FREESORT(3L) SCCS Jan 16, 1978 FREESORT(3L)

NAME
freesort -- variable length record sort

fixedsort -- fixed length record sort

SYNOPSIS
freesort (argc, argv, comp)
fixedsort (argec, argv, comp)
int arge;
char **argv;

int (*comp) (ppl,pp2);

char **ppl, *%pp2;

extern char DELIM = ’\n’; /* for freesort() omly */
extern char RCDSIZ = 0; /* for fixedsort() omnly */
extern int cmpflg;

extern struct {
int e_code;
char e_msg{50];
} errsort;

DESCRIPTION

freesort() and fixedsort() are provided as alternatives to the
standard UNIX sort for those instances that the standard compari-
son routine is not appropriate. These routines use standard I/0.
For "large" sorting jobs, freesort() and fixedsort() may use up
to 10 streams above and bevond that of the routine that calls
them; if 10 file descriptors are not available, then the
subroutine will fail.

The comparison routine should return a value greater than 0 when
the record corresponding to the first argument is "greater than"
(i.e. should precede in the output) the record corresponding to
the second argument. Analcgously, & negative value should be re-
turn by the comparison routine when the first record is "less
than" (i.e. should follow in the output) the second record. When
the compariscn routine returns the value 0, it means that the
routine does not care which is first.

By default, the algorithm is not stable (i.e. it does not
preserve the order of records with identical sort codes.
However, options are available to either preserve or reverse ori-
ginal order which are rather efficient for mecst applications.

freesort() and fixedsort() work by allocating almost all of the
available memory, repeatedly filling that core with records which
they sort and dump to disc, and then they merge the disc files
(if necessary). Therefore, these subroutines may not work well
unless lots of unallocated memeory is available to this routine.
However, with separated I&D space, it should be very seldom when
the calling routine takes up so much of the available memory that
these routines cannot run efficiently compared to the costs of

FREESORT(3L) SCCs Jan 16, 1978 FREESORT(3L)

executing a smaller main which executes freesort() or fixed-
sort().

Upon exiting, even in the case of an error, all streams are
closed and the allocated memory is returned to the system.
freesort() and fixedsort{() can be called repeatedly from the same
routine as a part of a larger algorithm (the old versions could
not). freesort() and fixedsort() catch interrupts, hangups, and
quits in order to clean up the temporary files which they make.
They return to main the value 6 after they have cleaned up in
order to give the main routine the same opportunity to clean up.
In all cases, when freesort() and fixedsort() return to main, the
process is in a mode to ignore interrupts, hangups and quits;
thus the calling routine may wish to reset those signals.

freesort() tosses trivial records (those which only contain the
delimiter). For each input file which does not end with a delim-
iter, freesort() behaves as if a delimiter were added to the in-
put file. However, if fixedsort() encounters an odd part of a
record at the end of any input file, that partial record is dis-
carded.

The first element of argv is ignored. The remaining argument
strings will have the following interpretation:

-m merge only. All input files are assumed to De
sorted.

-u output records with unique sort keys only.

-0 the next argument is taken to be the output file.

If none are given or the output file is "-", then
stdout is assumed.

=s<char> or -s<size>
For freesort{(), <char> is the delimiter. The del-
imiter defaults to '\n'. For fixedsort(), <size>
is the record size. It defaults to zero, which if
left there, causes an error.

-c<value> The external variable, cmpflg, which may be used as
a flag by the comparison routine is set to the
value of the ascii string, <value>.

-t<threshold> After partitioning the records into sets of identi-
cal sort keys, only the sets with <threshold> or
more records are output.

-l<size> For freesort(), the 1limit of the record size.
Records which exceed this size are truncated to
<size> bytes (including the delimiter).

“T<string> For freesort() when a record is truncated, <string>

FREESORT(3L) SCCs Jan 16, 1978 FREESORT(3L)

will be placed at the end of the record. If the
"-1<size>" is not specified, then freesort()
chooses the maximum size so that at least three
records can fit into the allocated data space. a3
neither the "-T" or "-1" options are used, then
freesort() will return abnormally if it encounters
a record which is toc large to handle.

<filename> Arguments which do not begin with "-" or follow an
"-o" argument are assumed to be input files. No
more than thirty input files are allowed. If there
are no input file arguments, then stdin is assumed.

-d For freesort(), a delimiter will be placed as the
first character in the output stream so that all
records are "surrounded" by delimiters.

-P In the output, preserve the order of the records on
input if they have identical sort codes.

R In the output, reverse the order of the records on
input if they have identical sort codes.

LIBRARY
/1lib/libl.a

DIAGNOSTICS

These routines return 0 for normal execution. A variety of non-
zero returns occur when the subroutine does not terminate normal-
ly. When that occurs, the return value will also be written 'in
errsort.e code and an error message will Dbe written in
errsort.e msg. The error message may help the calling routine
construct an error message for the user. No message is written
when the return value is 0 (normal) or 6 {(interrruption by inter-
rupt, hangup or quit signal). The structure of errsort, named
ERRSORT, is found in "/compool/sorterr.h".

