BS (1) CB—UNIX 2.1 BS (1)
NAME
bs — a compiler/interpreter for modest-sized programs
SYNOPSIS
bs [file [arg ... 1]
DESCRIPTION
Bs is a remote descendant of Basic and Snobol4 with a little C language thrown in. Bs is
designed for programming tasks where program development time is as important as the result-
ing speed of execution. Formalities of data declaration and file/process manipulation are
minimized. Line-at-a-time debugging, the trace and dump statements, and useful run-time
error messages all simplify program testing. Furthermore, incomplete programs can be
debugged; inner functions can be tested before outer functions have been written and vice
versa.
If the command line file argument is provided, the file is used for input before the console is
read. By default, statements read from the file argument are compiled for later execution.
Likewise, statements entered from the console are normally executed immediately (see compile
and execute below). The result of an immediate expression statement is printed.
Bs programs are made up of input lines. If the last character on a line is the \, the line is con-
tinued. Bs accepts lines of the following form:
statement
label statement
A label is a name (see below) followed by a colon. A label and a variable can have the same
name.
A bs statement is either an expression or a keyword followed by zero or more expressions.
Some keywords (clear, compile, !, execute, and run) are always executed as they are compiled.
Statement Syntax:
gxpression
The expression is executed for its side effects (value, assignment or function call). The
details of expressions follow the description of statement types below.
break
Break exits from the inner-most for/while loop.
clear
Clears the symbol table and compiled statements. Clear is executed immediately.
compile [expression]
Succeeding statements are compiled (overrides the immediate execution default). The
optional expression is evaluated and used as a file name for further input. A clear is associ-
ated with this latter case. Compile is executed immediately.
include expression
The expression should evaluate to a file name. The file must contain s source statements.
Include statements may not be nested.
continue
Continue transfers to the loop-continuation of the current for/while loop.
dump
The name and current value of every non-local variable is printed. After an error or inter-
rupt, the number of the last statement and (possibly) the user-function trace are displayed.
exit [expression]
Return to system level. The expression is returned as process status.
Page 1 November 1979

BS (1) CB—UNIX 2.1 BS (1)

execute
Change to immediate execution mode (an interrupt has a similar effect). This statement
does not cause stored statements to execute (see run below).

for name = expression expression statement
for name = expression expression

next
for expression , expression , expression statement
for expression , expression , expression

next
The for statement repetitively executes a statement (first form) or a group of statements
(second form) under control of a named variable. The variable takes on the value of the
first expression, then is incremented by one on each loop, not to exceed the value of the
second expression. The third and fourth forms require three expressions separated by com-
mas. The first of these is the initialization, the second is the test (true to continue), and the
third is the loop-continuation action (normally an increment).

fun f(al, ...1) [v, ...]

nuf
Fun defines the function name, arguments, and local variables for a user-written function.
Up to ten arguments and local variables are allowed. Such names cannot be arrays, nor can
they be I/0 associated. Function definitions may not be nested.

freturn
A way to signal the failure of a user-written function. See the interrogation operator (M
below. If interrogation is not present, freturn merely returns zero. When interrogation is
active, freturn transfers to that expression (possibly by-passing intermediate function
returns).

goto name
Control is passed to the internally stored statement with the matching label.

if expression statement
if expression

[else
|

fi
The statement (first form) or group of statements (second form) is executed if the expres-
sion evaluates to non-zero. The strings 0 and " (null) evaluate as zero. In the second
form, an optional else allows for a group of statements to be executed when the first group
is not. The only statement permitted on the same line with an else is an if; only other fi’s
can be on the same line with a fi.

return (expression]
The expression is evaluated and the result is passed back as the value of a function call. If
no expression is given, zero is returned.

onintr label

onintr
The onintr command provides program controi of interrupts. In the first form, controf will
pass to the label given, just as if a goto had been executed at the time onintr was executed.
The effect of the statement is cleared after each interrupt. In the second form, an interrupt

November 1979 2 Page 2

BS(1)

Page 3

CB—UNIX 2.1 BS(1)
will cause bs to terminate.
ruan
The random number generator is reset. Control is passed to the first internal statement. If
the run statement is contained in a file, it should be the last statement.
stop
Execution of internal statements is stopped. Bs reverts to immediate mode.
trace [expression]
The trace statement controls function tracing. If the expression is null (or evaluates to
zero), tracing is turned off. Otherwise, a record of user-function calls/returns will be
printed. Each return decrements the trace expression value.
while expression statement
while expression
next
While is similar to for except that only the conditional expression for loop-continuation is
given.
! shell command
An immediate escape to the Shell.
...
This statement is ignored. It is used to interject commentary in a program.
Expression Syntax:
name i
A name is used to specify a variable. Names are composed of a letter (upper or lower case)
optionally followed by letters and digits. Only the first six characters of a name are
significant. Except for names declared in fin statements, all names are global to the pro-
gram. Names can take on numeric (double float) values, string values, or can be associated
with input/output (see the built-in function open() below).
name ([expression [, expression] ...])
Functions can be called by a name followed by the arguments in parentheses separated by
commas. Except for built-in functions (listed below), the name must be defined with a fun
statement. Arguments to functions are passed by value.
name [expression [, expression] ... |
Each expression is truncated to an integer and used as a specifier for the name. The resuit-
ing array reference is syntactically identical to a name. all,2] is the same as a[1li2]. The
truncated expressions are restricted to vaiues between 0 and 32767.
number
A number is used to represent a constant value. A number is written in Fortran style, and
contains digits, an optional decimal point, and possibly a scale factor consisting of an e fol-
lowed by a possibly signed exponent.
string
Character strings are delimited by " characters. The \ escape character allows the double
quote (\"), new-line (\n), carriage return (\r), backspace (\b), and tab (\t) characters to
appear in a string. Otherwise, \ stands for itself.
(expression)
Parentheses are used to alter normal order of evaluation.
(expression, expression [, expression ...]) [expression |
The bracketed expression is used as a subscript to select a comma-separated expression from
November 1979

BS (1)

CB—-UNIX 2.1 BS(1)

the parenthesized list. List elements are numbered from the left, starting at zero. The
expression

(False, True){a == b]
has the value True if the comparison is true.

? expression
The interrogation operator tests for the success of the expression rather than its value. At
the moment, it is useful for testing end-of-file (see examples in the Programming Tips sec-
tion below), the result of the eval built-in function, and for checking the return from user-
written functions (see freturn). An interrogation ‘‘trap’’ (end-of-file, etc.) causes an
immediate transfer to the most recent interrogation, possibly skipping assignment statements
or intervening function levels.

- expression
The result is the negation of the expression.

+ 4+ name
Increments the value of the variable (or array reference). The result is the new value.

— — name
Decrements the value of the variable. The result is the new value.

! expression
The logical negation of the expression. Watch out for the shell escape command.

expression operator expression _
Common functions of two arguments are abbreviated by the two arguments separated by an
operator denoting the function. Except for the assignment, concatenation, and relational
operators, both operands are converted to numeric form before the function is applied.

Binary Operators (in increasing precedence):

==
= is the assignment operator. The left operand must be a name or an array element. The
result is the right operand. Assignment binds right to left, all other operators bind left to
right.
_ (underscore) is the concatenation operator.

& |
& (logical and) has result zero if either of its arguments are zero. It has result one if both
of its arguments are non-zero. I (logical or) has result zero if both of its arguments are zero.
It has result one if either of its arguments is non-zero. Both operators treat a null string as
a zero.

< <= > >= == !=
The relational operators (< less than, < = less than or equal, > greater than, > = greater
than or equal, == equal to, != not equal to) return one if their arguments are in the
specified relation. They return zero otherwise. Relational operators at the same level
extend as follows: a> b>c is the same as a>b & b>c¢. A string comparison is made if both
operands are strings.

+ -

Add and subtract.

=/ %
Multiply, divide, and remainder.

November 1979 - Page 4

BS(1)

Page §

CB—UNIX 2.1 BS (1)

Exponentiation.
Built-in Functions:
Dealing with arguments
arg(i)
is the value of the i-th actual parameter on the current level of function call. At level zero,
arg returns the i-th command argument (arg(0) returns bs).

narg{()
returns the number of arguments passed. At level zero, the command argument count is
returned.

Mathematical

abs(x)

is the absolute value of x.
atan(x)

is the arctangent of x. Its value is between —#/2 and /2.
ceil(x)

returns the smallest integer not less than x.
cos(x)

is the cosine of x (radians).
exp(x)

is the exponential function of x.
floor(x)

returns the largest integer not greater than x.
log(x)

is the natural logarithm of x.
rand()

is a uniformly distributed random number between zero and one.
sin(x)

is the sine of x (radians).
sqrt(x)

is the square root of x.

String operations

size(s)
the size (length in bytes) of s is returned.
format(f, a)
returns the formatted value of 4. F is assumed to be a format specification in the style of
printf(3S). Only the %...f, %...e, and %...s
types are safe.
index(x, y)
returns the number of the first position in x that any of the characters from y matches. No
match yields zero.
trans(s, f, t)
Transiates characters of the source s from matching characters in f to a character in the

November 1979

BS(1) CB-—-UNIX 2.1 BS(1)

same position in . Source characters that do not appear in f are copied to the result. If the
string f is longer than ¢, source characters that match in the excess portion of f do not
appear in the result.

substr(s, start, width)
returns the sub-string of s defined by the szarfing position and width.

match(string, pattern)

mstring (n)
The pattern is similar to the regular expression syntax of the ed(1) command. The charac-
ters ., [, I, ~ (inside brackets), * and $ are special. The mstring function returns the n-th (1
<= n <= 10) substring of the subject that occurred between pairs of the pattern symbols
\(and \) for the most recent cail to match. To succeed, patterns must match the beginning
of the string (as if all patterns began with *). The function returns the number of characters
matched. For example:

match("al23ab123", "N\ (fa—z]\)") == 6
mstring(1) == "b"

File handling

open(name, file, function)

close(name)
The name argument must be a bs variable name (passed as a string). For the open, the file
argument may be 1) a 0 (zero), 1, or 2 representing standard input, output, or error output,
respectively, 2) a string representing a file name, or 3) a string beginning with an !
representing a command to be executed (via sh —c). The function argument must be either
r (read), w (write), W (write without new-line), or a (append). After a close, the name
reverts to being an ordinary variable. The initial associations are:

Open("get", 0, nrn)
Open("put", 1’ nwn
open ("puterr", 2, "w")
Examples are given in the following section.

access(s, m)
executes access(2).

ftype(s) -
returns a single character file type indication: f for regular file, d for directory, b for block
special, or ¢ for character special.

Odds and Ends

eval(s)
The string argument is evaluated as a bs expression. The function is handy for converting
numeric strings to numeric internal form. £val can also be used as a crude form of indirec-
tion as in

name = "xyz"
eval("++"_ name)

which increments the variable xyz. In addition, eval preceded by the interrogation operator
permits the user to control bs error conditions. For example,

2eval ("open(\"X\", \"XXX\", \"'\")")

returns the value zero if there is no file named "XXX" (instead of halting the user’s pro-
gram). The following executes a goto to the label L (if it exists).

November 1979 Page 6

BS(1) CB-UNIX 2.1 BS (1)

label="L"
if 1(?eval("goto "_ label)) puterr = "no label"

plot(request, args)
The plot function produces output on devices recognized by plot(1G). The requests are as

follows.

Call Function

plot(0, term) causes further plot output to be piped into plot(1G) with an
argument of -Tterm.

plot(1) ‘“‘erases’’ the plotter.

plot(2, string) labels the current point with string.

plot(3, x1, yi, x2, y2) draws the line between (xI,yI) and (x2,y2).

plot(4, x, y, r) draws a circle with center (x,y) and radius r.

plot(5, x1, y1, x2, y2, x3, y3) draws an arc (counterclockwise) with center (xI,yI) and
endpoints (x2,y2) and (x3,y3).

plot(6) is not implemented.

plot(7, x, y) makes the current point {x,y).

plot(8, x, y) draws a line from the current point to (x,y).

plot(9, x, y) draws a point at (x,y).

plot(10, string) sets the line mode to string.

plot(11, x1, y1, x2, y2) makes (xI,yI) the lower right corner of the plotting area

and (x2,y2) the upper left corner of the plotting area.

plot(12, x1, y1, x2, y2) causes subsequent x (y) coordinates to be multiplied by x/
(y1) and then added to x2 (y2) before they are plotted.
The initial scaling is
plot(12, 1.0, 1.0, 0.0, 0.0).

Some requests do not apply to all plotters. All requests except zero and twelve are imple-
mented by piping characters to plot(1G). See plot(5) for more details.

last()
in immediate mode, /ast returns the most recently computed value.

PROGRAMMING TIPS
Using bs as a calculator:

S bs

distance (inches) light travels in a nanosecond
186000 = 5280 = 12 / 1e9

11.78496

Compound interest (6% for 5 years on $1000)
int = .06/ 4

bal = 1000

fori = 1 5«4 bal = bal + bal*int

bal — 1000

346.855007

Page 7 November 1979

BS (1)

CB—-UNIX 2.1

exit

The outline of a typical bs program:

Initialize things:
varl = 1
open("read”, "infile", "r")

Compute:
while ?(str = read)

next
Clean up:
close("read"”)

Last statement executed (exit or stop):
exit

Last input line:

run

Input/Output examples:

D

2)

SEE ALSO

Copy "oldfile" to "newfile".
open("read”, "oldfile”, "r"

" " "

open("write", "newfile", "w")
while ?(write = read)

Close "read" and "write"
close("read")

close ("write")

Pipe between commands

open (s, "lIs *", "r")

open("pr", "lpr —2 —h 'List™, "w")
while ?(pr = 1s) ...

Be sure to close (wait for) these
close("s")
close("pr")

BS(1)

ed(1), plot(1G), sh(l), access(2), printf(3S), stdio(3S), Section 3 of this volume for further
description of the mathematical functions (pow(3M) is used for exponentiation), plot(5). Bs
uses the Standard Input/Output package.

BUGS

There are built-in design limits. Bs source programs are restricted to fewer than 250 lines and
fewer than 250 variables (the name of an array counts as a variable, as does each dimension
and each referenced element).

All names (labels, variables, functions, statement keywords) are internally truncated to six
characters.

November 1979

Page:-8

