SCANF1:0(3L) Sccs Jul 19 1976 SCANF1:0(3L)

NAME

scanfl -- formatted input scanner

SYNOPSIS

int scanf1([-j[,input-string]],control-string,argl,arg2,...)
char *input-string;
char *control-string;

DESCRIPTION

Scanfl is patterned after the interface existing for the portable

library routine scanf. It was developed to perform most of the
features offered Dby scanf without incurring the penalty of
scanf's size (approximately 7000 bytes). The size of scanfl is
about 1650 bytes.

Scanfl is designed to read either from terminals or strings. On

reads from terminals, scanf provides its own buffer. Terminal
reads in excess of 100 characters may cause errors.

Scanfl reads characters, interprets them according to a format

and stores the results in its arguments. It expects as arguments:

1. An optional input-string, indicating the source of the input
characters; if omitted the standard input is read.

2. A control-string described below.

3. A set of arguments, each of which must be a pointer, indi-
cating where the converted input should be stored.

The integer j must be in the range of 4>3>0. If (3j&1) 4is not
equal to zero, the optional input string is to be specified. If
(j&2) is not equal to zero, indirection is specified. See the
description for format specification "i" below.

The control string usually contains conversion specifications,
which are used to direct interpretation of input sequences. The
control string may contain:

1. Blanks, tabs or newlines which are ignored.

2. Conversion specifications, consisting of the character %, an
optional assignment suppressing character x, and optional
numerical field width, and a conversion character.

A conversion specification is used to direct the conversion of
the next input field; the result is placed in the variable point-
ed to by the corresponding argument, unless assignment suppres-
sion was indicated by the * character. An input field is defined
as a string of non-space characters; it extends either to the
next space character or until the field width, if specified, is
exhausted.

The conversion character indicates the interpretation of the in-
put <field; the corresponding pointer argument must usually be of
a restricted type. Pointers, rather than variable names, are re-



SCANF1:0(3L)

SCCs Jul 18 1976 SCANF1:0(3L)

quired by the "“call-by-value" semantics of the C language. The
following conversion characters are legal:

d

indicates that a decimal integer is expected in the input
stream; the corresponding argument should be an integer
pointer.

indicates that an’ octal integer is expected in the input
stream; the corresponding argument should be an integer
pointer.

indicates that a character string is expected; the
corresponding argument should be a character pointer
pointing to an array of characters large enough to accept
the string and a terminating "\O", which will be added.
The input field is terminated by a space character or a
newline.

indicates that a character string of non-space, non-
slash, non-exclamation point characters is expected at
this point. Otherwise it is handled as for "s" above.
indicates that all internal pointers are to Dbe reset.
From the terminal this will force a read.

indicates that the next argument in the call to scanf is
to be taken as the address of a new argument list. All
converted inputs are stored as directed by this argument
list. There is no return to the original argument list.
indicates that a single character is expected; the
corresponding argument should be a character pointer; the
next input character is placed at the indicated spot. The
normal skip over space characters is suppressed in this
case; to read the next non-space character use %ls.
indicates a string not to be delimited by space charac-
ters. The left bracket is followed by a set of characters
and a right bracket; the characters between the brackets
define a set of characters making up the string. If the
first character is not circumflex (4), the input field is
all characters until the first character not in the set
between the brackets; if the first character after the
left Dbracket is A, the input field is all characters un-
til the first character which is in the remaining set of
characters between the brackets. The corresponding argu-
ment must point to a character array. Right bracket may
be escaped within brackets by preceding it with back
slash.

For example, the call:

int i;int j;char name[50];
scanfl(”%d%0%a” ,&i ,&j,name) ;

with the input line

77 77 test/




SCANF1:0(3L) SCCS Jul 19 1976 SCANF1:0(3L)

will assign to i the value of 77, to j the value of octal 77, and
name will contain "test\0". The subsequent call

scanf1(”%1s”,name)
will move the string "/\0O" into the array name.

Care should be exercised when reading from the terminal. If a
format 1is specified such that it successfully matches to the end
of the last string read, another read will be made from the ter-
minal. This might cause the program to go to sleep on the termi-
nal. The conversion character "a" is designed to make this prob-
lem easier to avoid from the SCCS shell.

Scanfl returns as its value the number of successfully matched
and assigned input items. This can be used to decide how many in-
put items were found. On end of file, -1 is returned; note that
this is different from O, which means that the next input charac-
ter does not match what you called for in the control string.
Scanfl, if given a first argument of -1, will scan a string in
memory given as the second argument. It differs from scanf in
that the switching of input streams from a terminal to a string
causes the pointers to the terminal stream to be lost. If a sub-
sequent read is made to the terminal it should be reinitialized
with the conversion character r. All scans from a string are au-
tomatically reinitialized.

LIBRARY
/1ib/libl.a

SEE ALSO
scanf(1s)

RESTRICTIONS
Used only prior to SCs.



