SIGNAL(2) CB—UNIX 2.3 SIGNAL(2)

NAME
signal — catch or ignore signals

SYNOPSIS
#include <<signal.h>

int (*signal (sig, func))()
int sig;
(#func)();

DESCRIPTION
A signal is generated by some abnormal event, initiated either by a user at a typewriter (quit,
interrupt), by a program error (bus error, etc.), or by request of another program (kill). Nor-
mally, all signals (except death of a child and power fail) cause termination of the receiving
process, but a signal call allows them either to be ignored or to cause an interrupt to a specified
location. Here is the list of signals:

SIGHUP 1 hangup

SIGINT 2 interrupt

SIGQUIT 3= quit

SIGILL 4+ illegal instruction (not reset when caught)
SIGTRAP 5% trace trap (not reset when caught)
SIGIOT 6% 10T instruction

SIGEMT 7+ EMT instruction

SIGFPE 8+ floating point exception

SIGKILL 9 kill (cannot be caught or ignored)
SIGBUS 10+% bus error

SIGSEGYV 11+ segmentation violation

SIGSYS 12* bad argument to system call
SIGPIPE 13 write on a pipe with no one to read it

SIGALRM 14 alarm clock

SIGTERM 15 catchable software termination signal
16 unassigned
17 unassigned

SIGCLD 18 death of a child

SIGPWR 19 power fail

The starred (*) signals in the list above cause a core image if not caught or ignored.

If func is SIG_DFL, the default action for signal sig is reinstated; this default is termination,
sometimes with a core image. If func is SIG_IGN, the signal is ignored. Otherwise when the
signal occurs func will be called with the signal number as argument. A return from the func-
tion will continue the process at the point it was interrupted. Except as indicated, a signal is
reset to SIG_DFL after being caught. Thus if it is desired to catch every such signal, the catch-
ing routine must issue another signal call.

When a caught signal occurs during certain system calls, the call terminates prematurely. In
particular this can occur during a read or write(2) on a slow device (like a typewriter; but not a
file); and during pause or wait(2). When such a signal occurs, the saved user status is arranged
in such a way that when return from the signal-catching takes place, it will appear that the sys-
tem call returned an error status. The user’s program may then, if it wishes, re-execute the
call.

The value of signal is the previous (or initial) value of func for the particular signal.
After a fork(2) the child inherits all signals. Exec(2) resets all caught signals to default action.

Users should not use the signal numbers directly; instead, they should include the file
/usr/include/signal.h as indicated above.

February 27, 1981 Page 1 February 27, 1981

SIGNAL(2) CB—-UNIX 2.3 SIGNAL(2)

The default action for the death of a child signal is to ignore the signal. If label is odd, the sig-
nal is ignored and terminated child processes are automatically removed from the system —
eliminating the necessity of doing a wair(2) for the terminated children.

For the power fail signal, the default action is to ignore it.
SEE ALSO
kil(1), kill(2), ptrace(2), setjmp(3C)

DIAGNOSTICS
The value —1 is returned if the given signal is out of range.

BUGS
If a repeated signal arrives before the last one can be reset, there is no chance to catch it.

ASSEMBLER
(signal = 48.)
sys signal; sig; label
(old value in r0)
If label is 0, default action is reinstated. If /abel is odd, the signal is ignored. Any other even
label specifies an address in the process where an interrupt is simulated. An RTI or RTT
instruction will return from the interrupt.

February 27, 1981 Page 2 February 27, 1981

