CcC(1) CB—UNIX 2.1 CC(1)
NAME
cc, pcc — C compiler
SYNOPSIS
cc [option] ... file ...
pee [option] ... file ...
DESCRIPTION

Cc is the standard UNIX C compiler. Other versions may exist with a single letter prefix; in

particular, occ is supplied as the previous C compiler, and ncc may be present as a new, experi-

mental C compiler. Pcc is the portable version for a PDP-11 machine. They accept several
types of arguments:

Arguments whose names end with .c are taken to be C source programs; they are compiled,

and each object program is left on the file whose name is that of the source with .o substituted

for .c. The .o file is normally deleted, however, if a single C program is compiled and loaded
all at one go.

In the same way, arguments whose names end with .s are taken to be assembly source pro-

grams and are assembled, producing a .o file.

The following options are interpreted by cc and pce. See /d(1) for load-time options.

- Suppress the loading phase of the compilation, and force an object file to be produced
even if only one program is compiled.

-p Arrange for the compiler to produce code which counts the number of times each rou-
tine is called; also, if loading takes place, replace the standard startoff routine by one
which automatically calls moniror(3C) at the start and arranges to write out a mon.out
file at normal termination of execution of the object program. An execution profile
can then be generated by use of prof(1).

-0 Invoke an object-code optimizer.

-8 Compile the named C programs, and leave the assembler-language output on
corresponding files suffixed .s.

-F Run only the macro preprocessor on the named C programs, and send the result to the
standard output.

-P Run only the macro preprocessor on the named C programs, and leave the result on
corresponding files suffixed .i.

-C Comments are not stripped by the macro preprocessor.

=D name =def

~ D name
Define the name to the preprocessor, as if by #define. If no definition is given, the
name is defined as 1.

- U name
Remove any initial definition of name.

—ldir ~ Change the algorithm for searching for #include files whose names do not begin with
/ to look in dir before looking in the directories on the standard list. Thus, #include
files whose names are enclosed in "" will be searched for first in the directory of the
file argument, then in directories named in —1 options, and last in directories on a
standard list. For #include files whose names are enclosed in <>, the directory of
the file argument is not searched. The current standard list consists of /usr/include.
If —7is used with no dir argument, search of the standard directory list is suppressed.

-B Instead of using the standard compiler, use a ‘*backup’ compiler (providing that the

Page |

November 1979

ccam CB—-UNIX 2.1 cC(1)

system administrator has provided one). This option is identical to using the occ com-
mand.

-tlp012] Find only the designated compiler passes in the files whose names are /sys/c/cl012] or
/sys/c/cpp. Used for testing compiler changes.

Other arguments are taken to be either loader option arguments, or C-compatible object pro-
grams, typically produced by an earlier cc or pec run, or perhaps libraries of C-compatible rou-
tines. These programs, together with the results of any compilations specified, are loaded (in
the order given) to produce an executable program with name a.out.

FILES
file.c input file
file.o object file
a.out loaded output
/tmp/ctm=* temporary
/1lib/cpp preprocessor
/lib/c[01] compiler, cc
/lib/oc[012] backup compiler,cc
/lib/ocpp backup preprocessor
/lib/c2 optional optimizer
/usr/lib/comp compiler, pcc
/lib/crt0.0 runtime startoff

/tib/mert0.0 startoff for profiling
/lib/libc.a standard library, see (3)
. /usr/include standard directory for #include files

SEE ALSO
B. W. Kernighan and D. M. Ritchie, T/e C Programming Language, Prentice-Hall, NY, 1978.
B. W. Kernighan, Programming in C~A Tutworial.
D. M. Ritchie, C Reference Manual.
adb(1), Id(1), prof(1), monitor(3C).

DIAGNOSTICS
The diagnostics produced by C itself are intended to be self-explanatory. Occasional MesS4ges
may be produced by the assembler or loader. Of these, the most mystifying are from the
assembler, in particular m, which means a multiply-defined external symbol (function or data).

November 1979 Page 2

