INIT(1M) CB—UNIX 2.3 INIT(IM)

NAME

init — process control initialization

SYNOPSIS

/ete/init

DESCRIPTION

Init is a general process spawner. Its primary role is to create processes from a script stored in
the file /etc/inittab (see inittab(5)). This file usually has inif spawn gerty’s on each line that a
user may log in on. It also controls autonomous processes required by any particular system.

Init considers the system to be in a run level at any given time. A run level can be viewed as a
software configuration of the system where each configuration allows only a selected group of
processes to exist. The processes spawned by init for each of these run levels is defined in the
inittab file. Init can be in one of eight levels, 0-6 and S (s). The run level is changed by having
a privileged user run /etc/init (which is linked to /bin/telinit). This user spawned init sends
appropriate signals to the orginal init spawned by the operating system when the system was
rebooted, telling it which level to change to.

Init is invoked inside UNIX as the last step in the boot procedure. The first thing init does is to
look for /etc/inittab and see if there is an entry of the type initdefault (see inittab(S)). If there
is, init uses the level specified in that entry as the initial run level to enter. If this entry is not in
inittab or inittab is not found, init requests that the user enter a run level from the virtual sys-
tem console, /dev/syscon. If an S (s). is entered, init goes into the SINGLE USER level. This
is the only level that doesn’t require the existence of a properly formated inittab file. If
/etc/inittab doesn’t exist, then by default the only legal level that init can enter is the SINGLE
USER level. In the SINGLE USER level the virtual console terminal /dev/syscon is opened for
reading and writing and the command /bin/su is invoked immediately. To exit from the SIN-
GLE USER run level one of two options can be elected. First, if the shell is terminated (via an
end-of-file), init will reprompt for a new run level. Second, the init or telinit(1M) command can
signal init and force it to change the run level of the system.

When attempting to boot the system, failure of inir to prompt for a new run level may be due
to the fact that the device /dev/syscon is linked to a device other than the physical system tele-
type (/dev/systty). If this occurs, init can be forced to relink /dev/syscon by typing a delete
on the system teletype which is colocated with the processor.

When init prompts for the new run level the operator may only enter one of the digits 0
through 6 or the letters S or s. If S is entered init operates as previously described in SINGLE
USER mode with the additional result that /dev/syscon is linked to the user’s terminal line,
thus making it the virtual system console. A message is generated on the physical console,
/dev/systty, saying where the virtual terminal has been relocated. ’

If a 0 through 6 is entered init enters the corresponding run level. Any other input will be
rejected and the user will be reprompted. If this is the first time init has entered a run level
other than SINGLE USER, init first scans inittab for special entries of the type boot and bootwait.
These entries are performed, providing the level entered matches that of the entry before any
normal processing of inittab takes place. In this way any special initialization of the operating
system,such as mounting file systems, can take place before users are allowed onto the system.
The inittab file is scanned to find all entries that are to be processed for that run level.

Run level 0 is usually defined by the user to contain all of the terminal processes and daemons
that are spawned in the multi-user environment.

In a2 multi-user environment, the initzab file is usually set up so that init will create a process for
each terminal on the system.

For terminal processes, ultimately the shell will terminate because of an end-of-file either typed
explicitly or generated as the result of hanging up. When init receives a child death signal,

February 24, 1980 Page 1 February 24, 1980




INIT (1M) CB—UNIX 2.3 INIT(1M)

telling it that a process it spawned has died, it records the fact and the reason it died in
/etc/utmp (and /etc/wtmp if it exits) (see who(1)). A history of the processes spawned is
kept in /etc/wtmp if such a file exists.

To spawn each process in the inintab file, init reads each entry and for each entry which should
be respawned, it forks a child process. After it has spawned all of the processes specified by the
inittab file, init waits for one of its descendant processes to die, a powerfail signal, or until init is-
signaled by init or telinit(1M) to change the system’s run level. When one of the above three
conditions occurs, init re-examines the inittab file. New entries can be added to the initzab file at
any time; however init still waits for one of the above three conditions to occur. To provide for
an instantaneous response the "init (telinit) Q" command can wake init to reexamine the inittab
file. . '

If init receives a powerfail signal (SIGPWR (signal(2))) and is not in SINGLE USER mode, it
scans inittab for special powerfail entries. These entries are invoked (if the levels permit)
before any further processing takes place. In this way init can perform various cleanup and
recording functions whenever the operating system experiences a power failure.

When init is requested to change run levels (via telinit(1M)), init sends the warning signal (sig-
nal 15) to all processes that are undefined in the target run level. Init waits 20 seconds before
forcibly terminating these processes via the kill signal (signal 9).

FILES
/etc/inittab,
/etc/utmp,
/etc/wtmp,
/dev/syscon,
/dev/systty,
/bin/sh,
/bin/su

SEE ALSO
getty(1M), login(1), sh(1), telinit(1M), inittab(5), utmp(5)

DIAGNOSTICS
If init finds that it is continuously respawning an entry from /etc/inittab more than 10 times in
2 minutes, it will assume that there is an error in the command string, and generate an error
message on the system console, and refuse to respawn this entry until either 5 minutes has
elapsed or it receives a signal from a user init (telinit). This prevents init from eating up system
resources when someone makes a typographical error in the inittab file or a program is removed
that is referenced in the inittab. ‘

February 24, 1580 Page 2 February 24, 1980



