SHMEM (2)

NAME
smcreat, §

SYNOPSIS
#include

smcreat (

CB—UNIX 2.3 SHMEM(2)

mopen, smclose, smget, smput — shared memory operations

<sys/shmem.h>

path, access, size);

char =path;
short access;

long size;

sm_des = smopen (path, mode);
smdes_t sm_des;

char =path;

short mode;

smclose (

sm._des);

smdes_t sm_des;

vaddr =

smget (sm_des, mode, offset, size, time_Imt);

caddt_t vaddr;
smdes_t sm_des;
short mode;
long offset;

long size;

short time_lmt;

smput (vaddr)
caddt_t vaddr;

DESCRIPTION

Shared memory is a form of memory which can be attached to a process’s address space, read
or written. and then released, with the contents preserved for later or simultaneous attachment
by another process. Shared memory can be used as multiple access user memory (MAUS), or
as a means of passing large pieces of data from one process 1o another with only one process
accessing the data at a time. Exactly how it is used is determined by the user processes. Each
piece of shared memory is referenced orginally via the UNIX file system and can also be

accessed a

smcreat

smopen

February 27, 1981

s a file, via the normal open, read, write, Iseek, and close system calls.

Shared memory is created dynamically with the smcreat system call. Smcreat is
analogous to creat except that a size in bytes must be specified at creation time.
Shared memory retains a fixed size during whatever time it exists as a part of the file
system. If size is not a multiple of BSIZE (See /usr/include/sys/param.h) bytes it
is rounded up. Path is a pointer to a normal UNIX pathname. Access specifies in the
normal way (See chmod(2)) who may open or smopen 2 specific piece of shared
memory.

If the specified piece of shared memory already exists and no process has it attached
and this user has the proper permissions, the old shared memory will be recreated to
the new size. All newly created shared memory is initialized to all zeros.

Once a piece of shared memory exists, it can be opened for attachment to a
process’s address space via the smopen system call. Path is again a UNIX pathname
specifying which piece of shared memory. Mode is the normal file system type
mode, 0 for read, 1 for write, 2 for read and write permissions. Write, actually
means read-wrile on most systems, since wrile permissions on memory imply read
permissions. sm_des (shared memory descriptor) is returned upon a successful smo-
pen, and is used when attaching shared memory via the smget system call.

Page 1 February 27, 1981

SHMEM (2)

smclose

smget

February 27, 1981

CB—UNIX 2.3 SHMEM(2)

Smclose releases a specified sm_des. Any sections attached at the time of the smclose
will remain attached, but once detached, will not be accessable again without a new
smopen.

Smget performs the actual attachment of shared memory to the user process’s
address space. Sm._des is a shared memory descriptor previously returned from
smcreat or sm_open. Mode specifies how the user wishes to access the memory once
it is attached. There are three modes as defined in <sys/shmem.h>:

SMREAD
Attach the memory read only.

SMWRITE
Attach the memory for reading and writing. Note that there is no
equivalent of ‘write only’.

SMREADLOCK
Attach the memory for reading only, but only when no one else has it
attached for writing. If someone else has it attached for writing, wait.
Do not allow new requests for writing to succeed. This means that even-
tually the request will succeed. SMREADLOCK guarantees that the data
being read is stable.

SMWRITELOCK

Attach the memory for reading and writing, but only when there is no
one else who has this section attached for writing. If other people have
any portion of this section attached for writing, wait for the time period
specified by time_Imt while they drain away. Do not allow any new people
to attach the requested section for writing so that eventually the smget
will succeed. Using the SMWRITELOCK feature to access shared
memory removes the requirement for any outside locking procedures
such as semaphores. The user is guaranteed that when smger with a
mode of SMWRITELOCK succeeds, that this is the only process writing
that memory at this time. Until an smpwt is done on this section of
memory, it will remain so locked.

The following state table shows the interactions between the current state of a piece
of shared memory and a new request to have it attached with a particular mode via
smget. T means request will be granted immediately. F means requester will have to
wait,

Requested Current
State State
- r w rl wl unattached
r T T T it T
w T T E E T
rl T F T F T
wl T 13 F F T

Offset is an unsigned offset from the beginning of a piece of shared memory to

which a user wishes to attach. It should be some multiple of BSIZE bytes. If it is

not, the smget will fail. Size is the unsigned size of the section of shared memory
that the process wishes to attach. It also should be a muliiple of BSIZE bytes. It
may be rounded up by as much as BSIZE —1 bytes so that the entire section of
shared memory the user requested access to is available. Smiger will fail if the sec-
tion of shared memory requested is not within the limits of the piece of shared

Page 2 February 27, 1981

SHMEM(2)

February 27, 1981

smput

CB—UNIX 2.3 SHMEM(2)

memory as it was created by smcreat. Time_Imt is the amount of time the user is wil-
ling to wait until a particular section of shared memory is free, when trying to do an
smget with a mode of SMWRITELOCK. If time_Jmt is O, the smget will fail immedi-
ately if anyone else has any portion of the requested shared memory attached. If
time_Imt is less than 0, the user is willing to wait indefinately for the section of
shared memory to become free. If time_Imt is positive, then the user is willing to
wait this many seconds for the section of shared memory to become available. If
smget fails because the time_Jmt was exceeded, the error EBUSY will be returned in
errno and vaddr will be set to NULL. Whenever smger succeeds, vaddr will be some
multiple of BSIZE bytes and is the pointer to the section of attached shared
memory.

If sm_des is SMDESNONE (As defined in <sys/shmem.h>). the smger behaves
like 2 memory allocator. An unnamed section of memory, size big, is attached to
the user process. Mode is only meaningful if it is SMWRITELOCK. This mode will
prevent a child process from inheriting the attached section of memory. In other
cases the section of memory is readable and writable. Memory attached in this
fashion is guaranteed to be zeroed. Offser is ignored. Time Jmt behaves in the nor-
mal fashion.

Smput releases an attached section of shared memory. Vaddr must match the value
returned by smget.

A copy of /usr/include/sys/shmem.h is included here for reference.

/* "mode” definitions to be used with "smget". =/
S
#define SMREAD 0
#define SMWRITE 1
#define SMREADLOCK 2
#define SMWRITELOCK 3
/* Shared memory descriptor to use when attaching */
/* unnamed memory. */
#define SMDESNONE (-1)
typedef short smdes_t ;
#ifdef KERNEL
Vi Structure maintaining the state of each page of */
/* shared memory. Ly
struct SM_pgstate
{
daddr_t sm_block ; /* Block for this page
* into the file attached
* as shared memory.
* Are stored in ascending
* order for any file.
*/
struct buf *sm_bufpt ; /* Ptr to buffer header
* for this page.
-
char sm_refent ; /* Count of total users
* attached to this page.
*/
char sm_rirefent ; /* Count of users attached to
* this page as read locked.
*/
Page 3 February 27, 1981

SHMEM(2) CB—UNIX 2.3 SHMEM(2)

char sm_wrefent /* Count of users attached

* to this page for writing.
L]

char sm_wlwant ; /* Number of users wanting page
* write locked.
4
char sm_rlwant ; /* Number of users wanting page
®* read locked.
*/
char sm_wwant ; /* Count of users wanting page
* for writing.
*
short sm_flags ;
struct SM_pgstate *sm._next ; /* Pointer to next page’s
* control structure.
*/
i
e Definitions for "sm_flags". =/
#define IS OCCUPIED 1
#define IS_WRITELOCKED 2
#define IS READLOCKED 4
#define WL_REQUEST 10
define RL_REQUEST 20
#define W_REQUEST 40

struct SM_pgptrs

struct SM_pgstate *s_current ;
struct SM_pgstate *s_previous ;

IK
endif
FILES
/dev/shmem/*

SHARED MEMORY RULES
1) Shared memory descriptors are inherited across forks and executes.

2) Sections of attached shared memory are inherited across forks if they were not opened
SMWRITELOCK. Writelocked sections are retained by the parent, but closed to the
child, keeping them writelocked.

3) Attached sections of shared memory are not inherited across exec’s.

4) If a break system call tries to expand memory into an attached section of shared memory,
it will fail.

5) If some process tries to gpen a shared memory file while another process is waiting for an
smget with SMWRITELOCK to succeed, the open will fail.

SEE ALSO
break(2), close(2), creat(2), open(2)

DIAGNOSTICS
From assembly code, the carry bit is set in the case of errors and errno set with an indication of

the specific error. From C a —1 is returned from smcreat, smclose, smopen, and smput, and a
NULL from smget.

IMPLEMENTATION CONSIDERATIONS
It is envisioned that a shared memory file will be a special file type. It will be implemented
only under version 7 or later file systems. Each section of shared memaory will require two
inodes, a visible inode referenced in the UNIX file system, and an invisible inode, used only by

February 27, 1981 Page 4 February 27, 1981

SHMEM(2) CB—UNIX 2.3 SHMEM(2)

the shared memory routines to access the data when it is on the disk. This implementation will
require that check understand this new file type and not remove the invisible inode during a
check.

Tt should be noted that the implementation of smget and smput interact very nicely with the
MSG implementation proposed by Dale Delager. When passing large nacopy messages,
memory must first be allocated and the final receiver must return it to the operating system.
Smget and smput nicely serve the purpose of the routines memget and memfree.

When new shared memory is created initially, a control block will be allocated at the same time.
In the control block will be an SM_control structure for each page of this section of shared
memory. The structure contains two counts, the count of the total number of users attached to
this page, and the number of users attached to this page for writing. It also contains five flags,
IS WRITELOCKED, meaning that the page is currently writelocked, IS READLOCKED,
meaning that the page is currently readlocked, WL_REQUEST, meaning that someone is
requesting writelock permissions for this page, RL_REQUEST, meaning that someone is
requesting readlock permission for this page, and W_REQUEST, meaning that someone is
requesting write permission for this page. When a process requests a page for readlocked
access, each page will be locked starting from the beginning, if that page has a 0 reference
count for writers. If the refenerce count is something other than 0, the process will set the
RL_REQUEST flag and sleep on the page until it is awakened and finds the writing reference
count 0. When a process requests a page for writelocked access, each page will be locked start-
ing from the beginning, if that page has a 0 reference count for writers and has the
IS_ READLOCKED and IS_WRITELOCKED flags off. If either condition isn’t met, the pro-
cess will sleep on the page until it awakens to find both conditions satisfied. If someone is
requesting read access, they always succeed. If someone is requesting write access, they will
succeed if the page isn’t IS WRITELOCKED or IS READLOCKED. If they can’t attach
immediately they will set the W_REQUEST and sleep on the page until both conditions are
satisfied before succeeding. In all cases, if the time_Imt expires during the wait for the pages to
become available, the request will fail.

February 27, 1981 Page 5 February 27, 1981

