ED(1) CB—UNIX 2.3 ED(1)
NAME
ed — text editor
SYNOPSIS
ed[—][—x]1[name]
DESCRIPTION

Ed is the standard text editor. If the name argument is given, ed simulates an e command (see
below) on the named file; that is to say, the file is read into ed’s buffer so that it can be edited.
The optional — suppresses the printing of character counts by e, 7, and w commands. If —x is
present, an x command is simulated first to handle an encrypted file.

Ed operates on a copy of the file it is editing; changes made in the copy have no effect on the
file until 2 w (write) command is given. The copy of the text being edited resides in a tem-
porary file called the buffer. There is only one buffer for each invocation ofed..

Commands to ed have a simple and regular structure: zero, one, or two addresses followed by a
single-character command, possibly followed by parameters to that command. These addresses
specify one or more lines in the buffer. Every command that requires addresses has default
addresses, so that the addresses can very often be omitted.

In general, only one command may appear on a line. Certain commands allow the input of
text. This text is placed in the appropriate place in the buffer. While ed is accepting text, it is
said to be in input mode. In this mode, no commands are recognized; all input is merely col-
lected. Input mode is left by typing a period (.) alone at the beginning of a line.

Ed supports a limited form of regular expression notation; regular expressions are used in
addresses to specify lines and in some commands (e.g., 5) to specify portions of a line that are
to be substituted. A regular expression (RE) specifies a set of character strings. A member of
this set of strings is said to be matched by the RE. The REs allowed by ed are constructed as
follows:

The following one-character REs match a single character:

1.1 An ordinary character (not one of those discussed in 1.2 below) is a one-character RE
that matches itself.

1.2 A backslash (\) followed by any special character is a one-character RE that matches the
special character itself. The special characters are:

a. ., % [, and \ (period, asterisk, left square bracket, and backslash, respectively),
which are always special, except when they appear within square brackets [] (see 1.4
below).

b. " (caret or circumflex), which is special at the beginning of an entire RE (see 3.1 and
3.2 below), or when it immediately follows the left of a pair of square brackets ([])
(see 1.4 below).

$ (currency symbol), which is special at the end of an entire RE (see 3.2 below).

d. The character used to bound (i.e., delimit) an entire RE, which is special for that RE
(for example, see how slash (/) is used in the g command, below.)

1.3 - A period (.) is a one-character RE that matches any character except the new-line charac-
ter.

1.4 A non-empty string of characters enclosed in square brackets ([]) is a one-character RE
that matches any one character in that string. If, however, the first character of the string
is a circumflex (7)), the one-character RE matches any character excepr new-line and the
remaining characters in the string. The = has this special meaning only if it occurs first in
the string. The minus (—) may be used to indicate a range of consecutive ASCII charac-
ters; for example, [0—9] is equivalent to [0123456789]. The — loses this special meaning

January 9, 1981 Page 1 January 9, 1981

ED(1)

CB—UNIX 2.3 ED(1)

if it occurs first (after an initial =, if any) or last in the string. The right square bracket
(1) does not terminate such a string when it is the first character within it (after an initial
~, if any); e.g., [Ja—f] matches either a right square bracket (]) or one of the letters a
through f inclusive. The four characters listed in 1.2.a above stand for themselves within
such a string of characters.

The following rules may be used to construct REs from one-character REs:

2.1
2.2

2.3

2.4

2.5

2.6

A one-character RE is a RE that matches whatever the one-character RE matches.

A one-character RE followed by an asterisk (#) is a RE that matches zero or more
occurrences of the one-character RE. If there is any choice, the longest leftmost string
that permits a match is chosen.

A one-character RE followed by \{m\}, \{m,\}, or \{m,n\} is a RE that matches a range
of occurrences of the one-character RE. The values of m and n must be non-negative
integers less than 256; \{m\} matches exactly m occurrences; \{m,\} matches at least m
occurrences; \{m,n\} matches any number of occurrences between m and n inclusive.
Whenever a choice exists, the RE matches as many occurrences as possible.

The concatenation of REs is a RE that matches the concatenation of the strings matched
by each component of the RE.

A RE enclosed between the character sequences \(and \) is a RE that matches whatever
the unadorned RE matches.

The expression \»n matches the same string of characters as was matched by an expression
enclosed between \(and \) earlier in the same RE. Here n is a digit; the sub-expression
specified is that beginning with the n-th occurrence of \(counting from the left. For
example, the expression ~\(.#\)\1$ matches a line consisting of two repeated appearances
of the same string.

Finally, an entire RE may be constrained to match only an initial segment or final segment of a
line (or both):

3.1

3.2

A circumflex () at the beginning of an entire RE constrains that RE to match an initial
segment of a line.

A currency symbol ($) at the end of an entire RE constrains that RE to match a final
segment of a line. The construction “entire RES$ constrains the entire RE to match the
entire line.

The null RE standing alone (e.g., //) is equivalent to the last RE encountered.

To understand addressing in ed it is necessary to know that at any time there is a current line.
Generally speaking, the current line is the last line affected by a command; the exact effect on
the current line is discussed under the description of each command. Addresses are con-
structed as follows:

1.

2
35
4

The character . addresses the current line.
The character $ addresses the last line of the buffer.
A decimal number n addresses the n-th line of the buffer.

“x addresses the line marked with the mark name character x, which must be a lower-case
letter. Lines are marked with the k command described below.

A RE enclosed by slashes (/) addresses the first line found by searching forward from the
line following the current line toward the end of the buffer and stopping at the first line
containing a string matching the RE. If necessary, the search wraps around to the begin-
ning of the buffer and continues up to and including the current line, so that the entire
buffer is searched. =

January 9, 1981 Page 2 January 9, 1981

ED(1) CB—UNIX 2.3 ED(1)

6. A RE enclosed in question marks (?) addresses the first line found by searching back-
ward from the line preceding the current line toward the beginning of the buffer and stop-
ping at the first line containing a string matching the RE. If necessary, the search wraps
around to the end of the buffer and continues up to and including the current line.

7. An address followed by a plus sign (+) or a minus sign (—) followed by a decimal
number specifies that address plus (respectively minus) the indicated number of lines.
The plus sign may be omitted.

8. If an address begins with + or —, the addition or subtraction is taken with respect to the
current line; e.g, —$5 is understood to mean .—5.

9. If an address ends with + or —, then 1 is added to or subtracted from the address,
respectively. As a consequence of this rule and of rule 8 immediately above, the address
— refers to the line preceding the current line. (To maintain compatibility with earlier
versions of the editor, the character " in addresses is entirely equivalent to —.) More-
over, trailing + and — characters have a cumulative effect, so —— refers to the current
line less 2.

10. For convenience, a comma (,) stands for the address pair 1,8, while a semicolon (;)
stands for the pair .,8.

Commands may require zero, one, or two addresses. Commands that require no addresses
regard the presence of an address as an error. Commands that accept one or two addresses
assume default addresses when an insufficient number of addresses is given; if more addresses
are given than such a command requires, the last one(s) are used.

Typically, addresses are separated from each other by a comma (,). They may also be
separated by a semicolon (;). In the latter case, the current line (.) is set to the first address,
and only then is the second address calculated. This feature can be used to determine the start-
ing line for forward and backward searches (see rules 5. and 6. above). The second address of
any two-address sequence must correspond to a line that follows, in the buffer, the line
corresponding to the first address.

In the following list of ed commands, the default addresses are shown in parentheses. The
parentheses are not part of the address; they show that the given addresses are the default.

It is generally illegal for more than one command to appear on a line. However, any command
(except e, f, r, or w) may be suffixed by p or by 1, in which case the current line is either
printed or listed, respectively, as discussed below under the p and / commands.

(.)a

<text>
The append command reads the given text and appends it after the addressed line; . is
left at the last inserted line, or, if there were none, at the addressed line. Address O is
legal for this command: it causes the ‘“‘appended’ text to be placed at the beginning of
the buffer.

(.)e

<text>
The change command deletes the addressed lines, then accepts input text that replaces
these lines; . is left at the last line input, or, if there were none, at the first line that
was not deleted.

(.,.)d

The delete command deletes the addressed lines from the buffer. The line after the
last line deleted becomes the current line; if the lines deleted were originally at the end
of the buffer, the new last line becomes the current line.-

January 9, 1981 Page 3 January 9, 1981

ED(1)

January 9, 1981

€ name

E name

f name

CB—UNIX 2.3 ED(1)

The edit command causes the entire contents of the buffer to be deleted, and then the
named file to be read in; . is set to the last line of the buffer. If no file name is given,
the currently-remembered file name, if any, is used (see the f command). The number
of characters read is typed; name is remembered for possible use as a default file name
in subsequent e, r, and w commands. If the name used in an e command begins with
!, the rest of the line is taken to te a shell (sh(1)) command to be read from. Such a
command is not remembered as the current file name. See also DIAGNOSTICS below.

The Edit command is like e, except that the editor does not check to see if any changes
have been made to the buffer since the last w command.

If name is given, the filename command changes the currently-remembered file name
to name; otherwise, it prints the currently-remembered file name.

(1,8)g/RE/command list

In the global command, the first step is to mark every line that matches the given RE.
Then, for every such line, the given command list is executed with . initially set to that
line. A single command or the first of a list of commands appears on the same line as
the global command. All lines of a multi-line list except the last line must be ended
with a \; a, i, and ¢ commands and associated input are permitted; the . terminating
input mode may be omitted if it would be the last line of the command list. The (glo-
bal) commands (g, G, v, and V) are not permitted in the command list.

(1,8)G/RE/

In the interactive Global command, the first step is to mark every line that matches the
given RE. Then, for every such line, that line is printed, . is changed to that line, and
any one command (other than one of the global commands ¢, G, v, and V) may be
input and is executed. After the execution of that command, the next marked line is
printed, and so on; a new-line acts as a null command; an & causes the re-execution of
the most recent command executed within the current invocation of G. Note that the
commands input as part of the execution of the G command may address and affect
any lines in the buffer. The G command can be terminated by an interrupt signal
(ASCII DEL or BREAK).

h
The help command gives a short error message that explains the reason for the most
recent ? diagnostic.

H ;
The Help command causes ed to enter a mode in which error messages are printed for
all subsequent ? diagnostics. It will also explain the previous ? if there was one. The
H command alternately turns this mode on and off; it is initially off.

(.)i

<text>
The insert command inserts the given text before the addressed line; . is left at the last
inserted line, or, if there were none, at the addressed line. This command differs from
the a command only in the placement of the input text. Address 0 is not legal for this
command.

(.,.+1)j

The join command joins contiguous lines by removing the appropriate new-line charac-
ters. If only one address is given, this command does nothing.

Page 4 January 9, 1981

ED(1)

(.)kx

(sl

CB—UNIX 2.3 ED(1)

The mark command marks the addressed line with name x, which must be a lower-case
letter. The address “x then addresses this line; . is unchanged.

The list command prints the addressed lines in an unambiguous way: a few non-
printing characters (e.g., tab, backspace) are represented by (hopefully) mnemonic
overstrikes, all other non-printing characters are printed in octal, and long lines are
folded. An ! command may be appended to any other command other than e, f, r, or
Ww.

(.5.)ma

(+5-)P

The move command repositions the addressed line(s) after the line addressed by a.
Address 0 is legal for a and causes the addressed line(s) to be moved to the beginning
of the file; it is an error if address a falls within the range of moved lines; . is left at
the last line moved.

The print command prints the addressed lines; . is left at the last line printed. The p
command may be appended to any other command e, f, r, or w; for example, dp
deletes the current line and prints the new current line.

P
The editor will prompt with a = for all subsequent commands. The P command alter-
nately turns this mode on and off; it is initially off.

q
The quit command causes ed to exit. No automatic write of a file is done (but see
DIAGNOSTICS below).

Q
The editor exits without checking if changes have been made in the buffer since the
last w command.

($)r name
The read command reads in the given file after the addressed line. If no file name is
given, the currently-remembered file name, if any, is used (see e and f commands).
The currently-remembered file name is not changed unless name is the very first file
name mentioned since ed was invoked. Address O is legal for r and causes the file to
be read at the beginning of the buffer. If the read is successful, the number of charac-
ters read is typed; . is set to the last line read in. If the name used in an r command
begins with !, the rest of the line is taken to be a shell (s#(1)) command to be read
from. Such a command is not remembered as the current file name.

(.,.)s/RE [replacement | or

(.,.)s/RE /replacement /g

Januvary 9, 1981

The substitute command searches each addressed line for an cccurrence of the specified
regular expression. On each line in which a match is found, matched strings are
replaced under control of range. Range can appear in one of four ways. If it is empty
only the first occurence of the matched string is replaced. If range is “‘g”, all matches
are replaced. If a single number appears only the match that number from the left is
replaced. If a pair of numbers separated by a *“,”” appears, the first is a starting point
and the second is a count. No error occurs if the number of matches is less than the
second number. Instead of a number, a **$”’ may be used to refer to the last possible
match on a line. It is an error for the substitution to fail on all addressed lines. Any
character other than space or new-line may be used instead of **/”" to delimit the regu-
lar expression and the replacement. **." is left at the last line substituted.

Page S January 9, 1981

ED(1)

(.y.)ta

CB—UNIX 2.3 ED(1)

An ampersand (&) appearing in the replacement is replaced by the string matching the
RE on the current line. The special meaning of & in this context may be suppressed by
preceding it by \. As a more general feature, the characters \n, where n is a digit, are
replaced by the text matched by the n-th regular subexpression of the specified RE
enclosed between \(and \). When nested parenthesized subexpressions are present, n
1s determined by counting occurrences of \(starting from the left. When the character

is the only character in the replacement, the replacement used in the most recent sub-
stitute command is used as the replacement in the current substitute command. The ~
loses its special meaning when it is in a replacement string of more than one character
or is preceded by a \.

A line may be split by substituting a new-line character into it. The new-line in the
replacement must be escaped by preceding it by \. Such substitution cannot be done as
part of a g or v command list.

This command acts just like the m command, except that a copy of the addressed lines
is placed after address a (which may be 0); . is left at the last line of the copy.

The undo command reverses the effect of the last s command. The u command affects
only the last line changed by the most recent s command. Some commands will cause
the last substitution to be forgotten and the undo command will not work.

(1,8)v/RE /command list

This command is the same as the global command g except that the command list is
executed with . initially set to every line that does not match the RE.

(1,%)V/RE/

This command is the same as the interactive global command G except that the lines
that are marked during the first step are those that do not match the RE.

(1,8)w name

(3)=

The write command writes the addressed lines into the named file. If the file does not
exist, it is created with mode 666 (readable and writable by everyone), unless your
umask setting (see sh(1)) dictates otherwise. The currently-remembered file name is
not changed unless name is the very first file name mentioned since ed was invoked. If
no file name is given, the currently-remembered file name, if any, is used (see e and f
commands); . is unchanged. If the command is successful, the number of characters
written is typed. If the name used in a w command begins with !, the rest of the line is
taken to be a shell (sA(1)) command to be written to. Such a command is not remem-
bered as the current file name.

A key string is demanded from the standard input. Later e, 7, and w commands will
encrypt and decrypt the text with this key by the algorithm of crypt(1). An explicitly
empty key turns off encryption.

The line number of the addressed line is typed; . is unchanged by this command.

'shell command

January 9, 1981

The remainder of the line after the ! is sent to the UNIX shell (sh(1)) to be interpreted
as a command. Within the text of the command, the character % is replaced with the
current filename and ! is replaced with the text of the previous command. Thus, !! will
repeat the last shell command. If any expansion is performed, the expanded line is
echoed; . is unchanged.

Page 6 January 9, 1981

ED(1)

FILES

CB—UNIX 2.3 ED(1)

(.+1)<new-line>]
An address alone on a line causes the addressed line to be printed. A new-line alone is
equivalent to .+1p; it is useful for stepping forward through the buffer.

The editor has a limited macro capability. Macros are defined at the beginning of any line,
even in the append mode. The following is a correct macro definition:

\WC=anystring

Macro definitions are intercepted at the getchar() level of the editor and are recognized by the
following sequence: <newline><backslash><backslash><uppercase_letter><=>. The
““anystring” is any string, including one with escaped newlines. Thus, it could be a series of
commands to the editor, including multiple append sequences. A macro is invoked whenever a
string of the form <backslash> <uppercase_letter> is seen. If the preceding sequence is pre-
ceded by a backslash, translation is turned off. Thus to get the sequence *\C™" in to the editor
when the ‘“\C”’ macro is defined, type ‘“\\C’’. Legal macro names are all upper case letters.

If an interrupt signal (ASCIl DEL or BREAK) is sent, ed prints a ? and returns to its command
level.

Some size limitations: 512 characters per line, 256 characters per global command list, 64 char-
acters per file name, and 128K characters in the buffer. The limit on the number of lines
depends on the amount of user memory: each line takes 1 word.

When reading a file, ed discards ASCH NUL characters and all characters after the last new-line.
Files (e.g., a.out) that contain characters not in the ASCII set (bit 8 on) cannot be edited by ed.

/tmp/e# temporary; # is the process number.
ed.hup work is saved here if the terminal is hung up.

DIAGNOSTICS
? for command errors.
? name for an inaccessibie file.

?TMP for overflow of temporary file.
(use the kelp and Help commands for more detailed explanations).

If changes have been made in the buffer since the last w command that wrote the entire buffer
into the remembered name, ed warns the user if an attempt is made to destroy ed’s buffer via
the g or e commands: it prints ? and allows one to continue editing. A second g or e com-
mand at this point will take effect. The — command-line option inhibits this feature.

SEE ALSO

BUGS

crypt(1), grep(1), sed(1), sh(1).
A Tutorial Introduction to the UNIX Text Editor by B. W. Kernighan.
Advanced Editing on UNLX by B. W. Kernighan.

Escaped new-lines do not work in the replacement string of a s command that is part of the
command list of a g or a v command.

A ! command cannot be subject to a g or a v command.

The sequence \n in a RE does not match any character.

The / command mishandles DEL.

Files encrypted directly with the crypt(1) command with the null key cannot be edited.

January 9, 1981 Page 7 January 9, 1981

