A.OUT(5) CB—UNIX 2.3 A.OUT(5)

NAME
a.out — assembler and link editor output

DESCRIPTION
A.out is the output file of the assembler as and the link editor /d. Both programs make a.out

executable if there were no errors and no unresolved external references.

This file has four sections: a header, the program and data text, a symbol table, and relocation
bits (in that order). The last two may be empty if the program was loaded with the —s option
of Id or if the symbols and relocation have been removed by strip.

The structure of the entry as given in the include file is:

/* @(#)a.out.h 3.3 ¢/
struct exec { /* a.out header */
int a_magic; /* magic number */ =
unsigned a_text; /* size of text segment */
unsigned a_data; /* size of initialized data */
unsigned a_bss; /* size of unitialized data */
unsigned a_syms; /* size of symbol table */
unsigned a_entry; /* entry point */
char a_unused; /* not used */
char a_hitext,; /* text high bits */
char a_flag; /* relocation info stripped */
char a_stamp; /* System environment stamp */

I

/* macro to calculate text size of big files */
#define TSIZE(x) x.a_text + ({long)x.a_hitext << 16)

#define A_MAGICI 0407 /* normal */
#define A_MAGIC2 0410 /* read-only text */
define A_MAGIC3 0411 /* separated 1&D */
#define A_MAGIC4 0405 /* overlay */
#define A_MAGICO 0401 /* 1dp (UNIX/RT) */
/* ***** in invocation of BADMAG macro, argument should not be a function.***/
#define BADMAG(X) X.a_magic!=A_MAGIC] && X.a_magic!=A_MAGIC2 && X.a_magic!=A_MAGIC3 && - -
struct nlist { /* symbol table entry */
char n_name|8]; /* symbol name */
char n_type; /* type flag ®/
char n_loc; /* text area location */
unsigned n_value; /* value */

/* values for type flag */

#define N_UNDF 0 /® undefined */

#define N_ABS 01 /* absolute */

#define N_TEXT 02 /* text symbol */

#define N_DATA 03 /* data symbol */

#define N_BSS 04 /* bss symbol */

#define N_TYPE 037

#define N_REG 024 /® register name */

define N_FN 037 /* file name symbol */

#define N_EXT 040 /* external bit, or’ed in */ o
#define FORMAT "%060" /® 10 print a value */

/* values for loc flag */

#define N_SWSPO 1 /* text switchable space 0 */
#define N_SWSP1 2 /* text switchable space 1 */
#define N_SWSP2 3 /* text switchable space 2 */
#define N_SWSP3 4 /* text switchable space 3 */

November 4, 1980 Page 1 November 4, 1980

- A.OUT(5) CB—UNIX 2.3 A.OUT(5)

The sizes of each segment are in bytes but are even. The size of the header is not included in
any of the other sizes.

When a file produced by the assembler or loader is loaded into core for execution, three logical
segments are set up: the text segment, the data segment (initialized data followed by uninitial-
ized bss, the latter being initialized to all 0’s), and a stack. The text segment begins at 0 in the
core image; the header is not loaded. If the magic number (word 0) is 407, it indicates that the
text segment is not to be write-protected and shared, so the data segment is immediately con-
tiguous with the text segment. If the magic number is 410, the data segment begins at the first
0 mod 8K byte boundary following the text segment, and the text segment is not writable by
the program; if other processes are executing the same file, they will share the text segment. If
the magic number is 411, the text segment is again pure, write-protected, and shared, and
moreover instruction and data space are separated; the text and data segment both begin at
location 0. See the 11/70 handbook for restrictions which apply to this situation. The magic
number 405 indicates an overlay file. On execution, the current processes’ text segment is
replaced with the text segment from this module.

The stack will occupy the highest possible locations in the core image: from 177776(8) and
growing downward. The stack is automatically extended as required. The data segment is only
extended as requested by the break(2) system call.

The start of the text segment in the file is 20(8); the start of the data segment is 20+S, (the
size of the text) the start of the relocation information is 20+S,+S,; the start of the symbol
table is 20+2(S,+S,) if the relocation information is present, 20+S +S, if not.

The symbol table consists of 6-word entries. The first four words contain the ASCII name of
the symbol, null-padded(n_name). The next byte is a flag indicating the type of
symbol(n_type).

The next byte is a flag indicating the switchable text location for UNIX with switchable text
areas.

The last word of a symbol table entry contains the value of the symbol.

If the symbol’s type is undefined external, and the value field is non-zero, the symbol is inter-
preted by the loader /d as the name of a common region whose size is indicated by the value of
the symbol.

The value of a word in the text or data portions which is not a reference to an undefined exter-
nal symbol is exactly that value which will appear in core when the file is executed. If a word
in the text or data portion involves a reference to an undefined external symbol, as indicated by
the relocation bits for that word, then the value of the word as stored in the file is an offset
from the associated external symbol. When the file is processed by the link editor and the
external symbol becomes defined, the value of the symbol will be added into the word in the
file.

If relocation information is present, it amounts to one word per word of program text or initial-
ized data. There is no relocation information if the ‘suppress relocation’ flag in the header is
on.

Bits 3-1 of a relocation word indicate the segment referred to by the text or data word associ-
ated with the relocation word:

00 indicates the reference is absolute

02 indicates the reference is to the text segment

04 indicates the reference is to initialized data

06 indicates the reference is to bss (uninitialized data)

10 indicates the reference is to an undefined external symbol.

November 4, 1980 Page 2 November 4, 1980

. A.OUT(S) CB—UNIX 23 A.OUT(S)

Bit 0 of the relocation word indicates if on that the reference is relative to the pc (e.g. ‘clr x°);
if off, that the reference is to the actual symbol {e.g., ‘clr *$x’).

The remainder of the relocation word (bits 15-4) contains a symbol number in the case of
external references, and is unused otherwise. The first symbol is numbered O, the second 1,

etc.

The system environment stamp (see stamp(1)) determines which of several possible interpreta-
tions the operating system will give to system calls from the executing process.

SEE ALSO
as(1), 1d(1), nm(1), stamp(1), strip(1)

November 4, 1980 Page 3 November 4, 1980

