YPM(4) CB—UNIX 23 VPM(4)

NAME .
vpm, vpb — Virtual Protocol Machine Protocol and Interface Drivers

DESCRIPTION
This entry describes the vpm and vpb drivers and gives an introduction to the Virtual Protocol

Machine (VPM).

VPM is a software package for implementing link-level protocols on the DEC KMC11 microcom- ‘
puter in a high-level-language. This is accomplished by a compiler that runs on UNIX and
translates a high-level language description of a protocol into an intermediate language that is
executed by an interpreter running in the KMC. VPM also provides a framework for implement-
ing higher levels of protocols (levels 3 and above) as UNIX drivers.

The VPM software consists of the following components:

1. A compiler (vpmc(1C)) for the protocol description language; it runs on UNIX.

2. An interpreter that controls the overall operation of the KMC and interprets the —
protocol script.

3x Two UNIX drivers: A Protocol driver and an Interface driver.

4, vpmstart(1C): a UNIX command that copies a load module into the KMC and
starts it.

5. vpmset (1C): a UNIX command that logically connects VPM minor devices and

KMC synchronous links. x25pvc(1C) and x25Ink(1C) may also be used to con-
nect things up.

6. vpmsnap(1C): a UNIX command that prints a time-stamped event trace while
the protocol is running.

7. vpmtrace(1C): a UNIX command that prints an event trace for debugging pur-
poses while the protocol is running.

8. vpmsave(1C): a UNIX command that writes unformated trace data to its stan-
dard output.

9. vpmfmt(1C): a UNIX command that formats the output of vpmsave.

The VPM protocol driver provides a simple user interface to a synchronous line controlled by a
link-level protocol executed by the VPM interpreter in the KMC. It supports the following UNIX
system calls: open, read, write, close, and ioctl. If higher levels of protocol are required, the
VPM protocol driver may be modified or replaced. The VPM interface driver provides a com-
mon interface to a synchronous line controlled by a link-level protocol executed by the VPM
interpreter. This common interface can be shared by several different protocol modules (see
x25(4)).

Before a protocol driver minor device can be used, it must be logically connected to a VPM
interface driver; the interface driver minor device must in turn be logically connected to a syn-
chronous line of a KMC microprocesser or a KMS11 communication multiplexor. These correc-—
tions can be made by means of ioct! commands (see below). The command vpmset (1C) uses
these ioctl commands to make these connections.

The VPM Interface Driver.

The VPM interface driver provides a general purpose interface between level 3 protocols execut-
ing in the UNIX kernel and level 2 protocols being executed by the VPM interpreter in the
KMC. This interface is used by the VPM Protocol driver as well other protocol drivers such as
the LEAP, X253, and ST.

The Interface Driver supports open, close, and ioct! systems calls. These calls are used to set-up
connections between the interface driver and a synchronous line on a KMC or KMS and to set
interpreter options. The system Joct/ call has the following form:

ioctl (fildes, cmd, arg)

February 9, 1981 Page 1 February 9, 1981

VPM (4)

CB—UNIX 2.3 VPM(4)

Possible values for the ¢md argument are:

VPMSDEV

VPMGETM

VPMSETM

VPMCLRM

Connect an interface driver minor device to a synchronous line on a
KMC or KMS. Bits 6 and 7 of arg contain the minor device number of
the KMC or KMS. Bits 0-2 of arg contain the line number (0-7) if a
KMS is being used; for a single-line KMC they must be zero.

Get the interpreter modes. The currently available modes are the nor-
mal mode and the X.25 mode. The normal mode is indicated by an
arg of all zeros. In this mode, the entire information field of an I
frame is copied by the interpreter to the assigned buffer. The X.25
mode is indicated by a 1 in bit 0. In this mode, the VPM interpreter
copies the first three bytes of the information field of level 2 I frames
into the buffer descriptor of the buffer assigned to receive the frame.
These three bytes are the X.25 level 3 header. The remaining bytes, if
any, are copied to the buffer pointed to by the buffer descriptor.

Set the interpreter modes. The modes specifed by a 1 in the mask arg
are set.

Clear interpreter modes. The modes specified by a 1 in the mask arg
are cleared.

The routines that make up the VPM interface are:

vpmstart
vpmstop
vpmxmtq

ypmempty

vpmcmd
vpmrpt

vypmenqg

vpmdeq

ypmrmy

vpmerr

vpmsave

vpmsnap

Start the level 2 protocol.
Stop the level 2 protocol.
Place a transmit buffer descriptor pointer on the level 2 transmit queue.

Place a empty receive buffer descriptor pointer on the level 2 empty
receive queue.

Send a four byte command to the level 2 protocol.
Receive a four byte report from the level 2 protocol.

Place a buffer descriptor pointer at the end of the indicator VPM linked list
queue.

Remove the buffer descriptor at the head of the indicated VPM linked list
queue.

Search the indicated VPM linked list queue for the given buffer descriptor
pointer and remove it if found.

Get the error counters maintain by the VPM interpreter. After the inter-
preter has passed the counters to the driver it resets its copy of the
counters.

Save an event record using the trace driver minor device zero.

Save a time-stamped event record using the trace driver minor device 1.

Operation of the Standard Protocol Driver.

UNIX user processes transfer data to or from a remote terminal or computer system through
VPM using normal open, read, write, and close operations. Flow control and error recovery are
provided by the protocol executed by the interpreter in the KMC.

The VPM open for reading-and-writing is exclusive; opens for reading-only or writing-only are
not exclusive. The VPM open checks that the correct interpreter is running in the KMC and
then sends a command to the interpreter which causes it to start interpreting the protocol script.
The driver then supplies one or more 512-byte receive buffers to the interpreter.

February 9, 1981

Page 2 February 9, 1981

YPM(4) CB—-UNIX 2.3 VPM(4)

The VPM read returns either the number of bytes requested or the number remaining in the
current receive buffer, whichever is less; any bytes remaining in the current receive buffer are
used to satisfy subsequent reads. The VPM write copies the user data into 512-byte system
buffers and passes them to the VPM interpreter in the KMC for transmission.

The VPM close arranges for the return of system buffers and for a general cleanup when the last
transmit buffer has been returned by the interpreter. It also stops the execution of the protocol

script.
The VPM protocol driver supports the following ioct! commands:

VPMCMD Send 2 command to the protocol script. The first four bytes of the
array pointed to by arg are passed to the VPM interpreter which saves
them and passes them to the protocol script when it executes a gefcmd
primitive. Only the most recent command is kept by the VPM inter-
preter.

VPMERRS "Get and then reset the interpreter’s error counters. The interpreter’s
four, two-bytes error counters are copied to the array pointed to by
arg. The interpreter’s copy of the counters is then set to zero.

VPMRPT Get the latest script report. When the protocol script executes a 71n/pt
primitive, a four-byte report is passed from the protocol script to the
VPM protocol driver. Only the most recent script report is kept by the
driver. If there is a script report that has not previously been passed to
a user via this ioct! command, that report is copied to the array pointed
to by arg and a non-zero value (one) is passed as the return value. If
no script report is available, a zero is passed as the return value.

VPMSDEV Connect a protocol driver to an interface driver. Arg is the minor dev-
ice number of the interface driver to be connected to this protocol
driver. To invoke this ioctl command, the file status flag, O_NDELAY
must be set.

The VPM Event Trace

The VPM drivers generates a number of event records to allow the activity of the drivers and
protocol script to be monitored for debugging purposes. If a program such as vpmtrace(1C) or
vpmsave(1C) has opened minor device 0 of the trace driver and has enabled the appropriate
channels on that device, these event records are queued for reading; otherwise, the event
records are discarded by the trace driver. Event records associated with interface driver minor
device n are put on the read queue for minor device 0 of the trace driver with a channel
number of n. Calls to the system functions vpmopen, vpmread, vpmwrite, and vpmclose generate
event records identified respectively by o, r, w, and c. Calls to the vpmc(1C) primitive
trace(argl ,arg?) cause the VPM interpreter to pass argl and arg? along with the current valur
of the script location counter to the VPM driver, which generates an event record identified by a—
T. Each event record is structured as follows:

struct event {

short e_seqn; /* sequence number */
char e_type; /* record identifier */

char e_dev; /* minor device number */
short e_shortl; /% data */

short e_short2; /¥ data */

When the script terminates for any reason, the driver is notified and generates an event record

identified by an E. This record also contains the minor device number, the script location
counter, and a termination code defined as follows:

February 9, 198! Page 3 February 9, 1981

VPM (4)

SEE ALSO

[« QN W, T~ PL I N6 B

11
12

13
14
15
16
17
18
19
20
21
22
23

CB—UNIX 2.3 VPM(4)

Normal termination; the interpreter received a HALT command from the
driver.

Undefined virtual-machine operation code.

Script program counter out of bounds.

Interpreter stack overflow or underflow.

Jump address not even.

UNIBUS error.

Transmit buffer has an odd address; the driver tried to give the interpreter too
many transmit buffers; or a ger or rinxbuf was executed while no transmit
buffer was open, i.e., no getxbuf was executed prior to the get or rtnxbuf.
Receive buffer has an odd address; the driver tried to give the interpreter too
many receive buffers; or a put or rinrbuf was executed while no receive buffer
was open, i.e., no getrbuf was executed prior to the get or rtnxbuf.

The script executed an exit primitive.

A crcl6 was executed without a preceding crcloc execution.

The interpreter detected loss of the modem-ready signal at the modem inter-
face.

Transmit-buffer sequence-number error.

Command error: an invalid command or an improper sequence of commands
was received from the driver.

Not used.

Invalid transmit state (internal error).

Invalid receive state (internal error).

Not used.

Xmitctl or setct] attempted while transmitter was still busy.

Not used.

Same as error code 6.

Same as error code 7.

Script too large.

Used for debugging the interpreter.

The driver’s OK-check has timed out.

vpmc(1C), vpmset(1C), vpmstart(1C), x25Ink(1C), x25pve(1C), trace(4).

February 9, 1981

Page 4 February 9, 1981

