VPMC(1C) CB—UNIX 2.3 VPMC(1C)

NAME
vpmc — compiler for the virtual protocol machine

SYNOPSIS
vpme [-m] [—r] [—c] [—x] [—s sfile] [—11fle] [—iifile] [—o ofile]
file

DESCRIPTION

Vpme is the compiler for a language that is used to describe communications link protocols.
The output of vpmc is a load module for the virtual protocol machine (VPM), which is a
software construct for implementing communications link protocols (e.g., BISYNC) on the DEC
KMC11-B microprocessor. VPM is implemented by an interpreter in the KMC which cooperates
with a driver in the UNIX host computer to transfer data over a communications link in accor-
dance with a specified link protocol. UNIX user processes transfer data to or from a remote ter-
minal or computer system through VPM using normal UNIX open, read, write, and close opera-
tions. The VPM program in the KMC provides error control and flow control using the conven-
tions specified in the protocol.

The language accepted by vpme is essentially a subset of C; the implementation of vpmc uses
the RATFOR preprocessor (ratfor(1)) as a front end; this leads to a few minor differences,
mostly syntactic.

There are two versions of the interpreter. The appropriate version for a particular application is
selected by means of the —i option. The BISYNC version (—i bisync) supports half-duplex,
character-oriented protocols such as the various forms of BISYNC. The HDLC version (—i hdle,
the default) supports full-duplex, bit-oriented protocols such as HDLC. The communications
primitives used with the BISYNC version are character-oriented and blocking; the primitives
used with the HDLC version are frame-oriented and non-blocking.

Options

The meanings of the command-line options are:

—m Use m4(1) instead of ¢pp as the macro preprocessor.

-r Produce RATFOR output on the standard output and suppress the remaining com-
piler phases.

—c Compile only (suppress the assembly and linking phases).

-X Retain the intermediate files used for communication between passes.

—s sfile Save the generated VPM assembly language on file sfile.
—1lfile Produce a VPM assembly-language listing on file lfile.
—iifile Use the interpreter version specified by ifile (default hdlc).
—o ofile Write the executable object file on file ofile (default a.out).

These options may be given in any order.
Programs

Input to vpmc consists of a (possibly null) sequence of array declarations, followed by one or
more function definitions. The first defined function is invoked (on command from the UNIX
VPM driver) to begin program execution.

Functions
A function definition has the following form:

function name()
statement_list
end

Function arguments (formal parameters) are not allowed. The effect of a function call with
arguments can be obtained by invoking the function via a macro that first assigns the value of

February 9, 1981 Page 1 February 9, 1981

s AL, Lo oS s

VPMC(1C) CB—UNIX 2.3 VPMC(1C)

each argument to a global variable reserved for that purpose. See EX4AMPLES below.

A statement_list is a (possibly null) sequence of labeled statements. A labeled_statement is a
statement preceded by a (possibly null) sequence of labels. A label is either a name followed
by a colon (:) or a decimal integer optionally followed by a colon.

The statements that make up a statement list must be separated by semicolons (;). (A semi-
colon at the end of a line can usually be omitted; refer to the description of RATFOR for
details.) Null statements are allowed.

Statement Syntax
The following types of statements are allowed:

expression

Ivalue = expression

Ivalue + = expression

lvalue — = expression

bvalue | = expression

Ivalue & = expression

Ivalue ™ =expression

halue <<<=-expression

lvalue >> =-expression

if (expression)statement

if (expression)statement else statement
while(expression)statement
for(statement; expression; statement)statement
repeat statement

repeat statement until expression
break

next
switch(expression){case_list}
return(expression)

return

goto name

goto decimal_constant
{statement_list}

repeat is equivalent to the do keyword in C; next is equivalent to continue.

A case_list is a sequence of statement lists, each of which is preceded by a label of the form:
case constant:

The label for the last statement_list in a case_list may be of the form:
default:

Unlike C, RATFOR supplies an automatic break preceding each new case label.

Expression Syntax

A primary_expression (abbreviated primary) is an lvalue or a constant. An lalue is one of the
following:

name
name [constant]

A unary_expression (abbreviated unary) is one of the following:

primary
name()

February 9, 1981 Page 2 February 9, 1981

VPMC(1C) CB—UNIX 2.3 VPMC(1C)

system_call
+ +hvalue
— —halue
(expression)
lunary
“unary

The following types of expressions are allowed:

unary

unary + primary
unary — primary
unary |primary
unary &primary
unary &~ primary
unary " primary
unary <<<primary
unary >>>primary
unary = =primary
unary!=primary
unary > primary
unary <<primary
unary > =primary
unary <=primary

Note that the right operand of a binary operator can only be a constant, a name, or a name with
a constant subscript.

System Calls

A VPM program interacts with a communications device and a driver in the host computer by
means of system calls (primitives).

The following primitives are available only in the BISYNC version of the interpreter:

atoe(primary)
Translate ASCII to EBCDIC. The returned value is the EBCDIC character that
corresponds to the ASCII character represented by the value of the primary expression.
The translation tables reflect the prejudices of a particular installation.

crc16(primary)
The value of the primary expression is combined with the cyclic redundancy check-sum
at the location passed by a previous ercloc system call. The CRC-16 polynomial
(x'4x'5+x2+1) is used for the check-sum calculation.

crcloc(name)
The two-byte array starting at the location specified by name is cleared. The address of
the array is recorded as the location to be updated by subsequent crcl6 system calls.

etoa(primary)
Translate EBCDIC to ASCIL. The returned value is the ASCII character that
corresponds to the EBCDIC character represented by the value of the primary expres-
sion. The translation tables reflect the prejudices of a particular installation.

get(lvalue)
Get a byte from the current transmit buffer. The next available byte, if any, is copied
into the location specified by /value. The returned value is zero if a byte was obtained,
otherwise it is non-zero.

getrbuf(name)

February 9, 1981 Page 3 February 9, 1981

s

ry——

& oo e Bt (3

VPMC(1C) CB—UNIX 2.3 YPMC(1C)

Get (open) a receive buffer. The returned value is zero if a buffer is available, other-
wise it is non-zero. If a buffer is obtained, the buffer parameters are copied into the
array specified by name. The array should be large enough to hold at least three bytes.
The meaning of the buffer parameters is driver-dependent. If a receive buffer has pre-
viously been opened via a getrbuf call but has not yet been closed via a call to rtnrbuf,
that buffer is reinitialized and remains the current buffer.

getxbuf(name)
Get (open) a transmit buffer. The returned value is zero if a buffer is available, other-
wise it is non-zero. If a buffer is obtained, the buffer parameters are copied into the
array specified by name. The array should be large enough to hold at least three bytes.
The meaning of the buffer parameters is driver-dependent. If a transmit buffer has pre-
viously been opened via a getxbuf call but has not yet been closed via a call to rtnxbuf,
that buffer is reinitialized and remains the current buffer.

put(primary)
Put a byte into the current receive buffer. The value of the primary expression is
inserted into the next available position, if any, in the current receive buffer. The

returned value is zero if a byte was transferred, otherwise it is non-zero.

rev(lvalue)
Receive a character. The process delays until a character is available in the input silo.
The character is then moved to the location specified by halue and the process is reac-
tivated.

rsom(constant)
Skip to the beginning of a new receive frame. The receiver hardware is cleared and the
value of constant is stored as the receive sync character. This call is used to synchron-
ize the local receiver and remote transmitter when the process is ready to accept a new
receive frame.

rtnrbuf(name)
Return a receive buffer. The original values of the buffer parameters for the current
receive buffer are replaced with values from the array specified by name. The current
receive buffer is then released to the driver.

rtnxbuf(name)
Return a transmit buffer. The original values of the buffer parameters for the current
transmit buffer are replaced with values from the array specified by name. The current
transmit buffer is then released to the driver.

xeom(constant)
Transmit end-of-message. The value of the constant is transmitted, then the
transmitter is shut down.

xmt(primary)
Transmit a character. The value of the primary expression is transmitted over the com-
munications line. If the output silo is full, the process waits until there is room in the
silo.

xsom(constant)
Transmit start-of-message. The transmitter is cleared, then the value of constant is
transmitted six times. This call is used to synchronize the local transmitter and the
remote receiver at the beginning of a frame.

The following primitives are available only with the HDLC version of the interpreter:

abtxfrm()
The current transmission, if any, is aborted, if possible, by sending a frame-abort

February 9, 1981 Page 4 February 9, 1981

VPMC(IC) CB—UNIX 2.3 VPMC(1C)

sequence (seven one bits, followed immediately by a terminating flag). This operation
is not feasible with some hardware interfaces, in which case this primitive is a no-
operation.

getxfrm(primary)
Get a transmit buffer. If the transmit-buffer queue is not empty, the buffer at the head
of the queue is removed from the queue and attached to the sequence number specified
by the value of the primary expression If the sequence number is greater than seven or
the sequence number already has a buffer attached, the process is terminated in error.
The returned value is zero if a buffer was obtained, otherwise non-zero.

norbuf()
Test for the availability of an empty receive buffer. The returned value is true (non-
zero) if the queue of empty receive buffers is currently empty; otherwise the returned
value is false (zero).

revfrm(name)
Get a completed receive frame. If the queue of completed receive frames is non-
empty, the frame at the head of the queue is removed and becomes the current receive
frame. If a frame is obtained, the first five bytes of the frame are copied into the array
specified by name. The returned value is true (non-zero) if a frame was obtained;
otherwise, it is false (zero). The rightmost four bits of the returned value indicate the
frame length as follows: if the value of the rightmost four bits is equal to fifteen, the
frame length is greater than or equal to 15; otherwise the frame length is equal to the
value of the rightmost four bits. The frame length includes the two CRC bytes at the
end of the frame and any control information at the beginning of the frame. Bytes fol-
lowing the first two bytes of the frame, but not including the two CRC bytes, are copied
into a receive buffer, if one is available at the time the frame is received. Bit 020 of
the returned value is zero if a receive buffer was available, otherwise non-zero. The
values of the leftmost three bits of the returned value are currently unspecified. If a
frame was obtained, the first five bytes of the frame are copied into the array specified
by name. Frames with errors are discarded; a count is kept for each type of error.

: Frames may be discarded for any of the following reasons: (1) CRC error, (2) frame
i too short (less than four bytes), (3) frame too long (buffer size exceeded), or (4) no
: receive buffer available. If a frame with a buffer attached was previously obtained with
¥

revfrm, but the buffer has not been released to the driver with rtnrfrm, that buffer is
returned to the queue of empty receive buffers. At most one receive frame with no
buffer attached is retained by the interpreter; if a new frame arrives before the frame
with no buffer attached has been obtained with revfrm, the new frame is discarded.

! rtarfrm()

; Return a receive buffer. The current receive buffer (the one obtained by the most
recent revfrm primitive) is returned to the driver. If there is no current receive buffer,
the process is terminated in error.

rsxmtq()

; Reset the transmit-buffer queue. The sequence number assignment is removed from
: all transmit buffers. If a transmission is currently in progress, the transmission is
! aborted, if possible.

) rtnxfrm(primary)

! Return a transmit buffer. The transmit buffer currently attached to the sequence

' number specified by the value of the primary expression is returned to the driver and
the sequence number assignment is removed from that buffer. If the specified

‘ sequence number does not have a buffer attached, the process is terminated in error.

Transmit buffers must be returned in the same sequence in which they were obtained,

February 9, 1981 Page S February 9, 1981

VPMC(1C) CB—UNIX 2.3 VPMC(1C)

otherwise the process is terminated in error.

setctl(name,primary)
Specify transmit-control information. The number of bytes specified by the primary
expression are copied from the array specified by name and saved for use with subse-
quent xmtfrm or xmtctl primitives. If the transmitter is currently busy, the process is
terminated in error.

xmtbusy()
Test for transmitter busy. If a frame is currently being transmitted, the returned value

is true (non-zero); otherwise the returned value is false (zero).

xmtetl()
Transmit a control frame. If a transmission is not already in progress, a new transmis-
sion is initiated. The transmitted frame will contain the control information specified
by the most recent setctl primitive, followed by a two-byte CRC. The CRC-CCITT poly-
nomial (x'6+x!2+x%+1) is used for the CRC calculation. The returned value is zero if a
new transmission was initiated, otherwise non-zero.

xmtfrm(primary)

Transmit an information frame. If a transmission is not already in progress, 2 new
transmission is initiated. The transmitted frame will contain the control information
specified by the most recent setctl primitive, followed by the contents of the buffer
which is currently attached to the sequence number specified by the value of the pri-
mary expression followed by a two-byte CRC. The CRC-CCITT polynomial
(x'6+x!2+x%+1) is used for the CRC calculation. The returned value is zero if a new
transmission was initiated, otherwise non-zero. If the sequence number is greater than
seven or the sequence number does not have a buffer attached, the process is ter-
minated in error.

The following primitives are available with all versions of the interpreter:

dsrwait()
Wait for modem-ready and then set modem-ready mode. The process delays until the
modem-ready signal from the modem interface is asserted. If the modem-ready signal
subsequently drops, the process is terminated. If dsrwait is never invoked, the
modem-ready signal is ignored.

exit(primary)
Terminate execution. The process is halted and the value of the primary expression is
passed to the driver.

getcmd(name)
Get a command from the driver. If a command has been received from the driver
since the last call to getcmd, four bytes of command information are copied into the
array specified by name and a value of true (non-zero) is returned. If no command is
available, the returned value is false (zero).

pause()

Return control to the dispatcher. This primitive informs the dispatcher that the virtual
process may be suspended until the next occurrence of an event that might affect the
state of the protocol for this line. Examples of such events are: (1) completion of an
output transfer, (2) completion of an input transfer, (3) timer expiration, and (4) a
buffer-in command from the driver. In a multi-line implementation, the pause primi-
tive allows the process for a given line to give up control to allow the processor to ser-
vice another line. In a single-line implementation this primitive has no effect.

snap(name)
Create a snap event record. Four bytes from the array specified by name are passed to

February 9, 1981 Page 6 February 9, 1981

Lovaswnin © e s A o AR . Mo IO iR

USRI

VPMC(1C) CB—UNIX 2.3 VPMC(1C)

the driver, which prefixes a time stamp and sequence number and creates a trace event
record containing the data. If minor device 1 of the trace driver is currently open, the
record is placed on the read queue for that device; otherwise the event record is dis-
carded. The information passed via the snap primitive can be displayed using the
vpmsnap command (see vpmstart(1C)).

rtnrpt(name)
Return a report to the driver. Four bytes from the array specified by name are
transferred to the driver. The process delays until the transfer is complete.

testop(primary) 7
Test for odd parity. The returned value is true (non-zero) if the value of the primary

expression has odd parity, otherwise the returned value is false (zero).

timeout(primary)

Schedule or cancel a timer interrupt. If the value of the primary expression is non-
zero, the current values of the program counter and stack pointer are saved and a timer
is loaded with the value of the primary expression. The system call then returns
immediately with a value of false (zero) as the returned value. The timer is decre-
mented each tenth of a second thereafter. If the timer is decremented to zero, the
saved values of the program counter and stack pointer are restored and the system call
returns with a value of true (non-zero). The effect of the timer interrupt is to return
control to the code immediately following the timeout system call, at which point a
non-zero return value indicates that the timer has expired. The timeout system call
with a non-zero argument is normally written as the condition part of an if statement.
A timeout system call with a zero argument value cancels all previous timeout requests,
as does a return from the function in which the timeout system call was made. A
timeout system call with a non-zero argument value overrides all previous timeout
requests. The maximum permissible value for the argument is 255, which gives a
timeout period of 25.5 seconds.

timer(primary)

Start a timer or test for timer expiration. If the value of the primary expression is
non-zero, a software timer is loaded with the value of the primary expression and a
value of true (non-zero) is returned. The timer is decremented each tenth of a second
thereafter until it reaches zero. If the value of the primary expression is zero, the
returned value is the current value of the timer; this will be true (non-zero) if the
value of the timer is currently non-zero, otherwise false (zero). The timer used by this
primitive is different from the timer used by the timeout primitive. ‘

trace(primary|,primary))

The values of the two primary expressions and the current value of the script location
counter are passed to the driver, which prefixes a sequence number and creates a trace
event record containing the data. If minor device 0 of the trace driver is currently
open, the record is placed on the read queue for that device; otherwise the event record
is discarded. The information passed via the frace primitive can be displayed using the
vpmtrace command (see vpmstart(1C)). If the second argument is omitted, a zero is
used instead. The process delays until the values have been accepted by the host com-
puter.

Constants

A constant is a decimal, octal, or hexadecimal integer, or a single character enclosed in single
quotes. A token consisting of a string of digits is taken to be an octal integer if the first digit is
a zero, otherwise the string is interpreted as a decimal integer. If a token begins with 0x or 0X,
the remainder of the token is interpreted as a hexadecimal integer. The hexadecimal digits
include a through f or, equivalently, A through F.

February 9, 1981 Page 7 February 9, 1981

VPMC(1C) CB—UNIX 2.3 VPMC(1C)

Variables

Variable names may be used without having been previously declared. All names are glo'bal.
All values are treated as 8-bit unsigned integers.

Arrays of contiguous storage may be allocated using the array declaration:

array name[constant]
where constant is a decimal integer. Elements of arrays can be referenced using constant sub-
scripts:

name [constant]

Indexing of arrays assumes that the first element has an index of zero.

Names

A name is a sequence of letters and digits; the first character must be a letter. Upper- and
lower-case letters are considered to be distinct. Names longer than 31 characters are truncated
to 31 characters. The underscore (_) may be used within a name to improve readability, but is
discarded by RATFOR.

Preprocessor Commands

If the —m option is omitted, comments, macro definitions, and file inclusion statements are
written as in C. Otherwise, the following rules apply:

1. If the character # appears in an input line, the remainder of the line is treated as a com-
ment.

2. A statement of the form:
define(name text)
causes every subsequent appearance of name to be replaced by text. The defining text
includes everything after the comma up to the balancing right parenthesis; multi-line
definitions are allowed. Macros may have arguments. Any occurrence of $n within the
replacement text for a macro will be replaced by the nth actual argument when the macro
is invoked.

3. A statement of the form:
include(file)
inserts the contents of file in place of the include command. The contents of the included
file is often a set of definitions.

EXAMPLES
These examples require the use of the —m option.

The function defined below transmits a frame in transparent BISYNC.
A transmit buffer must be obtained with getxbuf before the function
is invoked.

#

Define symbolic constants:

#

define(DLE,0x10)

define(ETB,0x26)

define(PAD,0xff)

define(STX,0x02)

define(SYNC,0x32)

#

Define a macro with an argument:

#
define(xmtcrc,{crc16(8$1); xmt(51);})

February 9, 1981 Page 8 February 9, 1981

= =i

VPMC(1C)

FILES

#

Declare an array:

array crc2];
#
Define the function:
#
function xmtblk()
crcloc(cre);
xsom(SYNC);
xmt(DLE);
xmt(STX);
while(get(byte) ==0){
if(byte == DLE)
xmt(DLE);
xmtcrc(byte);
}
xmt(DLE);
xmtcrc(ETB);
xmt(crc{0]);
xmt(crcl1]);
xeom(PAD);
end

#

CB—UNIX 2.3

The following example illustrates the use of macros to simulate a

function call with arguments.

#

The macro definition:
#
define(xmtctl, {c=81;d=%$2;xmtctl1()})
#
The function definition:
#
function xmtctil()
xsom(SYNC);
xmt(c);
if(d!=0)
xmt(d);
xeom(PAD);
end
#
Sample invocation:
#
function test()
xmtctl{ DLE,0x70);
end

sas_temp#* temporaries
/tmp/sas_ta?? temporary
/tmp/sas_tb?? temporary
Jusr/lib/vpm/pass* compiler phases
Jusr/lib/vpm/pl compiler phase

February 9, 1981 Page 9

VPMC(1C)

February 9, 1981

YPMC(1C) CB—UNIX 2.3 VPMC(IC)

Just/lib/vpm/vratfor compiler phase

/lib/cpp preprocessor

/usr/bin/m4 preprocessor

/bin/kasb KMC11-B assembler

Jusr/lib/vpm/bisync/* interpreter source for the BISYNC interpreter

Jusr/lib/vpm/hdic/= interpreter source for the HDLC interpreter
SEE ALSO

m4(1), ratfor(1), vpmstart(1C), vpm(4).

C Reference Manual by D. M. Ritchie.

RATFOR— A Preprocessor for a Rational Fortran by B. W. Kernighan.
The M4 Macro Processor by B. W. Kernighan and D. M. Ritchie.
Software Tools by B. W. Kernighan and P. J. Plauger (pp. 28-30).

February 9, 1981 Page 10 February 9, 1981

