_ X25(4) CB—UNIX 2.3 X25(4)

NAME
X25 — BX.25 network interface

DESCRIPTION
The X25 driver provides multiplexed channels over one or more synchronous communications
lines using the Bell System standard BX.25 Level 3 protocol. The current release supports per-
manent virtual circuits (PVCs) only; the call set-up features needed to support virtual calls have
not yet been implemented. There is a separate and independent Level 3 interface for each
communications line. Point-to-point connections between hosts are supported as well as con-
nections via an X.25 network.

The X25 driver is implemented as a VPM protocol module (see vpmi(4)). The X25 driver uses
the VPM interface module to access communications lines controlled by KMC11-B microproces-
sors. Level 2 of BX.2S, the link level, is implemented by a VPM protocol script in the KMC.

The special files /dev/x25/s? refer to the minor devices of the X25 driver. Fach such minor
device, also referred to as a slot, can be connected by means of a network control device (see
nc(4)) to an arbitrary logical channel (1-4095) on a specified X25 interface. When the other
end of the logical channel has been connected in an analogous fashion, each slot so connected
is the terminus of a permanent virtual circuit, which is a full-duplex connection over a BX.25 log-
ical channel between a set of user processes on the local host and another set of user processes
on a remote host. A logical channel is a connection which may be multiplexed with other chan-
nels over a physical link to a remote host or an X.25 network. Each X25 interface (also
referred to as a l/ink) must be connected via the network-control device to a particular KMC
microprocessor or to a particular line on a KMSI1 communications multiplexor.

A user process accesses a BX.25 minor device (slot) using open, close, read, write, and ioctl sys-
tem calls.

There are several internal flags that are maintained by the X25 driver for each slot. The values
of these flags can be read and in some cases modified by means of the ioctl system call (see
below).

An open will fail and return the error EJO if the specified slot does not exist, if the slot is not
currently connected to a logical channel on some link, or if the link to which the slot is con-
nected is not currently active. The user may request the normal open options O_RDONLY,
O_WRONLY, and O_RDWR. The user may also request that reads with no data available should
not sleep, writes with no transmit queue space return immediately, and that open should not
wait for faropen to be set, using the O_NDELAY open flag. The open, and all use of the slot, can
be made exclusive, using the O_EXCL open flag. If an exclusive open is requested and cannot
be granted, the error EBUSY will be returned. A successful open will clear the isreset status bit
(see the discussion of ioct! below). If O_NDELAY is specified, the user is responsible for insur-
ing that the remote end of the slot is ready to receive data before any is sent via writes. Note
that O_NDELAY can be set via the fentl(2) system call after a successful open (via the iocl call
X25FCNTL for CB-UNIX), which insures that the open will not return until the other end is fully
connected.

An open may or may not block until the far end is also open, depending on the session-
establishment protocol requested. There are three choices for the session-establishment proto-
col. The choice is made by means of the network-control device at the time the permanent vir-
tual circuit is installed. The first mode, referred to as the ‘‘no-protocol’’ session mode, is for
the open to return immediately. This puts the burden on the user program to determine
whether the far end is actually open. The reset session mode, designed mainly for compatibility
with certain non-UNIX implementations of BX.25, uses a RESET in-order packet to indicate to
the far end that a slot has been opened and a RESET out-of-order packet to indicate to the far
end that the slot has been closed. In the current implementation, the RESET in-order and
RESET out-of-order packets are recognized when they are received, but are not transmitted

April 1, 1981 Page 1 April 1, 1981







