the device has been exceeded. (see
argument) If the block number does exceed the maximum, an
error occurs.

3. preread is called again on the first block. Since the
first block is already in an 1/0 buffer, all preread will do
is reverse the priority (see bufaloc H.8, page 9) so that
the first block is of higher priority than the second.

4., Bit 14 of the first block’s I/0 buffer is set.

S Bits 10 and 13 (the read bits) of this I/0 buffer are
now checked. If they are set (reading is still in progress)
and the device ig disk or drum, or the device is tape and
“uquant” £ _0 1d1e is called. If the device is tape and
uquant = 0, “"sleep 4is called., 1If bits 10 and 13 are O
(read done), bit 14 of the I/0 buffer is cleared and the
data is_moved from the I/0 buffer to the users area.
dioreg does the bookkeeping on the transfer.

6. If u.count =0 the reading is finished. If not. a branch
back to the start is taken and the above steps are repeated.

7. A return is taken to the routine that called "readi”.

CALLING SEQUENCE -
Jsr r0, bread; arg

ARGUMENTS =
arg - maximum block number allowed on device

INPUTS -
r2 - points to the users data areaj r3 has the byte count
(u.fofp) - is the block number
cdev - is the device
u.base - base of users data area
u.count -~ number of bytes to read in
rt - is used internally as the block number
cold - 0 warm boot or 1 cold boot '
rS - points to the beginning of the I/0 buffer or the data area
u.quant - time guantum allowed for each process

Issue D Date 3/17/72 ID IMO.1-1 Section H.8 Page 1

UNIX IMPLEMENTATION

OUTPUTS -
block or blocks of data into the users area starting at u.base
(u.fofp) - points to next consecutive block to be read
r3a0 -~ (used internally)

Issue D Date 3/17/72 ID IMO.1-9 Section H.8 Page 2

UNIX IMPLEMENTATION

ID U8-3 dioreg

FUNCTION -
;dioreg does the bookkeeping on block transfers of data.

It first checks to see if there are more than 512 bytes to
transfer. If so, it Jjust takes 512. If not, it takes
u.,count.

ARGUMENTS -

INPUTS - ' 7
u.count - number of bytes user wants transferred
u.base - start of users data area

OUTPUTS -
r3 - used internally to hold the count
u.nread - updated by adding r3
u.base - updated by adding r3
u.count « updated by subtracting r3
r2 -~ has value of u.base before it gets updated

Issue D Date 3/17/72 ID IMO,1-1 Section H,8 Page 3

UNIX IMPLEMENTATION

ID UB8-2 bwrite

FUNCTION -
"bwrite” writes on a block structured device (rf, rk, tape).

It operates in the following way:
1) The block number is placed in ri.

2) If the block number exceeds the maximum allowable block
nunber of the device an erroxr occurs. -

3) (u.fofp) is incremented to point to the next block ‘in
sequence. _

4) “wslot” is called to get an I/O buffer to write into.

5) “dioreq” 1s called to set up the bookkeeping for the
transfer,

6) The data is then transferred from the users area to the
I/0 buffer. *

7) Tdskwr” is called to write it onto the device.

8) If u.count #£0, the procedure is repeated. If it is, a
return to the routine that called “"writei” is made.

CALLING SEQUENCE -~
jsr r0, bwrite; arg

ARGUMENTS -
arg - is the maximum allowable block number for the device.

INPUTS =
(usfofp) is the block number
cdev -~ is the device
r1 - is used internally to hold the block number
r5 - points to the I/0 data buffer
r2 - points to the users data area; initiadlly its u.base
u.count - number of bytes user desires to write
r3 - has the byte count

OUTPUTS -

(u.fofp) is the next block to be written into
r3=0 (used internally)

Issue D Date 3/17/72 ID IMO,1-1 Section H.,8 Page 4

UNIX IMPLEMENTATION

ID U8~7 drum

FUNCTION - _

drum' is8 the interrupt handling routine for the d4rum. drum
is called after the transfer of data to or from the drum 1is
complete i.e., when the ready bit in the dcs (drum control
register) is set. (see interface manual, page 73-74.) ri,
2, r3 and clockp are saved on the stack (see setisp) calls
trapt to check for stray interrupt or .error. If neither,
it clears bits 12 and 13 in 1st word of transaction buffer,
checks for more disk buffers to read into or write; then
returns from interrupt by calling retisp.

CALLING SEQUENCE -

called by interrupt vector at location 204 after data
transmission has taken place, i.e., ready bit of dcs set.

INPUTS -~

same as setisp, trapt and retisp

OUTPUTS -

same as setisp, trapt and retisp

CALLED BY -

interrupt vector

CALLS -

setisp, trapt

Issue D Date 3/17/72 ID IMO.1-1 Section H.8 Page 5

ID UB-~4 poke

FUNCTION -

UNIX IMPLEMENTATION

poke performs the basic I/0 functions for all block struc-

tured devices. In order to understand the functioning of
poke, the general handling of block structured I/O must be
described.

I/0 on block structured devices is handled vja a collection
of data buffers beginning at location buffer each buffer

congists

of a four word I/0 queue entry followed by a 256

word data buffer.

An I/0 queue entry has the following form:

write bit
read bit |
waiting to write bit | !
waiting to bit — !
inhibit bit i i i i
15 13 12 10 9 7 0
! device id

physical block number

word count (=256)

bus address

byte 0 - device id codes are

0 = drum
1 = disk
other = dec tape

byte 1 - write bit - when set indicates write the data in

the buffer out onto the device identified in byte
o.

read bit - when set indicates fead data off of the
indicated device into the data buffer.

waiting to write bit - if set indicates that a
write operation has been requested but not yet ¢om-
pleted.

waiting to read bit -~ if set indicates that a read
operation has been requested but not yet completed.

inhibit bit -~ when set will delay request for
operation indicated by write bit or read bit wuntil
cleared.

‘Issue D Date 3/17/72 ID IMO.1-1 Section H.8 Page 6

UNIX IMPLEMENTATION

byte 2.3 - physical block number (see Section F, discussion
of file system) .

byte 4-5 - word count ~ number of words in buffer; loaded
into word count register for device, '

byte 6-7 - bus address - address of first word of data
buffer. .

In addition to the general I/O queue entries there are three
special entries at locations sb0, sb1, and swp. These are
the I/0 queue entries for the super block for drum (sbO),
the super block for the mounted device (sb1), and the core
image being swapped in or out (swp) - thgse entries are ini-
tialized in the allocate disk buffers segment of code in
ul.

An area in core starting at location 'bufp' and extending
nbuf + 3 words, contains pointers to the I/0 queue entries.
This table of pointers represents the priority of 1/0 re-
quests, since poke scans these pointers starting at the
highest address in bufp , examining the control bits in
byte 1 of each I/0 queue entry. pointed to by the bufp
pointers. If either bit 9 or 10 is set and neither of bits
15, 13, or 12 is set then poke will attempt to honor the I/0
request,

To honor an I/O request, poke checks “active” to see if the
bit. associated with the device is clear. If it is clear
poke initiates the I/O operations by loading the appropriate
device registers, In all I/0 operations the interrupt is
enabled and thus when completed an appropriate routine 1is
called via the interrupt. When poke initiates a I/0 opera-~
tion it clears bit 9 or 10 and sets bit 41/2 or 42./3 The
routine called upon completion of the I/0 operation will
clear bit %j or ﬁ?‘thus freeing that I/0O queue entry.

“"poke” calculates a physical disk address (which is loaded
into register rkda) from the physical block number in the
following way:
let N = physical block number
then
sector number = remainder N

» 12,
surface = O0; quotient N even

12.
13 quotient N odd

12.
cylinder = quotient quotient N /2
12
Issue D Date 3/17/72 ID IMO.1-1 Section H.8 Page 7

UNIX IMPLEMENTATION
“"poke” calculates a physical disk address for the drum from
the physical block number in the following way:
The drum address is given in the dae and dar reglsters.

1 0 15 11 10 0

dar

|
dae’ %

track word

The physical block number is essentially multiplied by 256
(by shifting the low order byte into the high order byte of
the dar, and shifting the high order byte into the low order
byte of the dae.

CALLING SEQUENCE -
jsr r0, poke

ARGUMENTS -

INPUTS - o
buffer pointers,
I/0 queue entries

OUTPUTS -

gets bits 12 and 13 on I/0 queue entries where I/O operation
is initiated,

Issue D Date 3/17/72 ID IMO,1-1 Section H,8 Page 8

UNIX IMPLEMENTATION

ID U8-5 bufaloc

FUNCTION - : _

bufaloc scans the 1I/0 buffers for block structured deve
ices, looking for an active buffer (bits 9,...15 of the 1st
word in the 1I/0 queue entry for the buffer are set) which
has already been assigned to the block number and device
currently under consideration, or for a free buffer (bits
9,¢0415 not set) which has been previously assigned to this
device and block number, If there is no such buffer, the
vacant buffer with the highest core addresg is assigned. If
no free buffer is found, bufaloc calls "jdle” ., Eventual-
ly, a buffer is located. The routine poke which actually
performs the I/0O operations scans the bufp area of core
from the highest to the lowest address. Thus the priority
of an 1I/0 queue entry is established by where a pointer to
the I/0 queue entry appears in bufp.

The_ newly assigned buffer I/O queue entry pointer is placed
in bufp thus making it the lowest priority I/O operation
in the queue. The other entries in bufp are moved into
higher addresses to accomodate the newly assigned buffers
I/0. queue entry pointer at location bufp.

Once the buffer has been assigned the device number is put
into the 1low half of word 1 of the corresponding I/0 queue
entry and the block number is put into word 2 of the 1/0
queue entry.

CALLING SEQUENCE -
jsr ro, bufaloc

ARGUMENTS -

INPUTS -
cdev, ri (block numberz, bufp+2#n-2, (bufp+2¥n-2),
(bufp+2¥n-2) +2:n=1,...,nbuf

OUTPUTS =

r5 (pointer to buffer assigned), bufp,ses,bufp+i2, (bufp),
(bufp)+2,ps

Issue D Date 3/17/72 ID IMO, 1-1 Section H.8 Page 9

UNIX IMPLEMENTATION

ID U8~3 dskrd

FUNCTION - _ |
dskrd” acquires an 1/0 buffer, puts in the proper I/0 queue
entries {(via bufaloc) then reads a block (number specified
in r1) into the acquired buffer. If the device is busy at
the time dskrd is called, dskrd calls idle. Once the I/0
operation is completed r5 is set to point to the first data
word in the buffer.

CALLING SEQUENCE =
jsr r0, dskrd

ARGUMENTS =
INPUTS -

OUTPUTS -~
r5 - pointer to first word in data block; (rS) ; ps

Issue D Date 3/17/72 ID IMO,1-1 Section H.8 Page 10

UNIX IMPLEMENTATION

ID U8-3 dskwr p]
1 Lo’
PUNCTION - '
dskwr writes ‘a bl out on disk, via ppoke. The only

thing dskwr does is @et bit 15 in_the first word of the 1I/0
gqueue entry pointed to by bufp + wslot which must have
been called previously has supplied all the information
required in the I/0 queue entry.

CALLING SEQUENCE -
jsr r0, dskwr

ARGUMENTS -
INPUTS -

OUTPUTS -
(bufp)

Issue D Date 3/17/72 ID IMO.1-1 Section H.8 Page 11

UNIX IMPLEMENTATION

ID U8-~3 error 10

FUNCTION - See "error" routine

CALLING SEQUENCE -

ARGUMENTS -

INPUTS -

OUTPUTS =

Issue D Date 3/17/72 ID IMO.1-1 Section H.8 Page 12

UNIX IMPLEMENTATION

ID U8-3 preread

FUNCTION -
preread is called by "bread” to read in a Jdisk block on
device cdev . The block number is in rit. preread gets a
free 1/0 buffer via bufaloc . It sets bit 10 of the first
word of the 1I/O buffer and_then reads the specified block
into the I/0 buffer via poke . If the I/O buffer already
contains_ the specified block bit 10 is not set and the call
to poke is skipped. The processor status is then cleared.

CALLING SEQUENCE -
jsr r0, preread

ARGUMENTS -

INPUTS -
r1 = block number to read
r5 - points to first word of I/O buffer

OUTPUTS -
specified block into an I/O0 buffer
ps =0
r5 - points to first word of the I/O buffer

Issue D Date 3/17/72 ID IMO.1=% Section H.8 Page 13

UNIX IMPLEMENTATION

ID U8-1 rtap

FUNCTON —_
rtap is the read routine for dec tape. The device number
is (i-number/2)-4. The i-number 4is 4in r1 upon entrye.
“bread” is called to read the proper block or blocks.

CALLING SEQUENCE -
from jump table in readi

ARGUMENTS -

INPUTS =
r1 - is the i-number of the special file

OUTPUTS -

cdev is the device nuMber
see outputs for “bread”,

Issue D Date 3/17/72 ID IMO. -1 Section H.8 Page 14

UNIX IMPLEMENTATION

ID U8-6 tape

FUNCTION - _, -

tape handles the dec tape interrupts. setisp is first:
called to save registers and the tlockp. The state of the
dectape (tgstate) i.e., reading, writing, idle, etc. is put
in 3. trapt 1s then called to check for data transmis-
sion errors. If none occur control passes to the appropri-
ate dec tape routine depending on what the stat is. Control
is passed by putting r3 in the pc. If an error occurs a
jump to taper is made,

CALLING SEQUENCE -
interrupt vector

ARGUMENTS -

INPUTS -
tcstate - the state of the dec tape (read, wri“ e, etc.)

OUTPUTS - , * : .
control passes to appropriate dec tape routine
pc ~ set to address of above routine
r3 - is used to hold the address of above routine

Issue D Date 3/17/72 ID IMO.1-1 Section H,8 Page 15

UNIX IMPLEMENTATION

ID UB-8 trapt
FUNCTION -

trapt” is part of the drum, disk, or dec tape interrupt
handler. The ready bit of the device control register is
checkeds If the ready bit is ngt set the device is still
active so a return through retisp is made. It then JChecks
to see 1if a stray interrupt has occured. If not, trapt
checks to see if an error in the data transmission has oc-
cured, If so, the return is skipped. If not, the return is

not skipped. The return is via a jmp.

CALLING SEQUENCE -
jsr r0, trapt; dv; buf; act
br normal
br error

ARGUMENTS -
dv - device ccntrol status register (for dec tpe it is
the command register)
buf - contains address of disk buffer being read into
or written
act - tested against the bits in “active” to see if the
device was busy

INPUTS -
active - contains bits that tell which devices are busy

OUTPUTS -
r1 - points to the disk buffer
r2 - points to the device control and statusvregister or
command register depending on the argument.

Issue D Date 3/17/72 ID IMO.1-1 Section H.8 Page 16

UNIX IMPLEMENTATION

ID U8-2 tst devc

FUNCTION - - :
tstdeve checks to see whether a permanent error has oc-
cured on special file 1I/0. (It only works for tape,
however.) If there is an error, the error is cleared and
the user is notified.

CALLING SEQUENCE -
jsr r0, tstdevc

ARGUMENTS -

INPUTS -
cdev - the device in question
(r1)+deverr - the device’s in question error indicator

OUTPUTS -
r1 = cdev = the device number
If no error, nothing else happens '
If error, (r1) + deverr gets cleared and user notified
via error 10.

Issue D Date 3/17/72 ID IMO.1%-1 Section H.8 Page 17

UNIX IMPLEMENTATION

ID U8=3 wslot

FUNCTION - _ - - :
wslot ~calls bufaloc and obtains as a result, a pointer
to the I/Q0 queue of an I/0 buffer for a block structured
device. bufaloc has inserted into thig I/O queue the dev-
ice number and blogk number which wslot passes from 1its
caller to bufaloc .

It then checks the first word of the I/0O queue éntry.. If
bits 10 and/gor 13 (read bit, waiting to read bit-sec H.8, p.
5) are set, wslot calls idle . ~ :

When :1d1e' returns, or if bits 10 and/or 13 are not set,

wslot” sets bits 9 and 15 of the first word of the I/0
queue entry (write bit, inhibit bit), sets the processor
priority to zero, and sets up a pointer to the first data
word in the I/0 buffer associated with the I/0O queue.

CALLING SEQUENCE -
jsr r0, wslot

ARGUMENTS =

INPUTS - - -
See inputs for bufaloc - H.8 p. 1

OUTPUTS - '
(bufp) - bits 9 and 15 are set, the remainder of the word
is left unchanged
ps - 0 ' o
r5 - points to first data word in I/O buffer

See outputs for "bufaloc” - H.8 pe. 1. Note that outputs given
above take precedence over outputs from bufaloc

Issue D Date 3/17/72 ID IMO, 1-1 Section H.8 Page 18

UNIX IMPLEMENTATION

ID U9-6 recvch - receive character

FUNCTION - "
“"rcvch” uses “getc” to read a character from the tty’s read
section of the clist. If it is empty, the process is put to
sleep. When the process is awakened, rcvch again tries to
obtain a character from clist. '

CALLING SEQUENCE =
jsr r0, rcvch

INPUTS -
r2 - contains 8xtty no.
mcsry + 8xttyn - carrier detect and clear data term bits
See inputs for getc and sleep .

OUTPUTS -

ps - set processor status to 5 -
See outputs for "sleep and getc

Issue D Date 3/17/72 ID IMO.%-1 Section H.,9 Page 1

UNIX IMPLEMENTATION

ID U9-6 rcvt - read tty

FUNCTION - . . _

"rcvg” places tty characters in the user buffer area. If
the raw flag in the tty area is set a character 'is ob-
tained from the tty’s input area of clist. If the flag is
not set, “"canon” is used to process a line of tty characters
and place them in the users buffer area.

CALLING SEQUENCE -
jmp revt

INPUTS -
r{ - contains 2xttyno.
rcsr+8xttyno - carrier detect and clear data term bits
tty+8xttyno+6 - pointer to tty buffer
tty+8xttyno+4 - raw data flag _
See inputs for “canon” ’ passc s getc and rcvch

OUTPUTS -
ps - _set processor priority_to_ 5
See cgnon ’ passc s getc , "reveh” and
sleep outputs,

Issue D Date 3/17/72 ID IMO.1-1 Section H,9 Page 2

UNIX IMPLEMENTATION

ID U9-3 starxmt

FUNCTION -

-

starxmt does the following:

1. checks to see if the output character count for the tty
in clist is less than 10, If it is, starmxt uses wakeup
to wakeup the process identified in the "wlist” entry for
the tty output channel,

26 Checks to see 1f the toutt entry for the tty output is
equal to zero. If it is not, control is passed back to the
calling routine.

3. Checks to see if the ready bit in the tty’s tscr regis-
ter is set, If it is not, control is passed back to calling
routine. ‘

4. Checks 3rd byte of tty’s "tty area (contains character
left over after 1f,.,) for a null character. If the byte con-
tains a non null entry, the entry is used as the next char-
acter to be output. If the entry is nul, the nex} character
to be output is obtained from the clist via getc o

5. Adds 200 to ASCi1 code of character $o be _output if
digit 2 (far _left digit) of entry in partab’ table for
character is a 2",

6. Checks tty’s recsr buffer to determine if carrier is
present, If it is not, the character is dropped and a new
character 1is obtained by returning to the beginning of the
subroutine, If the carrier is present a check -is made to
determine if the character tg be output ig “ht"., If it is a
check is made tQ see if the “tab to space” flag (bit 1 of
Sth byte in tty area) is set. If it is the character to be
output is changed to a space (ASC11 40).

7. Places character to be output in tty’s *“tcbr” buffer.
“"starxmt” then does one of the following dependent on the

gharactgr to be output (digits 0 and 1 of the characters
partab entry are used as offsets into jump table).

ae. For ASC11 codes 40-176, increments column pointer
which is in byte 2 of tty area.

b. For ASCi1 codes 0-7, 16-37 and 177, does nothing.
c. For AsC11 0 10 (bs), decrements column pointer.

4. For AsC11 012 (1f), checks for setting of cr flag
(bit 4 of 4th byte in tty area). If_it is set ASC11
‘015 (cr) is placed in e 3 of ttg area (character
left over after line feed starxmt then determines
value for the tty’s output ent in the tout table.
This valye js depgndgnt on whether 1£" is to be output
or both 1f and cr .

Issue D Date 3/17/72 ID IMO.{~1 Section H.9 Page 3

UNIX IMPLEMENTATION

e. For AsC11 011 (ht) does sgme _fooling around with
column count and 3rd byte of tty area (character left
over after 1f) dependent on yalue of tab to space
flag in 5th byte of tty area. It then determines
value for the tty’s output entry in the tout table.

f. For ASC11 013 (vt), determines value for the‘tty's
output entry in tout table. ‘

g. For ASC11 015 (cr), determines value for the tty’s
output entry in tout table and sets column pointer = 0.

CALLING SEQUENCE -
jsr r0, starxmt

INPUTS -

(sp) = contains 8xtty number :

tty+3+8xttynumber - contains offset in cc, cf, and cl lists for tty
cc+(tty+3+8xttynumber)+1 - contains character count for tty

output in clist

tty+1+8xttynumber - contains column pointer for tty
tty+2+8xttynumber - contains character left over after 1f

for tty

tty+4+8xttynumber - contains flags for tty

See outputs for 'getc".

resr+8xttynumber - contains carrier present flag for tty
tesr+8xttynumber - contains ready flag for tty

OUTPUTS - “« -
See inputs to getc
cc+(tty+3+8xttynumber)
tty+1+8xttynumber see inputs above
tty+2+8xttynumber -
tcbhr+8xttynumber - contains character to be output on tty
toutt+3+ttynumber - contains tout entry for tty

Issue D Date 3/17/72 ID IMO.1~1 Section H.9 Page 4

UNIX IMPLEMENTATION

ID U9~ xmtt

FUNCTION - - -

xmtt uses cpass to obtain the next character in the
user’s buffer area. If the character count for the tt
(identified by i-node number of tty’s special file in stackx
{s ggeater Jthan 50, the process is put to sleep. If not,
xmtt uses putc _to determine if there is an entry gvail:
able in freelist portion of clist . If there is, putc
places the character there and assigns the location to the
tty portion of clist . If there is no location available
in “freelist portion of clist , the process Jis put to '
sleep. If there is a vacant location, starxmt is used to
attempt to output the character on the tty. Upon return
from gtarxmt the next character 1is obtained from the
user’'s buffer area. If the buffer 1is egpty, Jcontrol is
passed back to the calling routine via cpass . When the
process is awakened by awake , it trys again ¢to find a
location available in freelist and a character count for the
tty output less than 50 so it can output characters.

CALLING SEQUENCE -
Jmp xmtt

INPUTS - - -
See inputs for cpass . -
(sp) - contains i-number of tty’s special file
ri - contains character to be placed in clist uponvreturn
from cpass

OUTPUTS -

See inputs for "starxmt” and 'putc'
processor priority set to 5

Issue D Date 3/17/72 ID IMO.1~-1 Section H.9 Page S

	000
	001
	002
	003
	004
	E00-01
	E00-02
	E00-03
	E00-04
	E00-05
	E00-06
	E00-07
	E00-08
	E00-09
	E00-10
	E01-01
	E01-02
	E01-03
	E01-04
	E01-05
	E01-06
	E01-07
	E01-08
	E01-09
	E01-10
	E02-01
	E02-02
	E02-03
	E02-04
	E02-05
	E02-06
	E02-07
	E02-08
	E02-09
	E02-10
	E03-01
	E03-02
	E03-03
	E03-04
	E04-01
	E04-02
	E04-03
	E04-04
	E04-05
	E04-06
	E04-07
	E05-01
	E05-02
	E05-03
	E05-04
	E05-05
	E05-06
	E06-01
	E06-02
	E06-03
	E06-04
	E06-05
	E06-06
	E07-01
	E07-02
	E07-03
	E07-04
	E07-05
	E07-06
	E07-07
	E07-08
	E08-01
	E08-02
	E08-03
	E08-04
	E08-05
	E08-06
	E08-07
	E08-08
	E08-09
	E09-01
	E09-02
	E09-03
	E09-04
	E09-05
	E09-06
	E09-07
	E09-08
	E10-01
	E10-02
	E11-01
	E11-02
	E11-03
	E11-04
	E11-05
	E11-06
	E11-07
	E12-01
	E12-02
	E12-03
	E12-04
	F-01
	F-02
	F-03
	F-04
	F-05
	F-06
	F-07
	F-08
	F-09
	F-10
	F-11
	F-12
	F-13
	F-14
	F-15
	F-16
	F-17
	G-01
	G-02
	G-03
	G-04
	G-05
	G-06
	G-07
	G-08
	G-09
	G-10
	G-11
	G-12
	H0-01
	H0-02
	H0-03
	H0-04
	H0-05
	H0-06
	H0-07
	H1-01
	H1-02
	H1-03
	H1-04
	H1-05
	H1-06
	H1-07
	H1-08
	H1-09
	H1-10
	H1-11
	H1-12
	H1-13
	H1-14
	H1-15
	H1-16
	H1-17
	H1-18
	H1-19
	H1-20
	H1-21
	H1-22
	H1-23
	H1-24
	H1-25
	H2-01
	H2-02
	H2-03
	H2-04
	H2-05
	H2-06
	H2-07
	H2-08
	H2-09
	H2-10
	H2-11
	H2-12
	H2-13
	H2-14
	H2-15
	H2-16
	H2-17
	H2-18
	H2-19
	H2-20
	H2-21
	H2-22
	H2-23
	H2-24
	H2-25
	H2-26
	H2-27
	H2-28
	H2-29
	H2-30
	H2-31
	H2-32
	H2-33
	H2-34
	H3-01
	H3-02
	H3-03
	H3-04
	H3-05
	H3-06
	H3-07
	H3-08
	H3-09
	H4-01
	H4-02
	H4-03
	H4-04
	H4-05
	H4-06
	H4-07
	H4-08
	H4-09
	H4-10
	H4-11
	H4-12
	H4-13
	H4-14
	H5-01
	H5-02
	H5-03
	H5-04
	H5-05
	H5-06
	H5-07
	H5-08
	H5-09
	H6-01
	H6-02
	H6-03
	H6-04
	H6-05
	H6-06
	H6-07
	H6-08
	H6-09
	H6-10
	H6-11
	H6-12
	H6-13
	H6-14
	H7-01
	H7-02
	H7-03
	H7-04
	H7-05
	H7-06
	H7-07
	H7-08
	H7-09
	H7-10
	H7-11
	H7-12
	H7-13
	H7-14
	H7-15
	H7-16
	H7-17
	H7-18
	H7-19
	H7-20
	H7-21
	H8-01
	H8-02
	H8-03
	H8-04
	H8-05
	H8-06
	H8-07
	H8-08
	H8-09
	H8-10
	H8-11
	H8-12
	H8-13
	H8-14
	H8-15
	H8-16
	H8-17
	H8-18
	H9-01
	H9-02
	H9-03
	H9-04
	H9-05

