ADB(1)

NAME

CB—UNIX 2.1 ADB(1)

adb — debugger

SYNOPSIS

adb [—w] [objfil [corfil]]

DESCRIPTION

Adb is a general purpose debugging program. It may be used to examine files and to provide a
controlled environment for the execution of UNIX programs.

Objfil is normally an executable program file, preferably containing a symbol table; if not then
the symbolic features of adb cannot be used although the file can still be examined. The
default for objfil is a.out. Corfil is assumed to be a core image file produced after executing
objfil, the default for corfil is core.

Requests to adb are read from the standard input and responses are written to the standard out-
put. If the —w flag is present then both objfil and corfil are created if necessary and opened for
reading and writing so that files can be modified using adb. Adb ignores QUIT; INTERRUPT
causes return to the next adb command.

In general requests to adb are of the form
{ address] [, count] [command] [;]

If address is present then dot is set to address. Initially dot is set to 0. For most commands
count specifies how many times the command will be executed. The default countis 1. Address
and count are expressions.

The interpretation of an address depends on its context. If a subprocess is being debugged then
addresses are interpreted in the usual way in the address space of the subprocess. For further
details of address mapping see ADDRESSES.

EXPRESSIONS

Page 1

The value of dot.
+ The value of dot incremented by the current increment.
The value of dot decremented by the current increment.
" The last address typed.

integer An octal number if integer begins with a 0; a hexadecimal number if preceded by # or
0x otherwise a decimal number.

integer.fraction _
A 32 bit floating point number.

“cccc” The ASCII value of up to 4 characters. \ may be used to escape a .

< name
The value of name, which is either a variable name or a register name. A4db maintains a
number of variables (see VARIABLES) named by single letters or digits. If name is a
register name then the value of the register is obtained from the system header in
corfil. The register names are r0 ... r3 sp pe ps.

symbol A symbol is a sequence of upper or lower case letters, underscores or digits, not starting
with a digit. The value of the symbol is taken from the symbol table in 0&jfil. An ini-
tial _ or ~ will be prepended to symbol if needed.

_symbol
In C, the ‘true name’ of an external symbol begins with _. It may be necessary to utter
this name to distinguish it from internal or hidden variables of a program.

routine.name

November 1979

ADB(1)

CB-UNIX 2.1 ADB(1)

The address of the variable name in the specified C routine. Both routine and name are
symbols. If name is omitted the value is the address of the most recently activated C
stack frame corresponding to routine.

(exp) The value of the expression exp.
Monadic operators:
=exp The contents of the location addressed by expin corfil.
@exp The contents of the location addressed by expin objfil.
—exp Integer negation.
~exp Bitwise complement.
Dyadic operators are left associative and are less binding than monadic operators.
el+e2 Integer addition.
el—e2 Integer subtraction.
el»e2 Integer multiplication.
el%e2 Integer division.
el&e2 Bitwise conjunction.
elle? Bitwise disjunction.
el#e2 elrounded up to the next multiple of e2.

COMMANDS

Most commands consist of a verb followed by a modifier or list of modifiers. The following
verbs are available. (The commands ? and / may be followed by *; see ADDRESSES for
further details.)

?2f Locations starting at address in objfil are printed according to the format £ dot is incre-
mented by the sum of the increments for each format letter (q.v.).

lf Locations starting at address in corfil are printed according to the format fand dot is
incremented as for ?.

=f The value of address itself is printed in the styles indicated by the format £ (For i for-
mat ? is printed for the parts of the instruction that reference subsequent words.)

A format consists of one or more characters that specify a style of printing. Fach format charac-
ter may be preceded by a decimal integer that is a repeat count for the format character. While
stepping through a format dot is incremented by the amount given for each format letter. If no
format is given then the last format is used. The format letters available are as follows:

=
(9]

Print 2 bytes in octal. All octal numbers output by adb are preceded by 0.
Print 4 bytes in octal.

Print in signed octal.

Print long signed octal.

Print in decimal.

Print long decimal.

Print 2 bytes in hexadecimal.

Print 4 bytes in hexadecimal.

Print as an unsigned decimal number.

Print long unsigned decimal.

Print the 32 bit value as a floating point number.
Print double floating point.

Print the addressed byte in octal.

Print the addressed character.

6T mmEE WK OROR O
e 00 B BN AN RN RN

November 1979 s Page 2

ADB(1)

-Page 3

U-ﬂ'< mm
N

> a3y o~ -
‘a0 O o

I+

new-line

CB—UNIX 2.1 ADB (1)

Print the addressed character using the following escape convention. Character
values 000 to 040 are printed as @ followed by the corresponding character in
the range 0100 to 0140. The character @ is printed as @@.

Print the addressed characters until a zero character is reached.

Print a string using the @ escape convention. 7 is the length of the string
including its zero terminator.

Print 4 bytes in date format (see ctime(3C)).

Print as PDP11 instructions. 7 is the number of bytes occupied by the instruc-
tion. This style of printing causes variables 1 and 2 to be set to the offset parts
of .the source and destination respectively.

Print the value of dot in symbolic form. Symbols are checked to ensure that
they have an appropriate type as indicated below.

/ local or giobal data symbol
? local or global text symbol
= |ocal or global absolute symbol

Print the addressed value in symbolic form using the same rules for symbol
lookup as a. \

When preceded by an integer, tabs to the next appropriate tab stop. For exam-
ple, 8t moves to the next 8-space tab stop. ’
Print a space.

Print a new-line.

Print the enclosed string.

Dot is decremented by the current increment. Nothing is printed.

Dot is incremented by 1. Nothing is printed.

Dot is decremented by 1. Nothing is printed.

Repeat the previous command with a count of 1.

[2/11 value mask
Words starting at dot are masked with mask and compared with value until a match is
found. If L is used then the match is for 4 bytes at a time instead of 2. If no match is
found then dor is unchanged; otherwise dot is set to the matched location. If mask is
omitted then —1 is used.

[2/1w value ...

Write the 2-byte value into the addressed location. If the command is W, write 4 bytes.
0Odd addresses are not allowed when writing to the subprocess address space.

[2/1m b1 el f1(?/]
New values for (51, el, fI) are recorded. If less than three expressions are given then
the remaining map parameters are left unchanged. If the ? or / is followed by * then
the second segment (b2, e2,f2) of the mapping is changed. If the list is terminated by
? or / then the file (08jfil or corfil respectively) is used for subsequent requests. (So
that, for example, ‘/m?’ will cause / to refer to objfil.)

> name Dot is assigned to the variable or register named.

! A shell is called to read the rest of the line following !.

Smodifier

Miscellaneous commands. The available modifiers are:

<f
>f
r
f

Read commands from the file fand return.

Send output to the file f, which is created if it does not exist.

Print the general registers and the instruction addressed by pe. Dot is set to pe.
Print the floating registers in single or double length. If the floating point

‘November 1979

ADB(1)

g<oemRowgo

:modifier

CB—-UNIX 2.1 ADB (1)

status of ps is set to double (0200 bit) then double length is used anyway.

Print all breakpoints and their associated counts and commands.

ALGOL 68 stack backtrace. If addressis given then it is taken to be the address
of the current frame (instead of rd4). If count is given then only the first count
frames are printed.

C stack backtrace. If address is given then it is taken as the address of the
current frame (instead of r5). If C is used then the names and (16 bit) values
of all automatic and static variables are printed for each active function. If
count is given then only the first count frames are printed.

The names and values of external variables are printed.

Set the page width for output to address (default 80).

Set the limit for symbol matches to address (default 255).

All integers input are regarded as octal.

Reset integer input as described in EXPRESSIONS.

Exit from adb.

Print all non zero variables in octal.

Print the address map.

Manage a subprocess. Available modifiers are:

be

cs

S§

k
VARIABLES

Set breakpoint at address. The breakpoint is executed count—1 times before
causing a stop. Each time the breakpoint is encountered the command cis exe-
cuted. If this command sets dor to zero then the breakpoint causes a stop.

Delete breakpoint at address.

Run objfil as a subprocess. If address is given explicitly then the program is
entered at this point; otherwise the program is entered at its standard entry
point. count specifies how many breakpoints are to be ignored before stopping.
Arguments to the subprocess may be supplied on the same line as the com-
mand. An argument starting with < or > causes the standard input or output
to be established for the command. All signals are turned on on entry to the
subprocess.

The subprocess is continued with signal s (see signal/(2)). If address is given
then the subprocess is continued at this address. If no signal is specified then
the signal that caused the subprocess to stop is sent. Breakpoint skipping is the
same as for r.

As for ¢ except that the subprocess is single stepped count times. If there is no
current subprocess then o0éjfil is run as a subprocess as for r. In this case no
signal can be sent; the remainder of the line is treated as arguments to the sub-
process.

The current subprocess, if any, is terminated.

Adb provides a number of variables. Named variabies are set initially by adb but are not used
subsequently. Numbered variables are reserved for communication as follows.

0
1
2

The last value printed.
The last offset part of an instruction source.
The previous value of variable 1.

On entry the following are set from the system header in the corfil. If corfil does not appear to
be a core file then these values are set from objfil.

b

November 1979

The base address of the data segment.

Page 4

ADB(1) CB—-UNIX 2.1 ADB(1)

The data segment size.

The entry point.

The ‘magic’ number (0405, 0407, 0410 or 0411).
The stack segment size.

The text segment size.

nms(‘bﬁu

ADDRESSES

FILES

The address in a file associated with a written address is determined by a mapping associated
with that file. Each mapping is represented by two triples (b1, el, fI) and (82, e2, f2). The file
address corresponding to a written address is calculated as follows.

bl< address<el => file address=address+ f1—0b1, otherwise,
b2< address< e2 => file address=address+f2—b2,

otherwise, the requested address is not legal. In some cases (e.g. for programs with separated I
and D space) the two segments for a file may overlap. If a ? or / is followed by an * then only
the second triple is used.

The initial setting of both mappings is suitable for normal a.out and core files. If either file is
not of the kind expected then, for that file, 57 is set to 0, el is set to the maximum file size and
f1is set to 0; in this way the whole file can be examined with no address transiation.

In order for adb to be used on large files all appropriate values are kept as signed 32 bit
integers.

a.out
core

SEE ALSO

ptrace(2), a.out(5), core(5)

DIAGNOSTICS

BUGS

Page §

““Bad core magic number’’ when the magic number of the corfil does not match that of objfil.
This message is expected when debugging a unix crash dump tape. ‘‘Adb’’ appears when there
is no current command or format.

Comments about inaccessible files, syntax errors, abnormal termination of commands, etc.
Exit status is 0, unless last command failed or returned nonzero status.

A breakpoint set at the entry point is not effective on initial entry to the program.

When single stepping, system cails do not count as an executed instruction.

Local variables whose names are the same as an external variable may foul up the accessing of
the external.

November 1979

