MSG (2)

NAME

CB—UNIX 2.1 MSG (2)

msg, msgenab, msgdisab, send, sendw, recv, recvw, msgstat, msgctl — send and receive mes-

sages

SYNOPSIS
include

< sys/ipcomm.h>

msgenab ()
msgdisab ()

send (buf,

size, topid, type)

sendw (buf, size, topid, type)

char +buf;

recv (buf,

size, &mstructp, type)

recvw (buf, size, &mstructp, type)

char +buf;

struct mstruct mstructp;

msgstat (&mstat, sizeof (mstat), pid)
struct mstat mstat;

msgetl (pid, command, arg)

DESCRIPTION
A process

that has enabled message reception has a message queue on which are placed, in

order of arrival, messages sent to it by other processes. The process actually receives a
message’s contents by requesting a message from the queue. A process may send a message to
any other process that has enabled message reception, as long as the receiver does not have an
excessive number of messages pending on its queue.

From assembly language, the function argument specifies the request type.

0

November 1979

Message reception is disabled; messages may no longer be sent to the process.
Depending on the 7ype, any message(s) still on the queue are either discarded or
returned to the sender. No other arguments are used for this kind of request.

Enable message reception. No messages may be sent to the process until this is
done. No other arguments are used in this kind of request. Message reception
remains enabled across exec, but not across.fork.

Send a message to another process. If the system’s message buffers are temporarily
full, return is immediate. (Conditional Send)

Send a message to another process. This is as above, except that execution may be
suspended until there is sufficient buffer space to send the message. (Unconditional
Send)

Receive the first message on the queue of the requested fype. Return immediately if
no such message exists. (Conditional Receive)

Receive a message as above, except that execution may be suspended until a suit-
able message is placed on the queue, if one is not already available. (Unconditional
Receive)

Regquest a count of the number of messages allowed and actual number of messages
queued for the process numbered pid.

Set control variables in message queue header as defined by command. At present,
only available command is setmglen which sets maximum number of messages
allowed by process numbered pid.

Page | November 1979

MSG (2) CB-UNIX 2.1 MSG (2)

The buf argument is the address of the buffer that, when sending, contains the message to be
sent, or, when receiving, is where the message is to be placed. The number of bytes to be sent
or received should be in r0. Currently, messages may be from 0 to 212 bytes in length. If,
when receiving, the length of the message exceeds the requested number of bytes, the message
is truncated. In any event, the number of bytes actually sent or received is returned in r0.

When a message is being sent, arg3 should contain the processid of the receiving process.
When receiving a message, arg3 should be the address of a structure of type mstruct.

The type argument is used by a sender to assign a type number (1 to 128) to a message. By
convention, types 1 to 63 imply that an acknowledgement message is desired; types 64 to 128
imply no acknowledgement is necessary; type 128 is an acknowledgement message. If a process
disables messages (or exits) with any messages still on its queue, those of type 1 to 63 are
changed to type 128 and, if possible, returned to the sender; those of type 64 to 128 are dis-
carded.

When receiving messages, a process may request 7ype 0, indicating that the first message on the
queue is to be retrieved, or a rype from 1 to 128, indicating that the first message on the queue
of the requested 7)ype is to be received. In either case, the message’s actual type is returned in
the second word of the structure provided by the user arg3.

From C, msgenab and msgdisab enable and disable message reception, respectively. Msgsrat
returns message status in terms of actual and maximum allowed message queue lengths. AMsgca!
allows modification of the maximum number of messages parameter. All return zero when
successful.

The send , sendw, recv, and recvw functions perform conditional send, unconditional send, con-
ditional receive, and unconditional receive operations, respectively. All return the number of
bytes actually sent or received, as appropriate. The format of ipcomm.h is as follows:

/* % W% */
/.
* Interprocess Communication Control Structures
*/
#ifdef KERNEL
/.
* common flags
*/
#define IP_PERM 03 /* scope permission mask */
#define [P_ANY 0 /* system scope */
#define IP_UID 01 /* userid scope */
#define IP_GID 02 /* groupid scope */
#define IP_QWANT 0100 /* entry in msg queue wanted */
#define [P_WANTED 0200 /* resource is desired */
struct ipaword
{ char ip_flag;
char ip_id; J;
/.
* message control
*
#define PMSG 5 /* message sleep priority */
#define MAXMLEN 212 /* max message length in bytes */
#define MAXMSGDEF 10 /* defauit max number unreceived msgs per §
#define MAXMSGL 20 /*max limit to be set by msgctl®/

November 1979 Page 2 November 1979

MSG (2) CB—UNIX 2.1 MSG (2)

#define MSGIO 02 /* tefl iomove() this is msg */

#define MSGIN 0 /* same as B_WRITE */

#define MSGOUT 01 /* same as B_READ */
#define MDISAB 0

#define MENAB 1
#define MSEND 2

#define MSENDW 3
#define MRECV 4
#define MRECVW 5
#define MSTAT 6
#define MSGCTL 7

struct msghdr
struct msghdr *mq_forw;

int mq_size;
int maq_sender;
int mq_type;

k

struct msgqhdr
struct msghdr *mgq_forw; /* note same position as in msghdr */
struct msghdr *maq_last;
int *mgq_procp;
char mq_flag;
char mq_cnt;
int mq_meslim;

3
#endif

/* commands for msgctl call here */
#define SETMQLEN 0 /*set mes q length command®/

struct mstat {

unsigned ms_cnt;
unsigned ms_maxm;
)
struct mstruct {
int ms_frompid:
int ms_type;

e
DIAGNOSTICS

The error bit (c-bit) is set for any one of a number of error conditions. An error occurs when
enabling messages if no queue is available for use; it is also erroneous to attempt to disable
message reception if it is not enabled. When trying to send messages, errors occur because the
message is too long, the receiver has not enabled message reception, the type specified is not
valid, the receiver has an excessive number of messages outstanding on its queue, or, for con-
ditional sends, the system message buffers are temporarily full. When receiving messages,
errors may occur because the process has not enabled message reception, the requested type or
size are invalid, or, for conditional receives, a message of the requested type is not on the
queue. [t is also illegal to set the message limit (via msgar!) to a value larger than defined by
MAXMXSGDEF in ipcomm.h. From C, a —1 return from any function indicates an error.

ASSEMBLER
(msg = 49.; not in assembler)
(size in r0)
sys msg; function; buf; arg3; type

November 1979 ' Page 3 November 1979

MSG (2) CB—UNIX 2.1 MSG (2)

FILES
/usr/include/sys/ipcomm.h

November 1979 Page 4 November 1979

