
, q 7
I{ .,.

'i...

DRAFT

The UNIX Time-Sha.ring System

D. M. Ritchie

Introduction

UNIX is a general-purpose, multi-user time sharing system im-

\ plernented on several Digital Equip~ant Corporation PDF serie~
)

machines.

UNIX was written by K. L. Tho::ipson, who also wrote many of tf:e

command programs. The author of this meraorandum contributed

several of the major coramands, including the assembler and the

debugger. The file system was originally designed by Thompson,

the author, ~nd R. H. Canaday.

'rhere are two versions of UNIX. The first, which has been in ex-

istence about a year, rtlns on the PDP-7 and -9 coraput~rs; a more

modern version, a few months old, uses the PDP-11. This docu:r.ent

describes U~IX-11, since it is more modern and many of the dif-

f erences between it and UNIX-7 result from redesign of features

) found to be deficient or lacking in the earlier system.

Although the PDP-7 and PDP-11 are both small compute rs, the

design of UNIX is amenable to expansion for use on more powerful

machines. In:'ieed, UNIX contains a number of features v::~.ry selcom

offe red even by large r syste~s, including

1o A versatile, convenient file system with complete integra-

tion between disk file s and I/O devices;

..
. l

;

"

)

- 2 -

2. The ability to initiate asynchrously running processes.

It must be said, however, that the most important features of

UNIX are its simplicity, elegance, and ease of use.

Besides the system proper, the major programs available under

UNIX are an assembler, a text editor based on QED, a symbolic

debugger for examining and patching faulty programs, and " "
B ' a

higher level language resembling BCPL. UNIX-7 also has a version

of the compiler writini:r language TMGL contributed by M. D.
· ~~

Mcilroy, and besides its own assembler, there'-t~ is a PDP-11

assembler which was used to write UNIX-11. On the PDP-11 there is

a version of BASIC ·[reference] adapted from the one supplied by

DEC [reference]. All but the last of these programs were written

locally, and except for the very first versions of the editor and

assembler, using UNIX itself.

£. Hardware

The PDP-11 on 'i~hich UNIX is implemented is a 16-bit 1 2K computer,

and UNIX occupies BK words. More than half of this space,

however, is utilized for a variable number of disk buffers; with

some loss of speed the number of buffers could be cut

significantly.

The PDP-11 has a 256K word disk, almost all of which is used for

file system storage. It is equipped with DECTAPE, a variety of

magnetic tape facility in which individual records may be addres-

sed and rewritten at will. Also available are a high-speed paper

tape reader and punch. Besides the standard Teletype, there ar3

... - 3 -

several variable-speed communications inter.=aces.

l· The File System

The most important role of UNIX is to provide a file system·. From

the point of view of the user, there are three kinds of files:

ordinary disk files, directories, and special files.

-\
J l·! Ordinary Files

A file contains whatever information the user places there, for

example symbolic or binary (object) programs. No particular

structuring is expected by the system. Files of text ordinarily

consist simply of a string of characters, with lines demarcated

by the new-line character. Binary programs are sequences of words

as they will appear in core memory when the program starts

executing. A few user programs generate and expect files with

more structure; for example, the assembler genera~es, and the

debugger expec~s, a name list file in a particular format;

howeve r, the structure of files is controlled solely by the

programs which use them, not by the system.

l·~ Directories

Dire ctories (sometimes , "catalogs"), provide the mapping between

the names of files and the files themselves, and thus induce a

structure on the file system as a whole. Each user has a direc-

tory of his own files; h e ma y al s o create subdire ctories to con-

tain a,roups of files conveniently treated together.

~ - 4 -

A directory is exactly like an ordinary file except that it can-

not be written on by user programs, so that the system controls

the contents of directories. However, anyone with appropriate

--) permission may read a directory just like any other file.

The system maintains several directories for its own use. one of

these is the root directory. All files in the system can be found

by tracing a path through a chain of directories until the
)

/ desired file is reached. The starting point for such searches is

often the root, which contains an entry for each user's master

directory. Another system directory contains all the programs

provided as part of the system; that is, all the commands

(elsewhere, "subsystems"). As will be seen, however, it is by no

means necessary that a program reside in this directory for it to

be used as a command.

Files and directories are named by sequences of eight or fewer

characters. When the name of a file is specified to t:he system,

it may be iu the form of a path ~' which is a sequence of

directory names separated by slashes and ending in a file nameo

If the sequence begins with a slash, the search begins in the

root directory. The name "/a/b/c" causes the system to search the

for directory
.. ..

search
.. ..

for "b .. and root a . then to a then to
' '

find
.. ..

in
..

be ordinary file, directory, c b. c may an a or a

"/" special file. As a limiting case, the name refers to the root

) itself.

The same non-directory file may appear in several directories un­

der possibly different names. This feature is called "linking"; a

directory entry for a file is so:netimes called a link. UNIX dif-

.. - 5 -

f ers from other systems in which linking is permitted in that all

links to a file have equal status. That is, a file does not ex-

ist within a particular directory; the directory entry for a file

-; consists merely of its name and a pointer to the information ac--

")

tually describing the file. Thus a file exists independently of

any directory entry, although in practice a file is made to

disappear along with the last link to it.

When a user logs into UNIX, he is assigned a default current

directory, but he may change to any directory · readable by him. A

path name not starting with "/" causes the system to begin the

Thus, the name "a/b" search in the user's current directory.

specifies the file named "b" in directory "a", which is found in

the current working directory. The simplest kind of name, for ex-

ample
II It

a , refers to a file which itself is found in the working

directory.

Each directory always ·has at least two entries. The 'name"." in

each directory . refers to the directory itself. Thus a program may

" " . read the current directory under the name • without knowing its

actual path name. The name " " •• by convention refers to the

_) parent of the directory in which it appears; that is, the direc­

tory in which it was first created.

The directory structure is constrained to have the form o f a

rooted tree. Except for the special entrie s " " • and " , each
)

j dire ctory must a ppea r as an entry in exactly one othe r, which is

i t s par ent. The r e a son f o r this i s t o s implify the writing of

programs which visit subtree s of the directory structure , and

more importa nt, to a void the s eparation o f portions of the

- 6 -

hierarchy. If arbitrary links to directories were permitted, it

would be quite difficult to detect when the last connection froill

the root to a directory was severed.

)
l·l Special Files

Special files constitute the most unusual feature of the UNIX

file system. Each I/O device supported by UNIX is associated with
\
J at least one special file. Special files are read and written

just like ordinary disk files, but the result ' is activation of

the associated device. Entries for all special files reside in

the root directory, so they may all be referred to by "/" fol-

lowed by the appropriate name.

The special files are discussed further in section 6 below.

3 • .1 Protection

The protection scheme in UNIX is quite simple. Each user of the

system is assigned a uniql,.le user number. When a file ·is created,

it is marked with the number of its creator. Also given for new

\ files is a set of protection bits. Four of these specify indepen-
)

dently permission to read or write for the owner of the file and

for all other users. A fifth bit indicates permission to ex ecute

the file as a program. If the sixth bit is on, the system will

temporarily change the user identification of the current user to
\I

j that of the creator of the file whenever the file is executed as

a progr a m. Thi s f eature provide s for privile ged programs which

may use files which should ne ither be read nor changed by other

users. If the set-user-identification bit is on for a progr a8,

- 7 -

the accounting file may be accessed during the program's execu-

tion but not otherwise.

-) ~.~ System I/Q Calls

)

The system calls to do I/O are designed to eliminate the dif-

f erences between the various devices and styles of access. There

is no distinction between "random" and sequential I/O, nor is any

logical or physical record size imposed by the system. The size

of a file on the disk is determined by the location of the last

piece of information written on it; no predetermination of the

size of a file is necessary. In UNIX-11, the unit of information

is the 8-bit byte, since the PDP-11 is a byte-oriented machine.

To illustrate the essentials of I/O in UNIX, the basic calls are

summarized below in an anonymous higher level languac:;re which will

indicate the needed parameters without getting into the complex-

ities of machine language prograrmning. (All system earls are also

described in .Appendix 1 in their actual form.) Each call to the

system may potentially result in an error r e turn, which for sim-

plicity is not represented in the c a lling s equence.

To read or write a file assumed to ex ist already, it must be

opened by the following call:

fil ep = open(name , flag)

Name ind icates the name of the file. An arbitrary path name may

be give n. The f lac argument ind icates whethe r the file is to b e

- 8 -

H H

read or written. If the file is to be updated , that is read and

written simultaneously, it may be opened twice, once for reading

and once for writing.

The returned arcrument _, filep is called a file descriptor. It is

used to identify the file in subsequent calls to read, write or

otherwise manipulate the file.

-~) There are no locks in the file system, nor is there any restric­

tion on the number of users who may have a file open for reading

or writing. Although one may imagine situations in which this

fact is unfortunate, in practice difficulties are quite rare.

3 • .2,.l Create

To create a new file, the following call is used.

filep = create(name, mode)

Here filep and name are as before. If the file already existed,

it is truncated to zero length. Creation of a ftle implies

opening for writing as well. The mode argument indicates the per-

')
missions which are to be placed on the file by the protection

mechanism. To create a fil<=?, the user must have write permission

in the dir~ctory in which the filA is being created.

)
Except as indicated below, reading anc1 writing are sequential.

This means that if a particular byte in the file was the last

byte written (or read), the next I/O call implicitly refers to

- 9 -

the first following byte. For each open file there is a pointer,

maintained by the system, which always indicates the next byte to

be read or written. If n bytes are read, the pointer advc>.nces by

'· -) n bytes.

Once a file is open for writing, the following call may be used.

nwritten = write(filep, buffer, count)

Buffer is the address of count sequentially stored bytes (words

in UNIX-7) which will be written onto the file. nwritten is the

number of bytes actually written; except in rare cases it is the

same as count. Occasionally, an error may be indicated; for exar.,-

ple if paper tape is being written, an error occurs if the tape

runs out.

For disk files which already existed (that is, were opened by

open, not create) the bytes written affect only those implied by

the position of the .write pointer and the number of bytes

written; no other part of the file is changed.

) To read, the call is
__ _/

nread = read(filep, buffer, count)

Up to count bytes are read from the file into buffer. The number

) actually read is returned as nread. Every program must be
._j

prepared for the possibility that nre~d is less than count. If

the read pointer is so near the end of the file that reading

count characters would cause reading beyond the end, only suf-

- 10 -

ficient bytes are transmitted to reach the end of the file.

Furthermore, devices like the typewriters work in units of lines.

Suppose, for example, that before anything has been typed a

) program tries to read 128 characters from the console. This for­

ces the program to wait, since nothing has been typed. The user

now types a line consisting, say, of 10 characters and hits the

" new 1 . ..
ine key. At this point the read call would return in-

dicating 11 characters read (including the new line). On the

other hand, it is permissible to read fewer characters than were

typed without losing information; for example bytes may be picked

up one at a time.

When the read call returns with nread equal to zero, it indicates

the end of the file. For disk files this occurs when the read

pointer becomes equal to the current size of the file. It is pos-

sible to generate an end-of-file from a typewriter by use of an

escape sequence which depends on the device used.

2.·2·2 Seel<

To do " " random , that is, direct access I/O it is only necessary

) to move the read or write pointer to the appropriate location in

the file.

seek(filep , base , offset)

) The read pointer (respectively write pointer) associated wi th

fil e n is moved to a position o~fset words from the beginnin],

f rom the current position of the pointer, or from the end of the

file, depending on whether ba se is o, 1, or 2. Offset may ;:e

)

)

)

- 11 -

negative to move the pointer backwards. ?or some devices (e.g.

paper tape and typewriters) seek calls are meaningless and are

ignored.

The current position of the pointer may be discovered as follows:

offset = tell(filep, base)

As with seek, filAD is the file descriptor for an open file, and

base specifies whether the desired off set is to be measured from

the beginning of the file, from the current position of the poin­

ter, or from the end. In the second case, of course, the result

is always zero.

4. Implementation of the File System

As mentioned in section 3.2 above, a directory entry contains

only a name for the associated file and a pointer to the file

itself. This pointer is an integer called the i-numbe~ (for iden­

tification number) of the file. When the file is accessed, its i-.

number is looked up in a s.ystem table stored in a known part of

the disk. The entry thereby found (the file's i-node) contain3

the deGcription of the file:

1. its owner;

2. its protection bits;

3. the physical disk addresses for the file contents;

4. its size;

5. times of creation and last modification;

- 12 -

6. the number of links to the file; that is, the number of

times it appears in a directory;

7. bits indicating whether the file is a directory and whether

it is special (in which case the size and disk addresses-

are meaningless);

" " " " 8. a bit indicating whether the file is large or small.

There is space in each i-node for eight disk addresses. A file

) which fits into eight or fewer 64-word (128-byte) blocks is con-

)

)

sidered small; in this case the addresses of the blocks them-

selves are stored. For large files, each of the eight disk ad-

dresses may point to an indirect block of 64 words containing the

addresses of the blocks constituting the file itself. Thus files

may be as large as 8•64•128, or 65,536 bytes.

When the number of links to a file drops to zero, its contents

are freed and its i-node is marked unused.

To the user, both reading and writing of files appears to be syn-

chronous and unbuffered. T~at is, immediately after return frohl a

read call the data is available, and conversely after a write the

user's workspace may be reused. In fact the system maintains, un-

seen by the user, a rather complicated buffering mechanismo

Suppose a write call is made specifying transmission of a single

byte. UNIX will search its own buffers to see whether the affec-

ted disk block currently resides in its own buffers; if not, it

will be read in from the disk. Then the affected byte is replaced

in the buff e r and an e ntry is made in a list of blocks to c e

written on the disk. The return from the write call may then take

place, a lthough the actual I/O may not be complete d until a later

,- 13 -

timeo Conversely, if a single byte is read, the syste~ determines

whether the disk block in which the byte is located is already in

one of the system's buffers; if so, the byte can be returned

) immediately. If not, the block is read into a buffer and the byte·

picked out. Because sequential reading of a file is so COITuuon,

UNIX attemnts to optimize this situation by prereading the disk

block following the one in which the requested byte is found.

) This strategy tends to minimize and in some cases eliminate disk

latency delays.

A program which reads or writes files in units of 128 bytes has

an advantage over a program which reads or writes a single byte

at a time, but the gain is not immense. As an example, the editor

ed (8.9 and A2.4 below) was originally written, for simplicity,

to do I/O one character at a time; it increased its speed by a

factor of about two when it was rewritten to use 128-byte units.

Because the system attempts to retain copies of the most recently

used disk blocks in core, the speed gain in dealing with large

units comes principally from elimination of system overhead, not

from latency delays.

)
~. The Shell

~·1 General

Communication with UNIX is carried on with the aid of a program
)

! called the Shell. The Shell is a command line interpreter: it

reads lines typed by the user and interprets them as requests to

execute other programs. In simplest form, a command line consists

of the command name followed by arguments to the command, all

)

'

- 14 -

separated by spaces:

The Shell splits up the command name and the arguments into·

separate strings. Then a file with name command is sought;

command may be a path name including the "/" character to specify

any file in the system. If command is found, it is brought into

core and executed. The arguments collected by the Shell are ac-

cessible to the command. When the command is finished, the Shell

resumes its own execution, and indicates its readiness to accept

another command by typing the prompt character " " @ •

If file command cannot be found, the Shell prefixes the string

"/ /" bin to command and attempts again to find the file. Directory

11 /bin" contains all the commands provided by the system itself.

5.2 Standard l/Q

The discussio~ of I/O given above seems to imply that every file

used by a program must be opened or created by the program in

order to get a file descriptor for the file. In fact, this is not

_) quite true. There are two files always accessible to every

program without .. " " .. an explicit open or create ; they have file

descriptors 0 and 1. As a program begins execution, file 1 is

open for writing, and is best understood as the standard output

_) file. Except under circumstances indicated below, this file is

the user 6 s typewriter. Thus programs which wish to write informa-

tive or diagnostic i~formation ordinarily use file descriptor 1G

Conversely, file 0 starts off open for reading, and programs

)

)

- 15 -

which wish to read messages typed by the user usually read this

file.

The Shell is able to change tha standard assignments of these

file descriptors from the user's typewriter printer and keyboard.

Prefixed by ">", If one of the arguments to a command is file

descriptor 1 will, for the duration of the command, refer to the

file named after the ">". For example,

ls

ordinarily lists, on the typewriter, the names of the files in

the current directory. The command

ls)files

creates '' . " a file called files and places the listing there. Thus

"> . " ' the argument files means, place output on

other hand,

ed

11f'l .. , i es. On the

ordinarily enters the editor, which takes reque sts from the user

via his typewriter. The command

ed (script

interprets "script'' a s a f ile of editor command s; thus "<script"

means, 'take input from " " , script.

iUthough the fil e name following "<" or ">" a ppear s to be a n ar-

gument to the command, in fact it is interpreted completely by

the She ll and is not passed to the command at all. Thus no sp e-

- 16 -

cial coding is needed within each command; the command need

merely use the standard file descriptors O and 1 where

appropriate.

~·l Command Separators

Another feature provided by the Shell is relatively

straightforward. Commands need not be on different lines; instead

they may be separated by semicolons.

ls; ed

will first list the contents of the current directory, then enter

the editor.

A related feature is more interesting. If a command is followed

.. .. h by & ; t e Shell will not wait for the command to finish before

returning with . . '' '' its signal @ ; instead, it is ready immediately

to accept a new command~ For example,

.
as source)output &

.. ..
causes source to be assembled, with diagnostic output going to

) " " output; however, no matter how long the assembly takes, the

Shell returns immediately. The " " & may be used several times in a

line :

)
. ./

as source)output & ls)files &

does both the assembly and the listing in the background. In all

" " the examples above using & , an output file other than the

typewriter was provided; if this had not been done, the cutouts

)

)

)

- 17 -

of the various commands would have been intermingled.,

(Incidentally, " " & in the exar.t-spaces before and after the the

ples above are not necessary.)

~o4 The Shell as a Command

The Shell is itself a command, and may be called recursivelyo

Suppose file " " tryout contains the lines

as source
mv a.out testprog
testprog

The " " " " !!lY command causes the file a.out to be renamed testprog.

H H

a.out is the (binary) output of the assembler, · ready to be

executedo Thus if the three lines above were typed on the con-

" " sole, source would be assembled, the resulting program named

" " testprog , and
H H
testprog executed. When the lines are in

VI H

tryout , the command

sh (trvout _,

would cause the Shell. sh to execute the commands sequentially.

(The Shell has further capabilities, including the ability to in-

terpret parameters to filed cormnand sequences; see section 8.18.)

When the user types the "&" character as p art of a command line,

he is explicitly invokinq the multitasking facilities of mnx.

That is, he is creating a proc r:~ s s which runs asynchronously :::rcn

his normal command strea:n. lUthousr"ri this a bility is quite con-

v eni e nt for the u s e r d irectly , it i s ev en more u seful to ~;IX

itself.

- 18 -

2·2 Processes and forkinq

A orocess in UNIX is the execution of a program. The evidence of

the existence of a process is a ~ imaae. While the processor

is executing on behalf of a process, the core image, quite

naturally, resides in the core memory of the computer; during the

execution of other processes, a core image is kept on the disk.

In order to provide fast response to user's requests, UNIX, like

) most time-sharing systems, swaps the core images of processes

between core and the disk.

Except while UNIX is bootstrapping itself into operation, a new

process can come into existence in only one way: by use of the

fork system call.

processid = fork(label)

When fork. is executed by a process, it splits into two indepen-

dently executing processes. The two processes have ·core images

which are copi~s of each other, but they are not precisely
..

equivalent: one of them is considered the p arent process. In the

parent, control does not return dir e ctly from the fork, but in-

) stead passes to location label; in the child process, there is a

normal return. The processid returned by the fork call is the

identification of the other, offsprinry proces s .

Because the return points in the par ent and chilcJ :::irocess are !1'.J':.

)
the same , each copy of a progra;:l existing afte r a for}c may det er-

mine whe ther it i s the parent or child process .

2.6 ~xecution of Droqrams

\
I

/

- 19 -

Another system primitive on which the Shell depends heavily is

invoked by

status= execute(file, ar~ 1 , arg2 , ••• , arg) n

which requests the system to read in and execute the progra:n

named by file, passing it arguments ara1 , M.g2, ••• ar-:-: • --n

Ordinarily, ara1 should be the same string as file. If this call

) is successful, control never returns to the program which uses

it. That is, the image of the named file replaces the current

program. Only if the call fails, for example because file could

not be found or because its execute-permission bit was not set,

does a return take place from the execute primitive.

The third and last process control system call used by the Shell

is

processid, status= wait()

This primitive causes its caller to suspend execution until one

of its children has completed execution. Then wait ·returns the

processid of the terminated process and a status value indicating

_)
how the process died. (Processes which are never waited for die

unnoticed and presumably unmourned.)

~·1 Oneration of the Shell

) The outline of the operation of the Shell can now be understood.

Most of the the time, the She ll is waiting for the user to t ype a

command. ~fuen the new line character is typed, the Shell's read

call returns. The Shell analyzes the command line, putting tr1e

- 20 -

arguments in a form appropriate for execute. Then fork is calledo

The child process, whose code of course is still that of the

Shell, then attempts to perform an execute with the appropriate

) arguments. If successful, this will bring in and start executiorr

)

of the program whose name was given. Meanwhile, the other process

resulting from the fork, which is the parent process, waits for

the child process to die. When this happens, the Shell knows the

command is finished, so it types out
....

@ and reads the typewriter

to obtain another command.

Given this frameworJ(, the implementation of background processes

is trivial; whenever a command line terminates with
....
& , the

Shell merely refrains from waiting for the process which it

created to execute the command.

Happily, all of this mechanism meshes very nicely with the notion

of standard input and output files. When a process is created by

the fork primitive, it inherits not only the core fmage of its

parent but also all the files currently open in its parent, in-

eluding those with file descriptors 0 and 1. The Shell, of

course, uses these files to read command lines and to write its

. 1 .. @", sign a an~ in the ordinary case its children-- the command

"<" programs-- inherit them automatically. When an argument with

">" or is given however, the offspring process, just before it

performs execute, closes file 0 or 1 respectively and opens the

) name d file. Because the process in which the command program runs

sir:ip ly t e rminates whe n it is through, the association between a

file specified after "<" or ">" and file descriptor O or 1 is en-

ded automatically when the process dies. Therefore the Shell need

- 21 -

not know the actual names of the files which are its own standard

input and output, since it need never reopen them.

In ordinary circumstances, the main loop of the Shell never

terminates. (The main loop includes that branch of the return

from fork belonging to the parent process; that is, the branch

which does a wait, then reads another command line.) The one

thing which causes the Shell to terminate is discovering an end-

of-file condition on its input file. Thus, when the Shell is ex-

ecuted as a command with a given input file, as in

sh (comf ile

the commands in " " comf ile will be executed until the end of

lit " comfile is reached; then the instance of the Shell invoked by

sh will terminate. Since this Shell process is the child of

another instance of the Shell, the wait executed in the latter

will return, and another command may be processed.

The instances 9f the Shell to which each UNIX user types com..."Tlands

are themselves children of another process. The last step in the

initialization of UNIX is the creation of a single process and

'1 the invocation (via execute) of a program called init. The code
/

for init is kept in a file, like every other command. Its role is

to create one process for each typewriter channel which may be

dialed up by a user. The various subinstances of init open the

) appropriate typewriters for input and output. Since when init was

invoked there were no files open, in each process the typewriter

keyboard will receive file descriptor O and the printer file

descriptor 1. Each process types out a message requesting that

- 22 -

the user log in and waits, reading the typewriter, for a replyo

At the outset, no one is logged in, so each process simply hangso

Finally someone types his name or other identification. The ap-

~) propriate instance of init wakes up, receives the log-in line,·

and reads a password file. If the user is found, and if he is

able to supply the correct password, init changes to the user's

default current directory, sets the user number to that of the

) person logging in, and performs an execute of the Shell. At this

point the Shell is ready to receive commands and the logging-in

protocol is conplete.

Meanwhile, the mainstream path of init (the parent of all the

subinstances of itself which will later become Shells) does a

wait. If one of the child processes terminates, either because a

Shell found an end of file or because a user typed an incorrect

name or password, this path of init simply recreates the defunct

process, which reopens the appropriate input and output files and

types another log-in message. Thus a user may log out simply by

typing the end-of-file seq~ence in place of a command to the

Shello

)
60 Census of Soecial Files

Here is a list of the special files currently implemented. Since

an entry for each resides in the root directory, the file " n xyz

"/ ..) may be referred to by xyz • Alternative ly, one may link to a ny

of these fil e s under any name desired.

- 23 -

" " When read, ppt refers to the paper tape reader; when written 9

to the punch. Null characters are ignored for both reading and

writing, so " " ppt is suitable only for ASCII (not binary)

) information; on the other hand, the program need not take account

of the leader or trailer. End of file occurs during a read when

the end of the tape passes through the sensors.

" " bppt also refers to paper tape. The tape is · in a blocked forwat

with checksums. Completely arbitrary information may be written

and recovered unchanged in this mode.

ront -
This is raw input and output for paper tape. Every character is

passed to the program, including nulls, so that the progra~ must

know when the leader ends and information begins during a read.

On the other h~nd, this mode is suitable when tapes of unusual

format mus t be read.

This is the console typewriter. Null characters are ignored for

both reading and writing. For r e ading, the line is a unit of

information; " " a program reading tty will wait until a whole l i ne

) has b e en typed, a nd a t most one line will be passed b a ck to t he

p rog r a m. Howev er , cha r act e r s may b e read one at a time fro:n t he

linee

- 24 -

" ,, on input, erase and kill processing are performed: # will erase

" " the last character typed; @ kills the entire line.

The ASCII character " " EOT signals an end of file to the programo

The ASCII "new line" character is the standard means of ending an

input line. On the Teletype models 33 and 35 and some other ter-

minals UNIX nust simulate this function by echoing a " " return

character when it receives a "line space" (whose code corresponds

) to the ASCII "new line.")

)

The name " " tty refers to the user's own typewriter, no matter

which physical channel he may be using. There are also special

" " (files for each typewriter (:J They have the names ctty for the

central site terminal),

user's typewriters).

and .. "
tty1 ' " " tty2 ' ••• " " ttyn (for

" .. I " " This is raw typewriter I o. It is identical to tty for out-

put, but on input the prog~am waits only until at· least one

character has been typed before a return from the read occurs. No

erase or kill processing is done.

These files refer to DECTAPE logical units 0 and 1. When they are

opened, the program waits until a tape is mounted on the ap-

propriate drive.

- 25 -

This file refers to the entire disk in a way independent of the

file system; it reads or writes the physical block correspondins

to the current file pointer.

J One use of this file demonstrates convincingly the versatility of·

the special file concept. There is a program called check which

scrutinizes the entire file system to determine its consistency

and the number of disk blocks used for various purposes. This

) program is in no sense part of the system; it is an ordinary COT.-
/

mand invoicable by any user. Check ooerates by reading the file

"a· .. J.Ske In this way it is able to examine the list of i-noces

(cf., section 4) which define files without depending on ad hoc

system calls to obtain its information •

.§ • .§. syste:-'.'I

This special file causes the area of core memory occupied by the

system to be treate d as a file. Thus the system can ~e examined

and patched during operation by use of the ordinary debugger c~

discussed below.

The PDP-11 hardware detects a number of program faults, such as

refe rence s to non-existe nt memory, unimplemented ins tructions,

and odd addresses used where an even address is required. Such

) faults cause the processor to trap to a system routine. When an

ille gal action i s caught, the system write s the use r's core i maqe

on fil e 0 " core in the current , working directory. Because of the

way the hardware and the system operate, the conte nts of all the

- 26 -

program-accessible registers are stored within this core i r:iage

file. Thus, the debugger db discussed below can be used to deter-

mine the state of the progrrun at the time of the fault.

'\
J The user may also force the program to stop and a core image file

to be written by sending an interrupt signal. Currently this s i g-

.. " "\ .. nal is generated by typing the ASCII FS character (control

on model 37 Teletypes). Thus programs which are looping or about

) which the user has second thoughts inay be halted.

If the user has several proce sses in execution simultaneously

(because he used the "&" facility of the Shell) only one of these

processes is stoppeCl, and there is no control over which one; it

depends on which is currently in execution or executes next.,

Clearly this situation leaves much to be desired, for several

reasons:

1., when the u s er has severa l processe s h e cannot interrupt

with any selectivity;

2., in all ~ases the rather large core image file ~s produced ,

when the user may merely have wished, for example, to stop

a long printout;

3. it is often useful to send an asynchronous signal to a \
process without stopping it (for example by causing a trap

I

to an agreed-upon locatio n within the proce ss' s core

image.)

)
Doubtless , t h8r efore, the interrupt :: a cility w-ill be r ewor'(ec1 in

the f u ture o Unf ortuna t e ly, t h e r e a r e not only i mpleme nta tion

proble ms but ev e n conceptual ones-- c .'J. how does one speci::y c.

\

- 27 -

process which may have sta.rted an arbitrary time ago?

g. ~ Commands

This section summarizes several of the commands available in

UNIX. The list is not exhaustive, but it covers those most fre-

quently used. The assembler ~. the debugger db, the editor

and DECTAPS manipulator tao are documented in more detail in

") Appendix 2.

Where an argument lii<:.e ~ is given, a file name is meant. ID

every case, an arbitrary path name may be used to specify any

file in the system, s.ubject to the constraints imposed by the the

protection system.

Arguments enclosed in square brackets are optional.

8.1 as -- assemble

!g! is the assembler for the PDP-11e It is called as follows:

) The concatenation of the files ~1 ••• ~n is assembled. The

resulting binary output is placed in file .. " . a.out in the current

working directory; a copy of the name list from the assembly · is

placed on " " n.out. See Appendix 2 for more information.

)
g.1 b -- comoile B orocram

B [reference] is a new higher-level language with implementatio::1s

on the PDP-7, PDP-11, and Honeywe ll 635. To comp ile several 3

- 28 -

programs,

b -name1 ••• -namen

" " () Notice that each ~ should be preceded by a - not part of.

··,,

)

)

)

the file name). Also, E supplies the conventional suffix " b" • •

" .. " " For example, to concatenate and compile abc.b and def.b , type

b -abc -def

The binary output is left on " " a.out and the name list on " " n.out

(just like the assembler). See the B reference manual [reference]

for more information.

8.,2_ cat concatenate files

The ~command concatenates several files and.copies the result

onto the standard output file.

cat name1 ••• namen

Notice that "> ~· may be used: " cat a b)/ppt" punches. the con-

tatenation of "a" and " " " " simply lists x on the b • cat x

typewriter.

§..1, chdir change directories

To change the current directory, use

chdir dirnarn.e

This command is the only one that does not reside in directory

"/b' .. in ; instead it is part of the Shell. The reason is

- 29 -

interesting. Recall that each ordinary com.~and is executed as a

separate process created by the Shell. If the system's chdir

primitive were executed in such a process, it would have essen-

-) tially no effect, since the process would terminate instantly

without affecting the current directory of the Shell process and

)

)

its subsequent offspring. Th~ ShAll itself recognizes the c~dir

command and calls the system to change directories without

creating a new process.

s.~ chmod -- chancre mode of file

To change the protection bits for a set of files,

chmod mode name1 ••• namen

The modes of ~1 , ••• , ~n are set to mode. Mooe is an octal

number whose bits in the binary representation have the follrn·1ing

meanings:

1 write, non-owner
2 read, non-owner
4 write,· owner

10 read, owner
20 execute
40 set user ID on execution

See also section 3.4 on the protection system. Most command

programs create files with mode 17; the assembler's " .. a.out file

has mode 37.

Q.~ chown -- ch~~ae owne r of files

To change the owner of a sequence of files,

chown owner name 1 ••• namen

- 30 -

owner is a user number assigned by the system administratorsc

Only the owner of a file may donate the file to another usero

Notice that chown does not change the directory in which the link

to the file exists.

To make a copy of a file,

8.Q db -- debuq

To examine or patch a (usually binary) file,

db [name [namelist]]

The first argument i~ the file to be examined. The .second is a
(

name list file produced as
.. ..
n.out when !!lll!l§. was assembled. The

.
brackets indicate that both arguments are optional. If the first

argument is not given, " '' . core is assumed. If the second is not

) given,
.. .. .
n.out is assumed. (Of course, the first argument alone

cannot be omitted.)

Db is discussed in complete detail in Appendix 2.

) .§.2_ ed edit

ED is the editoro It is essentially a subset of QED [references];

see .Tl.pp end ix 2 for the differences.

- 31 -

To create a link,

)
ln name1 [name2]

A link to file ~1 is created. If ~2 is given, the link has

name ~2' otherwise it has the (last component of) ~1 • For

example, "in /a/b /c/d" creates a link named "d" in directory

-) "/c" to file "/a/b". The user must have permission to write in
~. ,/

directory "/c".

list directory

To list the names of the files in a directory,

ls [name]

If !lfil!!§. is not given, the contents of the current directory are

listed.

mkdir make directory

To create a directory,
\

)

mkdir name

move file

To move or rename a file,

mv name1 name2 •••

This command does not copy the file. It operates by linking to

- 32 -

~1 by the name ~2 , then unlinking ~1 • Mv is often used

to rename a file.

If !!.fil!:!§.2 is a directory, ~2 is moved into that directory under

the name which is the last component of ~1 • For example,

mv x /dirname

moves li to /dirname/x.

8.14 nm -- get namelist

To get a printed listing of the symbol table (name list) from an

assembly,

nm [name]

where ~ is the
II H

n.out file from some assembly. If .mllil.§. is not

given, " " n.out is listed.

The command

pr name1 name2 ••• narnen

prints the contents of the named files. The output is separated

into p a ges headed by the file name, the time and date, and the

page number.

8.16 rn -- renove file

'ro unlinl<: one or more files (remove them from directories),

)

l
,/

)

- 33 -

rm name1 •••

Recall that removing the last link to a file causes it to go

away ..

g.11 raff run off (format)

Roff is a program similar to the one under GE-TSS which formats

text files under the control of commands embedded in the text.

The command

roff narae1 ••• narnen

will run off the .concatenation of ~1 , ••• ~n· UNIX rof=

supports all the features of TSS roff except

footnotes. See [reference] for details.

8.j_Q sh -- Shell

To invoJ~e the Shell,

sh [name J

" " merge , tabs, and

Name is interpreted as a file of commands. ~ need not be

given, in which case the Shell will read its standard input file.

When called with an argument, the Shell refrains from typing it s

promp t character " " @ • See section 5 above . The Shell h a s s evera l

features besides those mentioned in section s.

1. Arguments or parts of arguments to coITuuands enclos ed in

sing l e (') or double (") quotes a r e t a k e n lite r a lly, so tha t

arbitra ry characte r strings can be passed (including space s,

\
j

)

"<" " ") or > etce o

"\" 2. The character

- 34 -

serves to quote the next character. In

this way a single command may extend over several lines,

since a new line preceded by "\" is treated like a space.

3. When the Shell is invoked as a command, the character se-

" " " " quences $0 , $1 , " o" ••• $~ are treated as parameters. "$0"

is replaced by the name of the file being interpreted; " " $1
H II

through $9 are replaced by the first through ninth argu-

ment following the file name. For example, when

sh runcom arg1 arg2 arg3

is typed, " o" .. " $. inside of runcom is replaced by " " run com,

" " . " " $1 is replaced by arg1, , etc.

B.19 stat aet file status -
To discover interesting information about one or more files,

stat na.-r1e1 •••

Stat gives the i-number, the mode, the owner, the size, and the

times of creation and last modification for each of ~1 , ••••

tan -- rnaninulate D"SCTAPE

Tap is used to load and dump portions of the hierarchy onto

DECTAPE. See Appendix 2 for details.

To discover various information connected with time, the tm co:-1-

mand can be used:

tm [command arg1 •••

- 35 -

arq] -n

-) If called without arguments, .!:.ffi prints out the time of day and

the total times accumulated in several categories:

- --)

_)

)
_/

1. Processor time charged to the user.

2. System overhead time.

3. Time spent waiting for the disk.

4. Idle time.

~e spent in the interrupt routines.

Without an argument, ·.En gives these values both in absolute for.-:l

(!.~., totals since creation of the system) and as changes since

the last time tm was called. When called with one or more ar-

guments, the arguments are assumed to constitute a command to be

timed. Tm executes the given command and prints the times re-

quired for the com.~and in each of the above categories.

undefined svmbols

It is sometimes useful to know the names of all the undefined

symbols in a given assembly. The command

un [name]

searches the (name list) file ~ and prints all the symbols un-

defined therein. If name is o~itted, " " n.out is used.

APPENDIX 1

This appendix summarizes all the system calls. To understand the

) calls to UNIX, it is fortunately necessary to know only very lit~

tle of the structure of the ?DP-11. The machine contains several

general registers, of which only two are used for arguments to

the calls, namely RO and R1. There is also a condition register,

) one of whose bits records a carry occurring during an arithmetic

operation. To indicate an error the system sets this carry bit;

it is cleared for successful calls. There is a conditional branch

instruction to test the state of the bit. ~11 registers not used

to communicate explicit arguments are unchanged by calls to the

system.

I'he instruction used to call the system is known to the assembler

" " as sys ; when the processor executes this instruction it is

trapped to a specific location inside UNIXo The address field of

" " sys contains a number indicating v:hic11 syster:1 cc.11 is desire,::.,

The arguments for a call are placed either in a register or

" " immediately following the sys instruction.
\

j

A number of the calls, principally those dealing with the file

system, take strings as agruments. There is a standard format for

such a string: it consists of a sequence of bytes ending in a

null character. The 012en call below, contains a complete example

of how to write such a string.

)

)
/

\
)

A1 - 2

Exit is used to terminate a process as follows:

sys exit

There are no arguments, nor is there ever any return :!:rom this

call.

This is the primitive used to generate new processes.

sys fork
(old process return)
(new process return)

There are no input arguments. The 8rror bit is set if no spac·e is

available to create a new process, and control returns only to

the old process. RO contains the process identification of the

new process. See also section s.

The . " " parent process returns iillmediately after the sys call; the
.

new process skips one word~ (The label argu~ent mentioned in the

discussion of fork in section 5.5 wa s a white lie.)

To read an open fil e whos e f ile descriptor is fil~o , load fil eo

into ::<O and

sys read
buff er
ncha r s

Buff e r is the address of the pl a ce into which information is

A1 - 3

read, and nchars is the maximu:n number of characters desired.

(The actual number, not its address.) The nurlber of characters

actually read returns in RO. If RO is zero, the end of the file

) has been reached. The error bit may be set if, for example, the·
/

")

)

file is a tape file and there was a permanent read error, or if

an attempt was made to read into an area not part of the user's

core image.

M.oi write

To write an open file with file descriptor filep, load fileo into

RO and

sys write
buff er
nchars

where buff er and nchars are the same as for read. The number of

characters actually written returns in RO (ordinarily it is the

same as nchars) and errors are indicated by the error _bit.

To open an already existing file,

sys open
name
mode

• • •

narne:(pathname\O)

~ is the address of a string of characters constituting a path

name. The name is terminated by a null (all zero) character,

which is indicated by "\o"; the characters "<" and ">" are string

quotes. Mode is O or 1 to indicate reading or writing respec-

A1 - 4

tively. The file descr~ptor returns in RO. If the file cannot be

found or if permission is not granted the error bit is set.

-) A1 .§. creat

To create or recreate a file,

sys creat
name
mode

~ is the same as for open. Mode is a number encoding the pro-

tection bits as specified under the " .. chmod command below (A2.9)o

Creation of a file imolies opening for writing; the file descrip-

tor is returned in RO.

81_. 7 close

To close a file, move the file descriptor into RO and

sys close

A program may have only a limited number of files open at one

time (currently, 10). Closing a file allows another file to be

~ opened in its place. Closing is otherwise unnecessary, for an

automatic close on all files is performed when the process ter-

\
/

minates.

To wait for a child process to terminate,

sys wait

A1 - 5

The identification of the terminated process is returned in ROc

At the present ti~e no further information is returned; in the

future a means of determining the fate of the process will be

) provided.

\
/

)

If the process executing a wait has no living children, an error

is returned.

To create a link in an arbitrary directory,

sys link
name1
name2

Name1 and ~2 are pointers to

linked to, and the link has name

~1 does not exist or • -F 1 ~2

A1.1.Q unlink

names as in

!lfil!1§. 2 • An

does exist.

open.

error

To remove the name of a file from a directory,

sys unlink
name

File ~1 is

is indicated • -F
1

Name is a pointer to a name. The specified entry is removed from

its directory; if this was the las t entry (link) pointing to the

file, the file is destroyed.

To cause execution of a file as a program,

sys exec
name
argp

• • •

A1 - 6

) argp: arg1
arg2

•
•
•

0

~ The first argument is the address of a file name. The second

argument is the address of a list of argument . pointers terminated

by a zero pointer. Each argument pointer is the address of a

)

)

string to be passed to the command or other program. The first

argument pointer arg1 is, by convention, the name of the file

being invoked. When a program is executed by the Shell, it can

determine the name by which it was called. Thus one may write a

·single program with several names which takes various actions

according to the name used.

A file invoJ<ed by ~ begins execution at its relative location

o. At the start, its stack.pointer· (one of the general registers)

points to a list of its own arguments as follows:

count
arg1
arg2

•
•
•

where there are count arguments in the list. Each arg1 points to

a standard format string. The arcr~are the sane as -1\ those speci-

f ied to the ~ callo

A1 • ..1l chdir

A1 - 7

To change the current d~rectory,

sys chdir
dirname

) dirname points to the standard format string describing a

)

)

directory.

The call

sys time

returns in the AC and HQ registers the number of sixtieths of a

second since the start of the current year.

A1.ll mkdir

The call

sys mkdir
name

create s the file whose name is pointed to by ~ and marks it as

a directory.

A1.15 chmod

The mode of a file is changed by

sys chmod
name
newmode

See the "chmod" command (section 8.5) for the interpretation of

the mode . only the owner of a file may change the mode.

A1 - 8

" Mo 1.§. ch own

)

l
i

./

' ')

To change the owner of a file,

sys chown
name
newowner

Only the owner of a file may change its owner.

To save time, UNIX does not swap all of the 4K user core area

when exchanging core images. The locations swapped are those from

the beginning of the core image to the initial program break, and

from the top of user core down to the stack pointer. The initial

program break is determined by the size of the file containing

the programo The system's idea of how much to swap may be altered

by using this call:

sys break
newbreak

.
Newbreak becomes the first . location not swapped. If· it points

beyond the stack, or to the very first word in the core image,

the entire core image is swapped.

The user may obtain a copy of the i-node for a named file:

sys stat
name
buff er

~ is the name of a file, and buffer is the address of 34

sequential bytes into which information concerning the file is

A1 - 9

.. placed" See section 4 for what information is passed; consult a

UNIX programming councillor for its format.

J ~.19 seek

\

To move the read or write pointer associated with the open file

with file descriptor filep, load filep into RO and

sys seek
base
off set

see also section 3.s.s.

To discover the position of the read or write pointer associated

with the open file with file descriptor filep, move filep into RO

and

sys tell
base
off set

The r e sult returns in RO. See also section 3.5.6.
\

) A1 .. £! {unassiqned)

To control the handling of " " break signals sent by the user,
)

sys intr

If RO is zero on entry, interrupts are disabled; if RO is non-

zero, the y a re e nable d.

\
/

)

APPENDIX 2

This Appendix discusses in more detail the usage of the

assembler, the editor, the debuggerP and the DECTAPE manipulation

command.

a2 is based on the DEC-provided assembler P~L-11 [references] f

although it was coded locally. Therefore, only the differences

will be recorded.

Character changes are:

for use
@ *
$
; I

H tf •

In ~' the character ; . is a logical new line; several opera-

tions may appear on one line if separated by

expression operators have been provided:

\)
\<
*
\/
\
1
[]

right shift (logical)
left shift
multiplication
division

remainder
one's complement (unary)
parentheses for grouping

There is a conditional assembly operation code:

eif expression

0 ••

• endif

,, " • , . Several new

A2

~ If the expression evaluates to non-zero, the section of code

I
/

between " . " " " the .if and the .endif is assembled; otherwise it is

i d " ·~" b d gnore • .i~ s may e neste •

Temporary labels like those introduced by Knuth [reference] may

be employed. A temporary label is defined as follows:

n:

n " where ll is a digit O ••• 9. Symbols of the form nf refer to the

first label " n u: following the use of the symbol; those of the

form "nb" refer to the last "n:". " " The same ll may be used many

times. Labels of this form are less taxing both on the imagina-

tion of the program.~er and on the symbol table space of the

assembler.

The PAL-11 opcodes " " " " .eot and ~end are redundant and are omit-

tea.

The symbols

rO 0 •• rs
Sp
pc
ac
mq
div
mul
lsh
ash
nor
csw

) are predefined with appropri a te valuese

Th e " " . n ew op code sys is u sed to specif y system call s . Names f o r

system calls are predef inedo See Appendix 1 for the list of

calls.

..

A3

Strings of characters ra~y be assembled in a way more convenient

than P.f\.L-11 's ".ascii" operation (which is, therefore, omitted).

t . . 1 d d b h "<" d ">". S rings are inc u e etween t e string quotes an •

(here is a string)

Escape sequences exist to enter non graphic and other difficult

characters. These sequences are also effective in single and

) double character constants introduced by single and double quotes

respectively. respectively:

\
)

)

use for
\n newline (012)
\0 NULL (000)
\> >
\t TAB (011)

When errors occur, a single-character diagnostic is typed out

together with the line number and the file name in which it

occurred. Errors in pass 1 cause cancellation of pass 2. The

possible errors are:

)
]
*
0

parentheses error
parentheses error
Indirection ("~") used illegally
~ (the location counter) has become undefined
error in Address
granch instruction has too remote an address
error in Exoression
error in local (".[" or "b") type symbol
Garbage (unknown) character
liultiply defined symbol as label

A
B
E
F
G
.M
0
p

Qdd-- word quant~ty assembled at odd address
Phase error-- • different in pass 2 from pass 1

value
R
u
x

Relocation error
~ndef ined symbol
synta2£ error

The binary output of the assembler is placed on the file " " a.out

in the current directory. The assembler also generates a file

~)

)

)

A4

.. " n.out which is a copy of the name list from the assembly, that

is, a table of the names of symbols used and their values.

" " n.out is used by the db, nm, and un commands.

The assembler does not produce a listing of the source programe

This is not a serious drawback; the debugger db discussed below

is sufficiently powerful to render a printed octal translation of

the source unnecessary.

Unlike many debugging packages (including DEC's ODT, on which db

is loosely based) db ·is not loaded as part of the core i mage

which it is used to examine; instead it examines files. Typi-

cally, the file will be either a core image produced after a

fault (see section 7) or the binary output of the assembler. db

i s called as follows:

db [name [namelist]]

Name is the file being debugged; if omitted " .. core assumed., is

namelist i s the "n. out•• file produced when ~ was assembled; if

omitted, " ., n.out is assumed. If no appropriate name list file can

be found, db can still b e used but some of its symbolic facili-

ties become unava ilable.

The format for most db requests is an addre s s followed by a one

characte r command o

Addresses are expressions built up as follows:

1. A name has the value ass i gn e d t o it w:.1en the input f ile -::12s

)

AS

assembled. It may be relocatable or not depending on t:Y'=

use of the name during the assembly.

2. An octal number is an absolute quantity with the appropri-

ate value.

3. octal number immediately followed by " " is reloca-An r a

table quantity with the appropriate value.

4. The symbol " " • indicates the current pointer of db. The

current pointer is set by many db requests.

5. Expressions separated by"+" or " " (blank) are expressions

with value equal to the sum of the components. At most one

of the components may be relocatable.

Se Expressions separated by ''"- .. , - :term an expression -.;ntn value

equal to the difference to the components. If the right

component is relocatable, the left component must be

relocatable.

7. Expressions are evaluated left to right.

If no address is given for a command, the current address (also

specified by "t") . • is assum~d.

word or byte printec"!. by db.

In general, .. "
• points to the last

) There are db commands for examining locations interpreted as

octal numbers, machine instructions, ASCII characters, and

addresses. For numbers and characters, eith8r bytes or words may

be examined. The following commands are used to examine

specified file.

I The addressed Hord is printed in octal.

\ The addressed byte is printed in oct?..l.

" The addressed word is printed as two ASCII characters.

)

)

)

A6

,
The addressed byte is printed as an ASCII character.

? The addressed word is interpreted as a machine instruction

and a symbolic form of the instruction, including symbolic

addresses, is printed. Usually, the result will appear

exactly as it was written in the source program.

& The addressed word is interpreted as a symbolic address and

is printed as the name of the symbol whose value is closest

to the addressed word, possibly followed by a signed

offset.

(nl) (i. e., the character "new line") This com.rnand advances

the current location counter"." and prints the resulting

location in the raode last specified by one of the above

requests.

This character decrements " " • and prints the resulting

location in the mode last selected one of the above

requests. It is a converse to (nl).

It is illegal for the word-oriented corrunands to have odd
.

addresses. The " " increment~ng and decrementing of • ·done by the

(nl) and ,.. requests is by one or two d epending on whether the

last coramand was word or ~yte oriented.

The address portion of any of the above commands may be followed

by a comma and then by an expression. In ~his case that number of

sequential words or bytes specified by the expression is printed.

" " .. is advanced so that it points at the last thing printed.

There are two co:xna nds to interpr e t the v a lue of expressions~

= When preceded by an expression, the V3.lue of the expression

)

)
__/

AS

typewriter (EOT charactE?r).

Ed is nearly a subset of QED [reference]. When called by

ed name

ed performs an automatic "r" (read) command on file ~· The

major differences between ed and QED are:

1. There is no 11\f" character; input mode is left by typing

" " • alone on a line.

2. There are no buffers and hence no '\b" stream directive ..

3. The commands are limited to:

a c d i p q r s w = !

4. The only special characters in regular expressions are:

* $ [
_,,)

""""" 'and "$" are which have the usual meanings. However,

only effective if they are the first or last character

respectively of the regular expression. Otherwise

suppression of special meaning is done by preceding the

character by "'\", which is not otherwise special.

s. In the substitute command, only the leftmost occurrence of

the matched regular expression is substituted.

The ~ command is u sed as f ollows :

tap [01] [crxdt] [s] [v] n a me1 namen -name.j
,

••• -namen

A9

1 The first argument consists of characters which indicate what is

\
;

_)

)
/

to be done. Subsequent arguments specify a set of files.

A digit (0 or 1) in the first argument indicates the logical unit

number. on which the tape is mounted. c, f,, lii g, and t are

mutually exclusive:

c indicates the creation of a new tape. Files ~1 , ••• ,

~n are placed on the tape. If any of these are direc­

tories, all files and subdirectories therein are placed on

the tape as well.
n n

Arguments preceded by - indicate files

or directories which are not to be placed on the tape even

though implied ·by one of the other arguments.

r indicates that the files specified (exactly as for £) will

be added to the tape. If there was a file of the same name

as one of the specified files already on the tape, it will

be replaced.

x indicates that the specified files are to be extracted from

the tap~ and copied onto the disk. If any directory needed

does not exist, it will be created.

d indicates that the specified files are to be dele ted from

the tape.

T causes a partial table of contents of the tape to be pro-

duced, including all files implied by the following argu-

mentsG (Eog., "tap t /dmr" gives the names of all files on

"/ " the tape in directory dmr .)

Argume nt Vl1 " v (f or "yerif y") may be u sed in addit i on to the pr e-

ceding argument s . Before each file is dealt with a s indicated b y

one of the preceding argur:lent s , " " v option c auses !,.ill2 to the

A10

~ pause, type the name of _the affected file, and request the user

to decide whether the file should be treated. The reply
to n

y

" " " " " " .. means yes; an empty line means no; a q means no, and exit

) " " " from the tan command. For example, by the use of xv , files can

be selectively restored.

" " Argument s may be used alone or in addition to one of £, £, ~'

)
i, g. It causes tap to examine the tape, verify that it can be

read properly, and produce statistics on the contents of the

tape.

_)

)

