MSG(3)

NAME

CB—UNIX 2.3 MSG(3)

msg, msgenab, msgdisab, send, sendw, recv, recvw, msgstat, msgetl — old message veneer for
sending and receiving messages.

SYNOPSIS

include <sys/ipcomm.h>
msgenab ()
msgdisab ()

send (buf, size, topid, type)
sendw (buf, size, topid, type)
char sbuf;

recv (buf, size, &mstruct, type)
recvw (buf, size, &mstruct, type)
char sbuf;

struct mstruct mstruct;

msgstat (&mstat, sizeof (mstat), pid)
struct mstat mstat;

msgctl (pid, command, arg)

DESCRIPTION

The routines described here implement the old message interface. They are now implemented
as a veneer using the new message implementation. (See message(2)).

A process that has enabled message reception has a message queue on which are placed mes-
sages sent to it by other processes. Messages are placed on the queue in the order of arrival.
The process actually receives a message by requesting a one from the queue. A process may
send a message to any other process that has enabled message reception, as long as the receiver
does not have an excessive number of messages pending on its queue.

msgenab ()
Enable message reception by creating a message queue with the name equal to the process
id.

msgdisab ()
Disable message reception. Any messages still on the queue are destroyed or returned to
sender depending upon the npe.

send (buf, size, topid, type)
Send the message in buf and of size bytes to the process whose process id is topid. The
message is stored with the specified fype, which ranges from J to 128. 1f the queue for the
receiving process is full or if there is no more message space in the operating system,
return immediately to the sending process with an appropriate error. When send is success-
ful, it returns the number of bytes actually sent in the message.

sendw (buf, size, topid, type)
Send a message in the same fashion as send, but if there isn’t room for the message,
suspend execution until the message can be sent. When sendw is successful, it returns the
number of bytes actually sent in the message.

recv (buf, size, &mstruct, type)

Receive the first message on the queue if npe is 0, otherwise receive the first message on

the queue whose type matches rype. Store the message in buf, truncating it if the message
is larger than size. mstruct will be filled with the queue name that the sending process has
enabled and the actual type of the message. If the sending process did not have messages
enabled the queue name in the mstruct structure will be 0. If there is no message of the
specified type, return immediately with an appropriate error message. Upon a successful

December 1, 1980 Page 1 December 1, 1980

MSG(3) CB—UNIX 2.3 MSG(3)

recv, the size of the message received is returned.

recvw (buf, size, &mstruct, type)
Receive a message in the same fashion as recv, but if there isn’t a message satisfying the
requested fype, suspend execution until one arrives. Upon a successful recvw, the size of
the message received is returned.

msgstat (&mstat, sizeof(mstat), pid)
Retreive the number of messages currently present on the queue pid and the maximum
allowable number of messages for this queue. Put the results in the structure mstat.

msgctl (pid, command, arg)
Perform the specified command on queue pid. The only command currently available is
SETMQLEN, which allows the maximum number of messages that may queue up for a
specific process to be adjusted to arg.

The number of bytes actually sent or received is returned by send, sendw, recv, and recvw.

The type argument is used by a sender to assign a type number (1 to 128) to a message. By
convention, types 1 to 63 imply that an acknowledgement message is desired; types 64 to 128
imply no acknowledgement is necessary; type 128 is an acknowledgement message. If a process
disables messages (or exits) with any messages still on its queue, those of type 1 to 63 are
changed to type 128 and, if possible, returned to the sender; those of type 64 to 128 are dis-
carded.

ipcomm.h is included here for convenience.

/* @(#)ipcomm.k 3.3 */

/‘
* Interprocess Communication Control Structures

*/

#ifdef KERNEL
/‘
* common flags

*/

#define IP_PERM 03 /* scope permission mask ®/
#define [IP_ANY 0 /* system scope */

#define IP_UID 01 /* userid scope */

#define IP_GID 02 /* groupid scope */

define IP_QWANT 0100 /* entry in msg queue wanted */

#define IP_WANTED 0200 /* resource is desired */

struct ipaword
{ char ip_flag;
char ip_id; 1;

/‘
* message control

*/

#define PMSG 5 /* message sleep priority */

#define MSGIO 02 /* tell iomove() this is msg */

#define MSGIN 0 /* same as B_WRITE */

#define MSGOUT 01 /* same as B_LREAD */

#define MDISAB 0

#define MENAB I
#define MSEND 2

December 1, 1980 Page 2 December 1, 1980

MSG(3)

CB—UNIX 2.3 MSG(3)
#define MSENDW 3
#define MRECV 4
#define MRECYW 5
#define MSTAT 6
#define MSGCTL 7
struct msghdr
{ struct msghdr *mgq_forw;
int mq_size;
int mq_sender;
int mg_type;
b
struct msgqhdr
{ struct msghdr *mq_forw; /* note same position as in msghdr */
struct msghdr *mq_last;
int *mq_procp;
char mq_flag;
char mgq_cnt;
int mq_meslim;

L
endif

/* commands for msgctl call here */

define SETMQLEN 0 /*set mes q length command®*/

struct mstat {

unsigned ms_cnt;
unsigned ms_maxm;
1
struct mstruct {
int ms_frompid;
int ms_type;

1

DIAGNOSTICS

An error occurs when enabling messages if no queue is available for use; it is also erroneous to
attempt to disable message reception if it is not enabled. When trying to send messages, errors
occur because the message is too long, the receiver has not enabled message reception, the type
specified is not valid, the receiver has an excessive number of messages outstanding on its
queue, or, for send, the system message buffers are temporarily full. When receiving messages,
errors may occur because the process has not enabled message reception, the requested type or
size are invalid, or, for recv, a message of the requested type is not on the queue. It is also ille-
gal to set the message limit (via msgctl) to a value larger than defined by MAXMSGDEF in
param.h.

FILES
Jusr/include/sys/ipcomm.h

BUGS
There is one noticable difference between this veneer and the real old messages. The process
id of the sender was always given to the message receiving process even if the sender didn’t
have messages enabled. Now, if the sender doesn’t have messages enabled. the receiver gets a
0.

SEE ALSO

December 1, 1980

message(2)

Page 3 December 1, 1980

