PRINTF:0 (3C) CB—-UNIX 2.1 PRINTF:0 (3C)

NAME

SYNOPSIS

Page |

printf — formatted print

printf(fmt, arg,, ...);
char +fmt;

DESCRIPTION

Printf converts, formats, and prints its arguments after the first under control of the first argu-
ment. The first argument is a character string which contains two types of objects: plain charac-
ters, which are simply copied to the output stream, and conversion specifications, each of which
causes conversion and printing of the next successive argument to printf.

Each conversion specification is introduced by the character %. Following the %, there may be

an optional minus sign ** —" which specifies left adjustment of the converted argument in
the indicated field;

an optional digit string specifying a field width;, if the converted argument has fewer char-
acters than the field width it will be padded on the left (or right, if the left-adjustment
indicator has been given) to make up the field width; if the digit string is preceded with
the character “‘0’", the padding character will be the character “‘0’. In this case the
number is not interpreted as octal. If the digit string is not preceded with a zero, the pad-
ding character is the default character which is blank uniess the ““%>’" option has previ-
ously been used.

an optional period **.”’ which serves to separate the field width from the next digit string;

an optional digit string (precision) which specifies the number of digits to appear after the
decimal point, for e- and f-conversion, or the maximum number of characters to be
printed from a string;

a character which indicates the type of conversion to be applied.

The conversion characters and their meanings are

d
o

X

o

The integer argument is converted to decimal, octal, or hexadecimal notation respec-
tively.

The long integer argument is converted to decimal, octal, or hexadecimal notation
respectively.

The argument is converted to decimal notation in the style ““{—lddd.ddd”, where the
number of d’s after the decimal point is equal to the precision specification for the argu-
ment. If the precision is missing, 6 digits are given; if the precision is explicitly 0, no
digits and no decimal point are printed. The argument should be floar or double.

The argument is converted in the style “[-]d.ddde+=dd’’, where there is one digit
before the decimal point and the number after is equal to the precision specification for
the argument; when the precision is missing, 6 digits are produced. The argument
should be a float or double quantity.

The argument character or character-pair is printed if non-null.

The argument is taken to be a string (character pointer), and characters from the string
are printed until a null character or until the number of characters indicated by the

November 1979

PRINTF:0 (3C

If no

) CB—UNIX 2.1 PRINTF:0(3C)

precision specification is reached: however if the precision is 0 or missing all characters
up to a null are printed. If the string pointer itself is null, then the string ** (null)™” will
be printed.

The argument is taken o be an unsigned integer which is converted to decimal and
printed (the result will be in the range 0 to 65535).

The argument is taken to be the base address of a vector which contains a remole argu-
ment list. The first element in the list is a character string which replaces the current for-
mat. The remaining elements in the vector are accessed and converted as specified by the
new format. A reversion (o the original format will never occur; thus any characters in
the original format following the “*%r™ will be ignored.

The next character in the string ** /" will replace the default padding character for the
remainder of the string unless changed once more through the use of **>"".

The next argument is taken to be a field width specification and is used accordingly. For
example, “%*d"" with xand » as the corresponding arguments in the argument list would
be interpreted as specifying as decimal number v 10 be padded 10 a field width of

recognizable character appears after the %, that character is printed: thus % may be

printed by use of the string %%. In no case does a non-existent or small field width cause trun-

cation

of a field: padding takes place only if the specified field width exceeds the actual width.

Primt'is actually an interface to the C library formar subroutine which performs all the necessary
formatting. The formar subroutine is called identically to printf with the exception of an addi-
lional argument preceding prin/’s finr argument. This new argument is the address of the sub-
routine to be called for every character of output generated by format.

If prinif'were written as a C subroutine it would thus appear as follows:

SEE ALSO

printf(fmt)
char *fmt;

{

extern putchar();

return (format (putchar, "%r", &fmt));

putchar(3)

BUGS

Very wide fields (> 128 characters) fail.

Formar, tand consequently prinif), is not recursive.

November 1979

Page 2

