‘EXEC(2) CB—UNIX 2.3 EXEC(2)

NAME

execl, execv, execle, execve, execlp, execvp — execute a file

SYNOPSIS

int execl (name, arg0, argl, ..., argn, 0)
char *name, sarg0, =argl, ..., *argn;

int execv (name, argv)

char *name, #argv| |;

int execle (name, arg0, argl, ..., argn, 0, envp)
char *name, sarg0, sargl, ..., *argn, =envpl |;
int execve (name, argv, envp)

char *name, sargv[ ], senvpl I;

int execlp (name, arg0, argl, ..., argn, 0)
char *name, =*arg0, =*argl, ..., =argn;

int execyp (name, argv)

char *name, *argV[ l;

DESCRIPTION

Exec in all its forms overlays the calling process with the named file, then transfers to the entry
point of the core image of the file. There can be no return from a successful exec; the calling
core image is lost.

File descriptors ordinarily remain open across exec, but may be requested to be automatically
closed (see ioctl(2)). Ignored signals remain ignored across these calls, but signals that are
caught (see signal(2)) are reset to their default values.

Each user has a real user ID and group ID and an effective user ID and group ID. The real ID
identifies the person using the system; the effective 1D determines his access privileges. Exec
changes the effective user or group ID to the owner of the executed file if the file has the
“set-user-ID’" or “‘set-group-ID”> modes. The real user and IDs are not affected.

The name argument is a pointer to the name of the file to be executed. The pointers arg[0],
arg(1] ... address null-terminated strings. Conventionally arg[0] is the name of the file.

From C, two interfaces are available. exec! is useful when a known file with known arguments
is being called; the arguments to execl are the character strings constituting the file and the
arguments; the first argument is conventionally the same as the file name (or its last com-
ponent). A 0 argument must end the argument list.

The execv version is useful when the number of arguments is unknown in advance; the argu-
ments to execv are the name of the file to be executed and a vector of strings containing the
arguments. The last argument string must be Tollowed by a 0 pointer.

When a C program is executed, it is called as follows:

main (argc, argyv, envp)

int argce;

char =sargv, sxenvp; _
where argc is the argument count and argv is an array of character pointers to the arguments

themselves. As indicated, arge is conventionally at least one and the first member of the array
points to a string containing the name of the file.

Argv is directly usable in another execv because argvlarge] is 0.

Envp is a pointer to an array of strings that constitute the environment of the process. Each
string consists of a name, an =, and a null-terminated value. The array of pointers is ter-
minated by a null pointer. The shell sh(1) passes an environment entry for each global shell

February 27, '1981 Page 1 February 27, 1981




EXEC(2) CB—UNIX 2.3 EXEC(2)

FILES

variable defined when the program is called. See environ(7) for some conventionally used
names. The C run-time start-off routine places a copy of envp in a global cell:

extern char s=environ;

that is used by execv and exec! to pass the environment to any subprograms executed by the
current program. The exec routines use lower-level routines as follows to pass an environment
explicitly:

execve (file, argv, environ);

execle (file, arg0, argl, . . ., argn, 0, environ);
Execvp and execlp are called with the same arguments as execv and execl, but duplicate the
Shell’s actions in searching for an executable file in a list of directories. The directory list is
obtained from the environment.

/bin/sh, or the value specified by the shell variable $SSHELL, invoked if command file found
by execlp or execvp

SEE ALSO

iocti(2), fork(2), getenv(3C), environ(7)

DIAGNOSTICS

If the file cannot be found, if it is not executable, if it does not start with a valid magic number
(see a.out(5)), if maximum memory is exceeded, if it is a pure-procedure program which is
currently open for reading or writing, or if the arguments require too much space, a return con-
stitutes the diagnostic; the return value is —1. Even for the super-user, at least one of the
execute-permission bits must be set for a file to be executed.

ASSEMBLER
(exec = 11.)
SyS exec; name; argy
(exece = 59.)

SyS exece; name; argy; envp
Plain exec is replaced by exece, but remains for historical reasons.

When the called file starts execution, the stack pointer points to a word containing the number
of arguments. Just above this number is a list of pointers to the argument strings, followed by
a null pointer, followed by the pointers to the environment strings and then another null
pointer. The strings themselves follow; a 0 word is left at the very top of memory.
sp—> nargs

arg0

argn

0

env0
envm
0

arg0: <<argO\0O>

env0: <envO\0>
0

This arrangement happens to conform well to C calling conventions.

February 27, 1981 Page 2 February 27, 1981



