PRETTY(1L)

SCCs March 7, 1978 PRETTY(1L)

NAME

pretty - adjust C code to coding standard
SYNOPS IS '

pretty [-a‘hlc[n:n:n ..1 10 -rin[+1 1 [file ... 1]
DESCRIPTION

Pretty takes C code, either from the standard input or from the
listed files and reformats them to the coding standard specified
by the -a, -b, or -c¢ switch. If no coding standard is specified,
-a4 is assumed.

-r

-n[+]

Output is normally directed to the standard output. The -r
switch directs pretty to place the output temporarily in
tmppretty?7?77? and at the end of reformatting, rename origi-
nal to old.original and tmppretty????? to original, thus
preserving a copy of the original code.

Normally pretty makes an attempt to add four extra spaces to
any 1lines that it thinks are continuations of previous
lines. If a previous line did not end in ; : { or } and the
new 1line does start with a {, then pretty thinks it is a
continuation. The -i switch tells pretty not to worry about
continuation 1lines and no extra spaces are added to such
lines.

Pretty can handle the C formatting macros (Programmers Note
#113) if the -m switch is specified. This switch tells
pretty that comments can start with _Cx, _Bx, or Fx as well
as the usual /* sequence. It also tells pretty that braces
might be found as _{ and _} and that the occurance of __
should be treated as a complete statement. The "+" addi-
tionally specifies that all indents must be multiples of 8
and that when deindenting switch statement labels, they
should be deindented by 8 instead of the normal 2. This is
necessary for anyone using the _{ and _} in place of normal
pbraces and the __ to specify that nroff deindent the switch
statment labels. This is because the nroff formatting mac-
ros do not delete leading spaces in lines, though they do
delete 1leading tabs. Without the "+" option, the final
results after nroff'ing would not be what was desired. It
is suggested that people use the commenting aids of the
nroff macros, but allow pretty to handle the braces and in-
denting. If this is done, only the n option without the "+"
is required. It should be noted that the "+" on the n
switch overides any tab setting given with the a , b , or ¢
switches.

PRETTY(1L) SCCs March 7, 1978 PRETTY(1L)

The coding standards are:

-a :9.9:6:9.9.9:9.9.9.9.9.9.$.9.9.4.9,:9.9.6.0.0:9.4
{
XEXXXXXXXXXXXZXKXXR
§:9:9.9.9.9.9.9.9.9,6.9.9.9.9.9.9.9.4

}

-b b:6:9:0:9.9:6.9:6:0.5.6.0.0.:0:6.4.0.0.0.0.6.0.5:21
XEXXXXEXXXXXXXKXRXXKXX
XXXXXXXXXZXXXXXXXZX

}

=c :9.9:9,9.4.9.9.9.9.9.9.9.6.9.9:9.6,:6.0.9:0.6.0.4
{
EXXEXXXXXXKXXKXXXKXXX
XXXXXXXXXXXXKXXKXKXXX

}

A coding standard switch may be followed by an optional n:n:....,
where each n is the size of the next indent in the series. The
default has all indents set to 4 for coding standards a and b and
2 for coding standard e¢. This means that each new section of
code will begin four spaces further to the right than the previ-
ous section. In the following example

pretty -c2:6:2 file
produces code of type ¢ with the first indent at 2, the second at
2+6, the third at 2+6+2, and all later indents at 2 further in

from the previous indent. Sample code would appear as

subroutine()

{
D:0:0:6:9.9.0:9.0:0:9.0.6:0.0'1
{
b:5/9:9:0:0:6:6.9.0'0:0:0.04
XXXXXXXXXKKKKX
3
XXXXXXXXRKXXKKXXXK
XXXXXXXXXXXXKKKKK
}

Pretty makes certain assumptions that the user should be aware
of. Lines Dbeginning with # and comments beginning in the left-
most column are not adjusted. All other comments are indented
normally. If the user translates a file of C code from types -a
Or =c to -b it is possible to move a { from inside an #ifdef '
#1f or #else to the first statement preceding that conditional.
Code must not appear in this form or the following can happen:

PRETTY (1L) SCCs March 7, 1978 PRETTY(1L)

FILES

-a code -b code
if (a > b) if (a > b){
#ifdef TYPE #ifdef TYPE
{ -——> XXXXXXKXXXXX
XXXXXRXXKXXX 7 XXXKZXKXKXXXX ;
XXXXXXXXXXX ; }
} #else
#else XXXXXXXXXXX 7
XXXXXXXXXXX 7 #endif

#endif

As long as the code inside condtionals is syntactically complete,
this problem will not arise.

If code is translated to first one coding standard and then back,
there is the possibility of minor differences between the origi-
nal and final output, caused by movement of Dblank lines. No
functional changes in code appearance will take place.

Labels are checked for as the first printing item on 1lines. If
they are encountered, the label is printed left justified on a
line by itself to make it stand out. The keywords case and de-
fault of the switch statement are printed with the indent at that
point reduced by 2 spaces if possible. Lines that do not appear
to Dbe complete, that is not ending in a ; : { or } character,
cause the next line of code to be indented an extra 4 spaces as
long as the new line doesn't begin with a { character. This
feature is turned off by the -i switch.

