MAUS (2) CB—-UNIX 2.1 MAUS (2)

NAME

maus, getmaus, freemaus, enabmaus, dismaus, switmaus — multiple access user space opera-
tions

SYNOPSIS

getmaus (name, mode)
char *name;

freemaus (mausdes)
char senabmaus (mausdes)

dismaus (vaddr)
char =vaddr;

char sswitmaus (mausdes, vaddr)
char svaddr;

DESCRIPTION

MAUS is a dedicated portion of core memory, which may be subdivided in, logical subsections.
See maus(4) for a discussion of MAUS layout. These subsections are referenced via entries in
the UNIX file system which may be used as arguments to the UNIX open system call or the ger-
maus system call. Opening such a special file results in a file descriptor being returned which
may be subsequently used with other file system calls like read, write, seek and close in the stan-
dard manner.

Performing the germaus primitive on a maus special file returns a maus descriptor which is
analogous to a file descriptor in many ways. This maus descriptor may be subsequently used
with the enabmaus primitive to attach the described maus subsection to the user’s address
space. If the enabmaus primitive is used repetitively on the same maus descriptor different vir-
tual addresses will be returned on each call until all memory mapping registers have been used;
at which time an error is returned. Note that every active instance of maus requires the alloca-
tion of a separate memory mapping register since no register may point to more than one maus
segment at a time.

Once enabmaus has been used the dismaus primitive may be utilized to remove active instances
of maus from the user’s address space. (In reality, enabmaus and dismaus are special cases of
the switmaus primitive described below.)

Finally, freemaus, deallocates a maus descriptor so that it may be reassigned by germaus. Note
that if a maus descriptor has been enabled it may still be freed: the virtual address returned by
enabmaus remains in the user’s address space until a dismaus primitive is utilized on the virtual
address in question.

The maus primitives are defined as follows:

if function is a 0, 1, or 2 (getmaus(name mode) from C), the maus file described by argy (name
from C) is accessed to determine if the read, write, or read/write permission as
specified by function (mode from C) should be granted to the specified user. This
permission check is in accordance with the standard UNIX file protection. The file
specified must be a special maus file. This primitive returns a maus descriptor which
must be saved for future use with freemaus and enabmaus. This primitive is similar
to the open system call in many respects.

if function is 3 (freemaus(mausdes) from C), the maus descriptor described by argy (mausfes
from C) is deallocated from the process. Any further attempts to use the value as a
maus descriptor will result in an error being returned.

if function is 4 (switmaus (mausdes,vaddr) from C), the system will select the user data memory
mapping register specified by argy (vaddr from C), and load it so that the maus seg-
ment specified by argx (mausdes from C), becomes part of the user’s virtual address

November 1979 Page | November 1979

MAUS (2).

FILES

CB—UNIX 2.1 MAUS (2)

space. When using the C interface, the value returned by switmaus is the old maus
descriptor associated with vaddr, if vaddr had not been associated with a maus
descriptor, —2 is returned. For the assembly interface, the value returned is a
pointer to the start of this maus area which may be used like any assembly pointer,
but should be preserved for future maus system calls. If argx is a —1,
{(dismaus (vaddr) from C), the specified virtual address is removed from the user’s
address space. The C interface returns the maus descriptor which had been associ-
ated with vaddr; if vaddr had not been enabled then -2 is returned. The assembly
interface returns some value not equal to —1 (unless there has been an error). If
argy is —1 (enabmaus(mdes) from C), the first available memory mapping register is
allocated and used. If both arguments are —1, an error will be returned only if
there are no unused user memory mapping registers. An error indication is always
returned if no memory mapping registers are available or if an address is specified
which is in use for program text, data or stack. When expecting a maus descriptor
to be returned, for example after a dismaus (vaddr), a -2 return means that no maus
descriptor had been enabled with the virtual address given. In all cases, a —1 return
means error.

/dev/maus/*
RULES OF THE ROAD

1) Maus descriptors are inherited across forks and executes. Note that if the new process
executed has text or data which wants to occupy the memory currently open to maus, the
execute will fail.

2) Maus virtual addresses are inherited across forks.

3) If the break system call is used to increase the user’s size to the point where an additional
memory mapping register is needed and maus is utilizing the next contiguous memory
mapping register, the break will fail. The user may then utilize enabmaus and dismaus to
reassign the maus virtual address(es). This can be done by doing successive enabmaus
system calls until the desired virtual address is reached and then disabling the unneeded
addresses before using the break system call. Alternatively, the user could disable all the
active maus segments, use the break system call, and then reenable the maus segments.

4) Since the memory mapping hardware does not allow a write-only segment, when the user
requests write-only maus via the getmaus primitive he is actually granted read-write per-
mission assuming the file system protection tests pass. Only write permission of the maus

‘ special file is tested in this case.
SEE ALSO
break(2), open(2), maus(4)
DIAGNOSTICS
From assembler the error bit is set for any error. From C, a —1 return indicates an error.
ASSEMBLER

{maus = 58.; not in assembier)
(function in R0)

(argx

in R1)

SYS maus; argy

November 1979 Page 2 November 1979

