INTRO(2) CB—-UNIX 2.1 INTRO(2)

NAME
intro — introduction to system calls

DESCRIPTION :
Section 2 of this manual lists all the entries into the system.. In most cases two calling
sequences are specified, one of which is usable from assembly language, and the other from C.
Most of these calls have an error return. From assembly language an erroneous call is always
indicated by turning on the c-bit of the condition codes. The presence of an error is most easily
tested by the instructions bes and bec ("branch on error set (or clear)”). These are synonyms
for the bcs and bec instructions. From C, an error condition is indicated by an otherwise impos-
sible returned value. Almost always this —1; the individual sections specify the details.

In both cases an error number is also available. In assembly language, this number is returned
in 10 on erroneous calls. From C, the external variable ermo is set to the error number. Ermo
is not cleared on successful calls, so it should be tested only after an error has occurred. There
is a table of messages associated with each error, and a routine for pnntmg the message, see
perror(3). :

The possible error numbers are not recited with each writeup in section 2, since many errors
are possible for most of the calls. Here is a list of the error numbers, their names inside the
system (for the benefit of system-readers), and the messages available using perror. A short
explanation is also provided.

Users needing to examine these error codes directly should include the file
/usr/include/errno.h rather than wiring these numbers into their program.

0 - (unused)

1 EPERM Not owner and not super-user
Typically this error indicates an attempt to modify a file in some way forbidden except
to its owner. It is also returned for attempts by ordinary users to do things allowed
only th the super-user.

2 ENOENT No such file or directory
This error occurs when a file name is specified and the file should exist but doesn’t, or
when one of the directories in a path name does not exist.

3 ESRCH No such process

The process whose number was given to signal does not exist or is already dead. Also
returned for an attempt to send a message to a process that has not enabled message
reception.

4 EINTR Interrupted system call
An asynchronous signal (such as interrupt or quit), which the user has elected to catch,

occurred during a system call. If execution is resumed after processing the signal, it
will appear as if the interrupted system call returned this error condition.

5 EIO 1/0 error
Some physical [/O error occurred during a read or write. This error may in some cases
occur on a call following the one to which it actually applies.

6 ENXIO No such device or address
[/0 on a special file refers to a subdevice which does not exist, or is beyond the limits
of the allowed number of subdevices. It may aiso occur when, for example, a tape
drive is not on-line, or no disk pack is loaded on a drive.

7 E2BIG Arg list too long

An argument list longer than 5,120 bytes (counting the null at the end of each argu-
ment) is presented to a member of the exec family.

November 1979 Page 1 November 1979




INTRO(2), .., CB—UNIX 2.1 INTRO (2)
A B s o B

e L0

8 EN_OEXEC Exec format error

e, request is made to ececute a file which, although it has the appropriate permissions,

S50F does’not start with a valid magic number (see a.our (5)).

9 EBADF Bad file number
' Either a file descriptor refers to no open file, or a read (resp. write) request is made to

a file which is open only for writing (resp. reading).

AO EEHILD No children
Wait was requested but the process has no living or unwaited-for children.

ll, EAGAIN ‘No more processes,
In afork the system ’s process table is full and no more processes can, for the moment,

i "" Y e created N

12 ENOMEM Not enough core
Durmg Aan exec.or break , a program asks for more memory than the system is able to
supply This is not’a temporary condition; the maximum memory size is a system
parameter. The error may also occur if the arrangement of text, data, and stack seg-
ments is such 4s to require mor than the existing 8 segmentation registers, or if there is
not enough swap space during a fork .

5 13 EA@CES Permission denied -
An attempt was made to access a file or some other resource in a way forbidden by the
protection system.

14 EFAULT Memory fault .
User has supplied a non-existent address.

15 ENOTBLK Block device required -
A plain file was mentioned where a block device was required, e.g., in mount .
16 EBUSY Mount device'busy
~ An attempt t0 mount a‘device that was already mounted, or an attempt was made to

dismount a device on which there is an open file or which is some process’s current
. .directory, or the system profile clock was busy.

"'"17 EEXIST File exists - R

An existing ﬂle was memtioned in an mappropnate context e.g., link
~18 EXDEYV Cross-device link .. % g 2 d

A lmk toa file on: emothef devnce~ was attempted

" 19 ENODEYV No such device o
An attempt was made to apply an mappropnate system call to a device; e.g., read a
write-only device.

20 ENOTDIR Not a directory

A non-directory was speéxﬁed Where a dlrectory is required, for example in a path name
or as an argument to cd.

21 EISDIR Isa d:rectory :
- An attempt to write on a directory.

22 EINVAL Invalid argument Ny
some invalid argument: currently, dismounting a non-mounted device, m@ioning an
unknown signal in sigial, giving an unknown request to /ioc//| passing an invalid argu-
ment list to exec, providing an unknown function argument to sema or msg, reading or
swriting .a file for which /sezk has returned a ‘negative pointer, multiple system profiling
."was requested, or invalid math function arguriients (see 3M).

November 1979 ol Page 2 November 1979



INTRO (2) CB-UNIX 2.1 INTRO (3)

23 ENFILE File table overflow A
The system’s table of open files is full, and temporarily no more 0pens can be accepted

24 EMFILE Too many open files ‘

L Only 20 files can be open per process.

25 ENOTTY Not a typewriter -
The file mentioned inioct! is not a typewriter or one of the other devices to wlﬂoh these
calls apply. ]

26 ETXTBSY Text file busy R
An attempt to execute a pure-procedure program Wthh is currently open for wrltmg
(or reading). Also an attempt to open for writing a pure- procedure program that is
being executed.

27 EFBIG File too large
An attempt to make a file larger than the maximum of ULIMIT or 2048 blocks

28 ENOSPC No space left on device ~e
During a write to an ordinary file, there is no free space left on th&dev:ce

29 ESPIPE Seek on pipe
An Iseek was issued to a pipe. This error shouid also be issued for other non-rseekable‘
devices.

30 EROFS Read-only file system :
An attempt to modify a file or directory was made on a device mounted read-only

31 EMLINK Too many links
An attempt to make more than 127 links to a ﬁle,

32 EPIPE Write on broken pipe .v
A write on a pipe for which there is no process to read the data.. This condition nor-
mally generates a signal; the error is returned if the signal is ignored.

33 ETABLE No entries left .
One of the system tables necessary to complete the request is: temporarlly full, or the
argement of a function in the math package (3M) is out of the .domain of the function.

33 EDOM Math argument : ' Trora e o
The argument of a function in the math package (3M) is out- of the domain of the
function. This error number is used by certain programs -that were transported from
UNIX/TS to CB-UNIX after that error number was already in use for another purpose

N in CB-UNIX (see 33 ETABLE above)

34 EFUNC Invalid function £
An attempt to perform an invalid operation, or the value of a function in the math
package (3M) is not representable within machine precrsxon

34 ERANGE Result too large
The value of a function in the math package (3M) is not representable within machine

precision. This error number is.also used for 34 EFUNC above See the note under 33
EDOM above.

35 ENOMSG No message \ _
A message of the requested type is not on the message -queue.

36 ENOALOC Resource not allocated
An attempt was made either to use -a facxllty that must first’ be allocated (e.g., recvw

without first enabling messages) or th allocate a facility in a way other than for its
intended use.

]

v

I P R

LU, A -1-
November 1979 Page 3 November 1979




3

INTRO () ¥ 57+ CB—UNIX 2.1 INTRO (2)

37 ELOCK Locking error
An attempt was made to unlock a process or text that was not locked, or an attempt
was fmade to lock the process/text when the text/process was already locked (the lock-
ing specifications are mutually exclusive). Other possibilities are that a locked process
tried to exec, or that sprofi could not lock the user buffer in memory.

SEE ALSO

intro 3)

ASSEMBLER®" -

OLD C

as /usr/include/sys.s file

’fhe“PD“Pdl _aséémbly language interface is given for each system call. The assembler symbols
‘are*défined’in’ /usr/include/sys.s.

Return values appear in registers 10 and rl; it is unwise to expect these registers to be
pteserved: Ar‘erroneous call is always indicated by turning on the c-bit of the condition codes.
The error number is then returned in r0. The presence of an error is most easily tested by the
instructions bes and bec ("branch on error set (or clear)"). These are synonyms for the bcs and
beéc dnstructions. :

For the syscb and utssys groups of system calls, the call’s number is passed in rl and the first
argument to the call, if there is one, is passed in r0.

COMPILER

The manual pages in sections 2 and 3 with names ending in ‘“:0’’ are system calls and functions
that are for use with the old C compiler (occ) and/or release 1 of CB-UNIX. When using the
oid C compiler, old system calls are used automatically via special ‘‘stamping’’ of the version
number in the load files in the compiled programs (see stamp(1)). For system calls that do not
exist in the new compiler, the old system routines are called. For system calls that have a
sysent index identical to a release 2 system call, the stamping determines which will be exe-
cuted. The ‘““:0’" routines are kept around primarily for the commands in section 1 of this
manual, which are still compiled with the old C compiler, and for user routines from version 1
systems that were compiled with the old C compiler (which was the new C compiler under the
old system). The load files for release 1 user programs have the inherent stamping that will
cause the proper system calls and library routines to be executed.

Users should eventually change and recompile programs that require any ‘“:0’’ routines, so that
all programs use the new C compiler and current system calls - the current occ will not be
available in release 3 of CB-UNIX. Of course, any new programs should be written to use the
new C compiler, if at all possible. It is anticipated that the CB-UNIX Systems Group will fol-
low its own advice and change those commands in section ! that still require the oid compiler.

November 197§ - Page 4 November 1979



