PCS(4) CB—UNIX 2.3 PCS(4)

NAME
pcs — program counter sampling device

DESCRIPTION

Pcs provides an interface to program counter sampling, allowing for a statistical approach to
user and kernel process profiling. Pcs is a read-only pseudo device supporting open, read,
close, and ioctl functions. An open of pcs obtains exclusive use of the profiling device and
starts the profiling clock. The profiling clock is assumed to be a TCU-100 (battery clock) or a
KW11-K, if no TCU-100 clock exists. The clock should run at hardware and software priority
7. Thereafter, it is necessary to do an ioctl function to start gathering data. Pcs supports the
following ioctl requests:

ioctl(fd, PROF_KERNEL, NULL)
requests that sample points for the unix kernel be output. The third argument is
unused.

ioctl(fd, PROF_ALL, NULL)
requests that sample points be generated whenever any user or kernel process is
interrupted. Again, the third argument is unused.

ioctl(fd, PROF_LIST, list)
requests that sample points for the user level processes specified by the list argu-
ment be output. The list argument points to an array of integers; the first element is
the number of processes to be sampled, and the remaining values are their process
ids. The number of processes in the list is bounded by the number MAX_LIST in
pes.h.

ioctl(fd, PROF_GROUP, groupid)
requests that sample points be output for all of the processes in process group
groupid.

ioctl{fd, BUF_INCR, incr)
requests that incr more system buffers be allocated for the collection of data. By
default, DEF_BUFNO buffers are assigned to the device. Incr must be positive, and
small enough so that no more than MAX_BUFS are be allocated to the device. (See
pcs.h for default and max values).

Reads from pcs may be for an arbitrary number of bytes, although, in general, partial buffers
are not made available to the user until filled with sample points. Pcs internally works in terms
of standard UNIX buffers, BSIZE bytes in size. Such a buffer is described by the "LOGBUF"
structure in pes.h. It is a general layout, envisioned as being useful in reporting kernel and
user generated "records" as well as miscellaneous and idle records. Basically, such a buffer con-
sists of a header and several data records. A record is constrained to be no larger than one
buffer (minus a buffer header), and in fact, a record is never split across buffers. For this rea-
son, one entry in the header identifies the number of "unused” bytes at the end of the buffer.
The unused count should be a small number (less than 12) for all blocks. Anticipating that the
operafing system will be able to generate records faster than a user process will be able con-
sume them, the header also identifies the number of records "lost” since the last buffer was
sent. For streams whose records are generated more slowly than the reading process’ ability to
consume them, this count should be 0. For high volume data, e.g. pc sampling at a very fast
rate, or recording all type of hits on a busy system, this count may be non-zero, and although
the data is lost, a count of lost data is provided. To further reduce the possibility of losing data,
all system idle counts are stored internally and output every 100 clock cycles. The idle data is
identified by sample type IDLE. The same technique is used to gather unasked-for kernel and
user data. This data is stored internally and also output every 100 clock cycles as MKERNEL,
MKERNELI or MUSER type of sample. 1f the profiling clock interrupted the processor when
it was servicing an interrupt, this data will be output as KERNELI data or it may be stored

April 16, 1981 Page 1 April 16, 1981

4) CB—UNIX 2.3 PCS(4)

internally and output every 100 clock cycles as MKERNELI samples.

At the end of sampling, any data that remains in a system buffer is thrown away. This means
that as many as three buffers worth of data may be lost when the close routine is called.

The data records generated by pecs are defined by the structure PSAMPLE or MSAMPLE in
pes.h. For PSAMPLE data, the pid field gives the process id of the interrupted process, and pc
the value of its program counter. Also given is the type of sample, kernel or user, and the text
space, meaningful only for kernel samples. The cpu interrupt priority level is included in the
high 4 bits of sspace which again is only meaningful for kernel samples. MSAMPLE records
are MKERNEL, MKERNELI, MUSER and IDLE data, rype identifies the type of data in the
sample and count is the actual number of hits that were recorded for this type of sample. The
pes.h header is as follows:

/* @(#)pes.h 3.1 */
r*)
- These structures and macros are used by the SYSTEM PROFILING (pc)
* special character device, the data-gathering command getpc,
¥ and the analysis commands analpc.
*
. The pe driver never generates records of types START, STOP, or 10CTL;
. these are created by getpc for the benefit of the analpc routines.
* The data stream presented by getpc will contain a START record, an
L JOCTL record, an arbitrary number of KERNEL, USER, MKERNEL, and
* MUSR records, and, finally, a STOP record.
hd The IOCTL record is an indication of the ioct! system call made by
* the getpc program to the pe driver, indicating what data is available
* to analpc for reporting.
*/
/A pc stream record types */
#define KERNEL 1
#define USER 2
#define IDLE 3
#define MKERNEL 4
#define MUSER 5
#define START 6
define STOP 7
#define JOCTL 8
#define KERNELI 9
#define MKERNELI 10
#define DEF_BUFNO 3 /* default number of system buffers used */
#define MAX_BUFS 10 /* max buffers allowed to pc for profiling */
#define MAX_LIST 5 /* max number in process list for profiling */
struct PSAMPLE { /* pc profile sample record %/
char type; /* KERNEL, KERNELI, or USER space */
char sspace; /* Kernel switchable space number */
/* high 4 bits have CPU priority level */
short pid; /* pid of current user process */
unsigned pc; /* program counter */
J;
struct MSAMPLE { /* misc. or merged profile sample record */
char type; /* MKERNEL. MKERNELI, MUSER, or IDLE hit count */
char cfilly /* (structure pad) */
short count; /* number of type of misc. records merged since

last such count */
unsigned ufill; /* (structure pad) */

April 16, 1981 Page 2 April 16, 1981

. PCS(4) CB—UNIX 2.3 PCS(4)

struct SSAMPLE { /* start or stop getpc-produced record */
char type; /* START or STOP */
char cfill; /* (structure pad) */
time_t stime; /* start or stop time */
3
struct ISAMPLE { /* ioctl record produced by getpe */
char type: /* IOCTL */
char cfill; /* (structure pad) */
int cmd; /* pcioctl call command */
short datalMAX_LIST}; /* ioctl arg., depends on cmd */
k
/* pc ioctl commands */
#define BUF_INCR (('P‘<<8)bl) /* incr. number of bufs for /dev/pc */
#define PROF_KERNEL (CP’<<8)02) /* profile the kernel */
#define PROF_ALL (('P'<<8)b4) /* profile all user processes */
#define PROF_GROUP (CP'<<8)010) /* profile a user group */
#define PROF_LIST (CP'<<8)l020) /* profile a small list of processes */
#define PROF_MASK 0177 /* used to mask out high byte */
#define WAIT 1
define NOWAIT 2
#define SAMPPRI (PZERO+1)
#define NO_CLOCK 0
#define TCU100_CLOCK 1
#define KW11K_CLOCK 2
#define FILLING 1
#define NOT_FILLING 2
struct LOGBUF_HDR { /* pc buffer header info */
ushort h_unused; /* num unused bytes at end of buf */
short h_numlost; /* num samples lost between buffers */

5
#define NUMSAMPS ((BSIZE-sizeof(struct LOGBUF_HDR))/sizeof(struct PSAMPLE))

#define NUMWASTE (BSIZE-sizeof(struct LOGBUF_HDR)-(NUMSAMPS?®sizeof(struct

PSAMPLE)}))
struct LOGBUF { /* layout of pc system buffer */
struct LOGBUF_HDR 1b_buf_hdr; /* pc buffer header counts */
struct PSAMPLE Ib_data[NUMSAMPS]; /* pc data samples */
char 1b_wasted[NUMWASTE],; /* buffer bytes wasted */
b
struct samp_cntl { /* pc queue and buffer control info #/
ushort flag; /* control flag */
struct buf *cursbuf; /* current output buffer for sample data */
caddr_t currptr; /* address in block for next sample */
struct buf *rq; /* ready queue (filled for user 10 read) */
struct buf *fg; /* free queue of empty buffers */
struct LOGBUF_HDR sbuf_hdr; /* unused buffer bytes; lost recs count */
I
struct pid_list { /* pids of processes to be profiled */
short p_count; /* number in list */
short p_listt MAX_LIST}; /* list of pids for profiling */
h
April 16, 1981 Page 3 April 16, 1981

PCS (4)

struct DEVPC {

H
FILES

/dev/pcs
SEE ALSO

CB—UNIX 2.3 PCS(4)

/* pc pseudo-device pseudo-registers b

short d_clock; /* type of profiling clock */
short d_runpid; /* pid of user running pc device;

this is 0 if no one profiling */
ushort d_flag; /* type of profiling being done */
short d_group; /* group id profiling for */

struct pid_list d_list; /* list of pids for profiling */
struct samp_cntl d_smple; /* queue and buffer control info */

getpe(1), pestat(1)

April 16, 1981

Page 4 April 16, 1981

