EXPR(1) CB—~UNIX 2.3 EXPR(1)

NAME

expr — evaluate arguments as an expression

SYNOPSIS

expr arg

DESCRIPTION

The arguments are taken as an expression. After evaluation, the result is written on the stan-
dard output. Terms of the expression must be separated by blanks. Characters special to the
shell must be escaped. Note that 0 is returned to indicate a zero value, rather than the null
string. Strings containing blanks or other special characters should be quoted. Integer-valued
arguments may be preceded by a unary minus sign. Internally, integers are treated as 32-bit,
2’s complement numbers. '

The operators and keywords are listed below. Characters that need to be escaped are preceded
by \. The list is in order of increasing precedence, with equal precedence operators grouped
within {} symbols.

expr \| expr

returns the first expr if it is neither null nor 0, otherwise returns the second expr.
expr \& expr

returns the first expr if neither expr is null or 0, otherwise returns 0.

expr { =,\>,\>=,\<,\<=, =} expr
returns the result of an integer comparison if both arguments are integers, otherwise
returns the result of a lexical comparison.

expr { +, — } expr
addition or subtraction of integer-valued arguments.

expr {\=, /, % } expr
multiplication, division, or remainder of the integer-valued arguments.

expr : expr
The matching operator : compares the first argument with the second argument which
must be a regular expression; regular expression syntax is the same as that of ed(1),
except that all patterns are ‘anchored’ (i.e., begin with ") and, therefore, ~ is not a spe-
cial character, in that context. Normally, the matching operator returns the number of
characters matched (0 on failure). Alternatively, the \(...\) pattern symbols can be
used to return a portion of the first argument.

ARCHAIC FORMS

The following operators are supported by the current version of expr, but have been made
obsolete by the : operator. These should not be used in new applications.

substr expra exprb exprc
returns on standard output that portion of expra (possibily null) which is defined by the
numerical offset (exprb, starting at 1) and the numerical span (exprc). A large span
value may be given to obtain the remainder of the string.
substr abed 2 2 is equivalent to abed : >..\(..\)’

length expr
returns the length in characters of the expression that follows.
length expr is equivalent to expr : °.%’

index expra exprb
searches the first expression for the first character that matches a character from the
second expression. It returns the character position number if is succeds, or 0 if it fails.
index abed d is equivalent to abed : d

January 12, 1981 Page 1 January 12, 1981

EXPR(1) CB—UNIX 2.3 EXPR(1)

EXAMPLES . .
e a=expr $a + 1

adds 1 to the shell variable a.

3 : "For $a equal to either "/usr/abc/file” or just "file"
expr $a : *A\(.X\) \| $a

returns the last segment of a path name (i.e., file). Watch out for / alone as an
argument: expr will take it as the division operator (see BUGS below).

3. : A better representation of example 2.
expr //Sa : #/\(#\)
The addition of the // characters eliminates any ambiguity about the division
operator and simplifies the whole expression.

4. expr SVAR : . ¢

returns the number of characters in SVAR.

SEE ALSO
ed(1), sh(l).
EXIT CODE
As a side effect of expression evaluation, expr returns the following exit values:
0 if the expression is neither null nor 0
1 if the expression is null or 0
2 for invalid expressions.
DIAGNOSTICS
syntax error — for operator/operand errors

non-numeric argument — if arithmetic is attempted on such a string

BUGS
After argument processing by the shell, expr cannot tell the difference between an operator and
an operand except by the value. If $a is an =, the command:

expr $a = "=
looks like:
expr = = =

as the arguments are passed to expr (and they will all be taken as the = operator). The follow-
ing works:

expr X%a = X=

January 12, 1981 Page 2 January 12, 1981

