VTP (4) CB—UNIX 2.3 VTP(4)

NAME
vtp — virtual terminal protocol

DESCRIPTION ‘
This section describes how to use the virtual terminal protocol feature that can be optionally

enabled in the operating system.

The virtual terminal protocol provides a means whereby user programs can be written to
interact with CRT terminals in a language which is independent of the actual type of terminal.
The operating system provides translation of standard sequences of characters into the
sequences necessary to cause the desired behavior on each type of terminal. It also translates
what the terminal sends to the system so that the user program sees the standard sequence for
all terminals regardless of the terminal actually in use.

An ioal() is necessary to enable a specific terminal handler and that terminal handler must have
been compiled into the operating system. The ioct! call is described in <sys/termio.h>:

/t

* structure of ioctl arg for LDGETT and LDSETT

*

/

struct termcb {
char st_flgs; /* term flags */
char st_termt; /* term type */
char st_crow; /* gtty only - current row */
char st_ccol; /* gtty only - current col */
char st_vrow; /* variable row */
char st_lrow; /* gtty only - last row */ :

k
Terminals for which drivers are currently available are the DEC vt61 and vti00, the TEC
scope, the Teletype D40, the Hewlett Packard hp26xx terminals, and the Concept 100.

The terminal flags are automatically set by the ioct/() on a LDSETT command to appropriate
values for a specific terminal unless the user overrides these defaults by setting the TM_SET
bit. If the user does this, then the terminal flags are set according to the other flags found in
"st_flgs".

TM_SNL The special newline flag means that the newline character will be treated specially.
Currently this is used by the Dataspeed 40 terminals. When this flag is set, new-
line characters are converted to "load cursor address sequences” so that the printed
newline character doesn’t appear on the screen.

TM_ANL Causes an automatic newline whenever the cursor attempts to pass the 80t!
column. ‘

TM_LCF The "last column function" flag causes scrolling to be emulated on dumb termi-
nals, such as the TEC, which do not have scrolling hardware. Scrolling is emu-
lated by moving the cursor to the first row of the terminal, deleting the line, and
then moving the cursor to the bottom of the screen again.

TM_CECHO .
Causes the cursor motion keys to function without user software intervention br
causing the codes generated by the cursor control keys to be immediately echoeu-
back to the terminal when they are received. This flag is usually used in conjunc-
tion with the TM_CINVIS flag.

TM_CINYVIS
Inhibits the translation and tranmission of the cursor motion sequences to the
user program. If this flag and the TM_CECHO flag are on, that the cursor

May 1, 1981 Page 1 May 1, 1981

VTP (4) CB—UNIX 2.3 VTP (4)

motion keys work without intervention by the user process.

TM_SET Causes the values of the preceeding flags to be set or cleared if the LDSETT
ioctl() command is being done.

"st_vrow" specifies the row at which scrolling will take place. This means that everything on the
screen above that row will be unaffected as material scrolls upwards from the bottom. This
allows split screen operation. "st_crow" and "st_ccol” contain the system’s idea of the current
row and column when a LDGETT command is done. "st_lrow" contains the system’s idea of
which row is the last row visible on the CRT screen. To assure that the system and the termi-
nal both agree on the cursor position, a VHOME escape sequence should be transmitted to the
terminal after the terminal handler is enabled. Columns and rows are numbered from (0,0).

Once the terminal type is set, user programs use the escape sequences described in
Jusr/include/sys/crtctl.h to control the behavior of the terminal.

/* @(#)ertctlh 3.2 ¢/
/‘
Define the cursor control codes
b d
/
#define ESC 033 /* Escape for command */
/* Commands */
#define CUP 0101 /* Cursor up */
#define CDN 0102 /* Cursor down */
#define CRI 0103 /* Cursor right */
#define CLE 0104 /* Cursor left */
#define HOME 0105 /* Cursor home */
#define VHOMEO0106 /* cursor home to variable portion */
#define LCA 0107 /* Load cursor, followed by (x,y) in (col,row) */
#define STB 0110 /* Start blink */
define SPB 0111 /* Stop blink */
#define CS 0112 /* Clear Screen */
#define EEOL 0113 /* Erase to end of line */
#define EEOP 0114 /* Erase to end of page */
#define DC 0115 /* Delete character */
#define DL 0116 /* Delete line */
#define IC 0117 /* Insert character */
#define IL 0120 /* Insert line */
#define KBL 0121 /* keyboard lock */
#define KBU 0122 /* keyboard unlock */
F#define ATAB 0123 /* Set Column of tabs on all lines */
#define STAB 0124 /* Set single tab on current line only */
#define CTAB 0125 /* Clear all tabs */
#define CSTAB 0144 /* Clear tab at current column, all lines */
#define USCRL 0126 /* Scroll up one line */
#define DSCRL 0127 /* Scroll down one line */
#define ASEG 0130 /* Advance segment */
#define BPRT 0131 /* Begin protect */
#define EPRT 0132 /® End protect */
#define CRTN 0133 /* Return cursor to beginning of line ®/
#define NL 0134 /* Terminal newline function */
#define CM 0135 /* Clear Memory (Terminal Reset) */
#define SVSCN 0136 /* Define variable portion of screen (OS only) */
#define UVSCN 0137 /* Scroll Up variable portion of screen */
#define DVSCN 0140 /* Scroll Down variable portion of screen */

May 1, 1981 Page 2 May 1, 1981

VTP (4)

CB—UNIX 2.3 VTP (4)

#define SVID 0141 /* Set Video Attributes */

#define CVID 0142 /* Clear Video Attributes */

#define DVID 0143 /* Define Video Attributes */

/* Video Attribute Definitions */

#define VID_NORM 000 /* normal */
#define VID_UL 001 /* underline */
#define VID_BLNK 002 /* blink */

#define VID_REV 004 /® reverse video */
#define VID_DIM 010 /* dim intensity */
#define VID_BOLD 020 /* bright intensity */
define VID_OFF 040 /* blank out field */
#define BRK 000 /* transmit break */

#define HIQ 001 /* Put remainder of this write on the high

priority queue, saving current cursor and restoring
when done. */

When sending escape sequences to the terminal, it is necessary that the writes be atomic. In__
other words, if it is desired to move the cursor to column 10 and row 5, it is necessary to send
the four characters, ESC LCA 10 5, to the terminal in a single write system call. If standard
I/O is being used, the stream to the terminal must be buffered, and then flushed after the
escape sequence is written so that the write is atomic.

Note that some of these functions will not work with every terminal. Whether a function
works or not is dependent on how smart the terminal handler code in the operating system is
and what capabilities the terminal itself has. Basically you can expect that all terminal handlers
can manage the cursor motion commands, CUP, CDN, CRI, CLE, HOME, VHOME, and
LCA. Most terminal handlers can also do the scrolling of the variable portion of the screen,
UVSCN and DVSCN, though sometimes the terminal handler emulates scrolling by deleting a
line at the top of the region and then writing a new one at the bottom.

If a terminal has advanced video features such as blinking, underlining, and reverse video, it is
possible to turn these features on and off with the SVID, CVID, and DVID commands. The
"set video attributes”, SVID, logically ors in the features specified by the next character. "Clear
video attributes”, CVID, and complements out the features specified by the next character.
"Define video attributes”, DVID, replaces the current video attributes with those specified by
the next character.

Of particular utility is the "hi-queue write", HIQ. When combined with the variable scroll
feature, it is possible to prevent some section at the top of the screen from being changed by
normal writes and then have a special program perform hi-queue writes, which contain a "load
cursor address" function (LCA) to modify the contents at the top of the screen. This allows
the possibility of having a background process keep a display at the top of the screen updated
while the user continues working in the lower portion of the screen. Hi-queue writes are lim-
ited to 512 bytes.

DEFICIENCIES

One annoying fact is that the HIQ string is terminated by the end of the write system call.

May 1, 1981 Page 3 May 1, 1981

