MESSAGE(2) CB—UNIX 2.3 MESSAGE(2)

NAME
menab, mdisab, msend, mrecv, mctl — send and receive messages

SYNOPSIS
#include <sys/msg.h>

menab (name, flags)
short name;
short flags;

mdisab (disp)
short disp;

msend (&mstr, buf, size)
mrecy (&mstr, buf, size)
struct mstr mstr;

caddr_t buf;

short size;

mctl (&mstr, command, arg, size)
struct mstr mstr;

short command;

caddr_t arg;

short size;

DESCRIPTION
Messages are a very fast form of interprocess communication. Messages are stored on named
queues. A process may send a message to any queue for which it has permission. A process
can attach to one and only one queue at a time to receive messages according to the permis-
sions associated with the queue. (There may, however, be synonyms for the same queue, see
below.)
menab(name,flags)
Enable message reception via the queue name. If the queue does not already exist, create
it, giving it the characteristics specified by flags. If the queue already exists, attempt to
attach the existing queue. Attaching an existing queue will succeed only if the following
conditions are met:

1) The flags argument does match the permissions for the queue (see <sys/msg.h>.)

2) The MXCLUDE bit is not set for the queue. (This bit is always cleared by the sys-
tem when the last process disconnects from a queue, hence it is always possible for a
process with the proper permissions to attach a queue if no one else is attached.)

3) The MOTHR and MGRPR permissions in combination with the queue’s and pro-
cess’ user and group ids allow the attempt. These permissions are interpreted in the
same way as the normal UNIX file permissions: see access(2).

The flags are as follows:

MNODESTROY Do not destroy the queue when the last process detaches. This is
the default action. When either MNODESTROY or MDESTROY
is specified by menab() it is used if the process dies or exits without
specifically detaching the queue with a mdisab().

MDESTROY Destroy the queue when the last process detaches. All messages
remaining on the queue at the time of destruction, which require
acknowledgement (the MACKREQ flag was set when they were
sent), are returned to the sending process if possible, with a type of
MACKTYP.

May 11, 1981 Page 1 May 11, 1981

MESSAGE(2) CB—UNIX 2.3 MESSAGE(2)

MXCLUDE Do not allow any other process to attach to this queue. This remains
in force as long as the current process is attached.
MPRIQ Queue messages in order of priority based on ms type. Normally

messages are queued in order of arrival, first-in, first-out (FIFO). In
a priority queue, messages with larger ms stype’s are stored before
messages with lower ms stype’s. (See mrecv below)

MGRPR Allow any process with the same group id as the group id of the ~
creating process to read the queue, i.e. attach the queue for receiv-
ing.

MGRPW Allow any process with the same group id as the group id of the
creating process to write the queue, i.e. send messages to the queue.

MOTHR Allow any process whose user id and group id are different from the
creating process’ ids to read the queue, i.e. attach the queue for
receiving.

MOTHW Allow any process whose user id and group id are different from the
creating process’ ids to write the queue, i.e. send messages to the
queue.

Upon a successfully attaching to a queue, menab() returns the number of processes
attached to the queue.

mdisab(disp)

Disable message reception and detach the queue. disp contains either the MNODESTROY
or the MDESTROY flag, stating what the disposition of the queue is to be if this is the last
process releasing the queue. This overrides the disposition specified during the menab().

msend(mstr,buf,size)

May 11, 1981

Send a message contained in buf, which is of size bytes to the queue specified by the mstr
structure. mstr should contain the queue name and the system name to which the message
is to be sent (in ms_gname and ms_system). It should also contain the message subtype in
ms_stype and the message type and flags, specified in ms_flags. Message subtypes can take
any value from 7 to /27.

The flags and types are as follows:

MNOBLOCK Do not wait if the message cannot be sent (or received for mrecv)
immediately, but return with an appropriate error message.

MNOCOPY Do not copy the message out of the user space. Instead adjust the
memory mapping so that it is no longer apart of the user’s address
space. For this feature to work the system must have the feature
enabled and the message itself must be in a section of sharec
memory. Initially shared memory for messages may be gotten using
smget (see shmem(2)). During an msend(), if the address of the
buffer supplied is not shared memory and the MNOCOPY flag is
set, then the msend() will fail. Messages sent without the MNO-
COPY flag cannot be larger than MAXMLEN. Messages sent as
MNOCOPY are limited only by the amount of shared memory that
can be in existence at one time, a system definable parameter.
When a process receives a MNOCOPY message, the shared memor,
message space is mapped into the address space of the receiver and '7
ms_addr is set to point to the beginning of this shared memory seg-
ment. The MNOCOPY flag will be on in ms flags. Messages
received with the MNOCOPY flag set may be sent to other

Page 2 May 11, 1981

MESSAGE(2) CB—UNIX 2.3 MESSAGE(2)

processes with it set or the shared memory space may be returned to
the operating system using smfree (see shmem(2)). If a process tries
to receive a MNOCOPY message and it cannot be mapped into the
user’s address space, as much as possible is copied into the user sup-
plied buffer and the MNOCOPY flag is turned off.

MACKREQ An acknowledgement is required for this message. If a message with
this type is still on a queue when it is destroyed, the operating sys-
tem will change its type to MACKTYP and attempt to return it to
the sender.

MDATATYP Declares that this message is a data type message. This type has no
meaning to the operating system and is supplied to be used by users.

MCTLTYP Declares that this message is a control type message. This type has
no meaning to the operating system and is supplied to be used by
users.

MINTRTYP Declares that this message is an interrupt type message. This type
has no meaning to the operating system and is supplied to be used
by users.

MACKTYP Declares that this message is an acknowledgement. The operating
system will not allow a message to be sent which has MACKREQ set
and is of type MACKTYP. The operating system will change the
type of any message being returned to sender to MACKTYP. (See
MACKREQ above.)

Upon successfully sending a message, msend() returns the number of bytes of message
actually sent.

mrecy(mstr,buf,size)

May 11, 1981

Receive a message. Normally the message will be placed in buf, and truncated to size bytes
if the message is bigger than the buffer. Messages received with the MNOCOPY flag on
will not use buf. mstr should initially contain the subtype (msstype) and optionally ‘the
MNOBLOCK flag, if waiting is not desired. The remainder of mstr will be filled in by the
operating system dependent upon the message actually being received. ms.gname and
ms_system will contain the name of the queue to which the sending process is attached. If
the message sender does not have messages enabled, then ms gname will be 0. ms rgname
will contain the name of the queue that the message was actually sent to. (See MAPQ
below.) The subtype and the type of the queue (FIFO or priority) determine which mes-
sage will be received.

FIFO
ms_type = 0
Return next message of any subtype. The subtype of the message actually
received will be placed by the operating system into mstr.

ms_type = 1—127

Return only a message of this specific type. If the message queue is full and
there isn’t a message of the specific type on the queue and someone attempts to
send a message of the desired type, the message will be sent and the receiver will
wake up. This will not work if there are multiple receivers sleeping on different
non-zero types. In this case one of the processes may never wakeup. Receiving
a specific message type from a FIFO message queue should be used very care-
fully.

Page 3 May 11, 1981

MESSAGE(2)

Priority

ms_zype = 0—127

CB—UNIX 2.3 MESSAGE(2)

Return the first message whose subtype is greater than or equal to ms sype in the

receiver’s mstr.

mctl(mstr,command,arg,size)
Fetch and change various parameters for queues. The commands are:

GETMSTAT

SETMQLEN

SETREMQ

P

SETSPYQ

MAPQ

May 11, 1981

Returns an mstats structure containing the number of messages
presently on the queue, the maximum number allowable, the
owner and group of the queue, the number of processes
attached to the queue, and the modes and disposition of the
queue. ‘

Sets the maximum number of messages that a queue can con-
tain to command.ms_smqlen. This number cannot be greatel
than MAXMSGL (See <sys/param.h>>). Only processes with
the same user id as the queue or which are super—user can
change the maximum queue length.

This allows one queue to be declared as the remote queue. All
messages destined for systems other than the present system are
routed to this queue. The process reading the remote message
queue is responsible for actually getting the message to the
remote system by whatever means it is programmed to use.
ms_system, ms_gname, and ms.rqname have special meanings
when a remote queue manager receives and sends messages.
When receiving messages ms_gname contains the name of a local
queue attached to the sending process; ms system continues to
contain the name of the remote system to which the message is
to be sent; and ms._rgname contains the name of the remote
system queue to which the message is to be sent. When the
process attached to the remote message queue sends a message
ms_gname always specifies a local queue name. The operating
system takes the values of ms system and ms_rqname and places
them into ms system and ms_gname of the final message so that
the local receiver of the message sees the message as having
arrived from that system and remote queue.

This is a debugging aid. It specifies that a copy of all messages
sent to the queue specified by mstr be sent to the queue
arg.ms_spyq. There can only be one spy queue in the system a
a time. .

This command allows the creation and removal of synonym
queue names. A message sent to synonym queue name is sent
to the real queue, but with ms rgname set to the synonym queue
name to which the message was directed. In this way the receiv-
ing process will know where the sender thought the message was
going. Note that the synonym queue has all the permissions of
the original queue and that the synonym will disappear when th¢
original queue is destroyed. It is illegal to create a synonym
which is the same as the original and it is also illegal to attach to
a synonym queue. To create or remove a synonym queue the
process performing the MAPQ function must have read permis-
sion for the real queue. To create a synonym, msir specifies a

Page 4 May 11, 1981

MESSAGE(2) CB—UNIX 2.3 MESSAGE(2)

real queue and arg.ms synq is the synonym queue name to be
associated with the real queue. If mstr.ms gname is 0 and
arg.ms_synq specifies a current synonym queue name, then the
synonym queue name is removed.

Messages reception remains enabled across exec, but not across fork.

In creating queue names the following convention is recommended. All system wide per-
menant queue names should be defined in the header file, /usr/include/msgqueues.h. All
such permenant queue names should be negative numbers (0100000 to 0177777),
thereby leaving the positive numbers available to processes which need a temporary queue
for acknowledgements or which are using the old message veneer. (See msg(3)). Such
processes may therefore create temporary queues with names equal to their pid and be
assured that these names will not collide with permenant queue names since pids are never
negative.

The format of <sys/msg.h> is as follows:

I @(#)msg.h 3.1 v
/‘

* Message Control Structures

*/

typedef short queue.t; |

* Modes for menab and mdisab. (ST.mgq.modes)
* For mdisab only the MDESTROY flag is meaningful.

L]

#define MNODESTROY 0000 /* Retain queue when unreferenced */

#define MDESTROY 0001 /* Destroy queue when unreferenced */

#define MOTHR 0002 /* Other read permission */

#define MOTHW 0004 /* Other write permission */
#define MXCLUDE 0010 /* Only one process may attach */
#define MGRPR 0020 /* Group read permission ¥/

#define MGRPW 0040 /* Group write permission */

define MPRIQ 0100 /* Priority type queue */

#define MDEFAULT (MNODESTROYMOTHRMOTHWIMXCLUDEMGRPRMGRPW)
/.

* commands for mectl call

k]

#define GETMSTAT 0 /* get message status */

#define SETMQLEN 1 /* set message queue length 7

#define SETREMQ 2 /* set remote message queue */
#define SETSPYQ 3 /* set spy parameters */
#define MAPQ 4 /* create/destroy synonym queues */

/.

* structure of arg for GETMSTAT command of mctl

=

struct mstats {

short ma.cnt; /® number in queue */
short mqg-_mslim; /* maximum queue size */

short mq_uid; /* "owner” uid]
short mq_gid; /* "owner” gid */

char mq._refc; /* no. attached to queue ¥/

char mq.modes; /* permissions and disposition */

/‘

May 11, 1981 Page 5 May 11, 1981

MESSAGE(2) CB—UNIX 2.3 MESSAGE(2)

* structure of arg for SETMQLEN command
L
struct sctmgq {
short ms_smglen; /* maximum queue length */

|

* For the SETREMQ command the arg and size arguments to

* mctl are not used. The queue name specified in the first

* argument to mectl is the queue which becomes the remote queue.
* If this queue name is zero, the current remote queue is

*® disconnected.

*/

/‘

* structure of arg for SETSPYQ command

* The first arg to mctl specifies the queue to be spied upon.
® This arg specifies the queue to which a copy of the data is
* to be sent.

*

struct setspyq {
k
/8

* structure of arg for the MAPQ command

* The first arg to mcu specifies the existing queue

* to which the synonym is to be mapped. If it specifies a

* gname of zero any existing synonym with the name

* specified in the synq structure is eliminated.

* To successfully create or remove a queue synonym the

* user doing the MAPQ command must have read permission
* for the real queue.

*/

struct synq {

queuet ms.spyq;

queuet ms_syng;
h
/'
* structure for sending and receiving messages
*/
struct mstr {
long ms_system; /* system name */
queuet ms_gname; /® queue name */
char ms._stype; /® message sub-type/priority */
char ms_flags;
caddr_t ms_addr; /* address for mrecv */
queue { ms_rqname; /* queue msg was sent to */
short ms.uid; /® sender’s user id */
short ms_gid; /* sender’s group id */
L
/‘
* Flag values for ms_flags
-
/ .
define MNOBLOCK 001 /* Non-blocking send and recv */
#define MNOCOPY 002 /* Remap segment-no copy if possible */
#define MACKREQ 004 /® Ack required */
#define MDATATYP 000 /* Data message */
#define MCTLTYP 010 /* Control message */
#define MINTRTYP 020 /* Interrupt message */
#define MACKTYP 030 /* Ack message */
#define MTYPMSK 030 /* Mask of type bits */

May 11, 1981 Page 6 May 11, 1981

MESSAGE(2) CB—UNIX 2.3 MESSAGE(2)

#ifdef KERNEL

#define MFLGCARE (MOTHRIMOTHWIMGRPRIMGRPWIMPRIQ)
#define PMSG PZERO+35 /* message sleep priority */
#define MSGIN B_WRITE

#define MSGOUT B_.READ

#define MREADO2

#define MWRITE 04

#define MDISAB 0

#define MENAB 1
#define MSEND 2
#define MRECV 3

#define MSGCTL 4

#define NORMAL_SEND 00000 /* Normal msg - user to user */

#define REM_USR . 00400 /* Remote msg - daemon to user */
#define REM_SEND 01000 /* Remote msg - user to daemon */

/.

* State bits

*

fdefine I QWANT 0100 /* msg queue wanted */

#define [P_WANTED 0200 /*® resource is desired */

struct msghdr {
struct msghdr *mgq forw;

union {

struct {
short mq._size;
queue_t mq.sender;
long mqg-system;
paddr_t mq-addr;
queuet mq_rqname; /* remote queue name */
char mg_stype;
char mq_flags;
short mq.muid;
short mq.mgid;

}ms;

struct {
struct msghdr *mq_last;
queue .l mg.name;
char mgq.twant; /* Wanted for type */
char mq_state;
struct mstats st;

lqu;

JUN;

ki

. .

* Shorthand notations for accessing clements of above structure
*/

#define QU UN.qu
#define MS UN.ms
#define ST UN.qu.st

/.
* Message related measurements
=

struct M_MEAS {
short ginuse; /* number of queues in use */

May 11, 1981 Page 7 May 11, 1981

MESSAGE(2) CB—UNIX 2.3 MESSAGE(2)

short qtblovr; /* no. of queue table overflows */
short mtblovr; /*® no. of msg table overflows */
long msgsent; /® no. of msgs sent */
long msgrecv; /* no. of msgs received */
long msgfish; /* no. of msgs flushed */

b

endif

DIAGNOSTICS

FILES

BUGS

A —1 is returned for any one of a number of error conditions. An error occurs when enabling
messages if no queue can be allocated or if the process is attempting to connect to a queue that
does not have the appropriate permissions; it is also erroneous to attempt to disable message
reception if it is not enabled. When trying to send messages, errors occur because the message
is too long, the specified message queue or system does not exist, the type or priority specified
is not valid, the MNOCOPY bit is used incorrectly, or, for conditional sends, the system mes-
sage buffers are temporarily full or the receiver has an excessive number of messages on its._
queue. When receiving messages, errors may occur because the process has not enabled mes-
sage reception, the requested priority is invalid, or, for conditional receives, a message of the
requested type is not on the queue. It is also illegal to set the message limit (via mctl) to a
value larger than defined by MAXMSGL or to specify a metl for a queue that the user could
not connect to.

/usr/include/sys/param.h
/usr/include/sys/msg.h

It may not be possible to return errors correctly when trying to send messages to remote sys-
tems.

SEE ALSO

access(2), shmem(2), msg(3)

May 11, 1981 Page 8 May 11, 1981

