RPG(6L) SCCs September 28 13879 RPG(6L)

NAME
rpg - Report Generator

SYNOPSIS
rpg <file>

<file> identifies the file containing the rpg source program to
be executed. Data is read from the standard input file and the
report is sent to the standard output file.

DESCRIPTION
RPG interprets the commands contained in the input file to pro-
duce reports. Input data on the standard input file is expected
to be in the form of messages.

DEF INITIONS
Constant - octal, decimal, or hexidecimal integers (octal in-
tegers always begin with zero).

Expression - any statement contained within parenthesis. tate-
ments consist of logical and arithmetic operation on constants,
and bits (extracted from words or fields).

Field - string of ASCII characters delimited by spaces (040},
tabs (011), or newlines (012). Multiple occurrences of spaces Or
tabs are treated as a single occurrence.

Line - string of ASCII characters terminated with & newline char-
acter (012).

Message - string of ASCII characters delimited by an End-cf-Text
character (003).

Word - a string of any ASCII characters on a single line. A word
may include spaces and/or tabs.

RESTRICTIONS .
In writing RPG programs it has been found to be convenient to de-
fine an administrator program whose function is to decide gen-
erally which application RPG programs shall run. The existence of
this administrator is maintained through protocol agreement among
RPG programmers. There are therefore a few conventions the RPG
application programmer should follow. They are:

1o The assignment of the variable name '%' should be res-
tricted to the administrator program. In the expansion
environment, 'S is defined to be equal to
"/office/<office name>".

2a The ability to read intc buffer 4 (possible only with
the *t command) should be restricted to the administra-
tor program.

RPG(6L) sccs September 28 1979 RPG(6L)

o In general the assignment of variable names '0O' through
'9' should be restricted. These variables are defined
by the RPG interpreter to equal the input arguments
when RPG is invoked. For instance, argument '3' can be
referenced as variable '3' in the program.

4. Registers 0 through 32 are currently available for use
by the application programmer. However, in the expan-
sion environment, the assignment of registers 20
through 29 1is reserved for the administrator program.
Also the assignment of registers 30, 31, and 32 is
reserved for the RPG interpreter. Registers 30, 31, and
32 may be used to determine the number of characters
read, whether the message overflcwed the buffer, and
the numpber of lines read, respectively.

5. File descriptors range from 0 through 9. However, file
descriptors 0, 1, and 2 are defined as standard input,
standard output, and standard error output, respective-

ly.
OPERATORS
The following operators are in order of precedence:
*, / multiply, integer divide
vy = add, subtract
>, <, = arithmetic comparison
& logical AND
logical OR

05 - unary NOT, unary MINUS

Caution should be exercised when doing a logical AND of commands
that return wvalues other than =zero and one. Problems can be
avoided by following each command with ">0%", so that zeroes and
ones will be ANDed i.e. (*xd0,a,0,0;:;>0 & *d0,b,1,1;>0) will AND
the two *d commands based upon their success in defining the
fields rather than ANDing the number of characters in each field
which could be different.

A NOT operator performed on & command returning a value dJgreater
than one will be zero. If a command returns a zero, a NOT opera-
tor will result in a value of one.

MISCELLANECUS
Labels are single ASCII characters preceded by a colon i.e. :z,

:a, :1. Labels are used by the x> and *< commands and may appear
anywhere outside a command.

RPG(6L) SCCS September 28 1979 RPG(6L)

The meaning of special ASCII characters can be escaped in the =*p
command by preceding them with x. Hence, *; x(x) and »* will
allow the ; () and * to be printed, respectively.

COMMANDS
RPG commands are of the form:

*a argl,arg2,...,argn;

where 'x' indicates the start of a command and 'a' 1is an alpha
character denoting the command. In the case where there is more
than one argument to a command, commas are used to separate them.
A semicolon is used to terminate or close a command. If a&a com-
mand requires no argquments the semicolon may be omitted, (*e and
*xn). Those arguments enclosed in brackets are optional and may
be omitted. However, lack of an optional argument results in a
default value.

In the following command descriptions, n's denote numeric charac-
ters or expressions, and a's denote any alpha character or non-
alphanumeric character, except where used as commands (*a, =n).
Also, the space character immediately following the command is
for clarity only and should not be included during programming.

xa [0],a1,a2,a3;

Concatenate strings - 'al' is a variable to be defined.
It may be identical to either 'a2' or 'a3'. The new
variable defined is the concatenated string of 'a2a3'.
'a2' and 'a3' may be either variables previously de-
fined or ASCII strings delimited by double quotes. Any
number of strings may be defined as long as the com-
bined total length of all strings defined is less than
or equal to 100 characters in length. If the adminis-
trator is to define the variable '%' with this command,
it should be the first variable so defined. A "1" is
returned if the string is successfully concatenated and
a "O" is returned if concatenation failed.

*a 1;
Clear user portion of concatenate buffer - in the event
that the Dbuffer area allocated to concatenate strings
is filled, this command will clear the buffer of all
user defined variables. If the variable '%' is used it
is left untouched.

*xa 2;

Clear entire concatenate buffer - this usage, similar
to above will clear the buffer area allocated to con-
catenate strings. The difference is that the entire
buffer is cleared, including the variable '%'. Its use

RPG(6L)

*a

*a

*a

*a

3,al

4,al

5,al1

SCcs September 28 1979 RPG(6L)

should be restricted to the program administrator.

Get process ID - the variable 'al' will be defined
equal to the character string representation of the
current proccess ID. A "1" is returned for success and
a "0O" is returned for failure.

Unlink file - the file whose full path name is speci-
fied by the wvariable 'al' is unlinked. A "1" is re-
turned on success and a "0" is returned on failure.

Close file - the file whose full path name is specified
by the variable 'al' is closed. A "1" is returned on
success and a "0" is returned on failure.

6,al,az2,a3,ni,a4;

Error message generation - this command prints an error
message on the user's standard error output device
(file descriptor 2). 'al' is a two-character string as-
sociated with an error message. One of the following
should be used: "7?F" error in format, "7D" error in
data, "“7?7A" error in action verb, "?7I" error in keyword
field, "NG" no good, or "NA"™ not available/applicable.
'‘az' is a priority of action string. It should contain
two blanks "™ " except when the error represents some
soft~-ware detected system problem that may require im-
mediate attention. In this case the string should con-
tain one blank and an asterisk " =" to indicate a minor
problem or two asterisks "xx" to indicate a major prob-
lem. 'a3'is a three-character code (typed in capitcl
letters) which identifies the feature in which the er-
rer 1is detected. For RPG programs this string usually
contains "RPG". 'nil' is a three-character decimal
sequential number which identifies the error message.
Its range of wvalues is 100 to 999. 'a4' is a message
string of fifty characters or less which describes the
error. This message should be typed in capitol letters.
'a4' may also be a variable. Note that all arguments
must be contained in double gquotes. The SCCS Output
Manual should be referenced for current errcr messages
which may be appropriate before a new message is creat-
ed.

RPG(6L)

sccs September 28 1979 RPG(6L)

*b al,nl,n2;

*C dd...dj

Octal bit extraction = 'al' is a previously defined
word or field. This word or field must consist of octal
numbers (0, 1, 2, 3, 4, 5, 6, 7). Each octal number
represents three binary bits. 'nl' represents the left-
most bit to be extracted and 'n2' represents the right-
most Dbit. Bits are counted from the rightmost bit of
the predefined word or field to the leftmost, beginning
with zerd®. The bits between 'nl' and 'n2' are returned
as a right adjusted binary number. 'nl minus nz2' must
be less than 15.

Comment - the characters between *c and ; are ignored,
allowing the programmer to insert descriptions of the
code.

*xd ni,al,n2,n3;

Define field - 'al' is the variable to be defined. 'ni'
is the number of the message buffer into which the mes-
sage has been previously read. 'n2' is the 1line on
which the field is found and 'n3' is the number of the
field. Lines are counted from top to bottom Dbeginning
with zero and fields are counted from left to right be-
ginning with zero. The number of characters defined is
returned if the define i1s successful and a "0O" if the
define failed.

*D nl,al,n2,n3;

*xe

Define field and delete leading zeroes - the properties
of this command are identical to those of *d except
that the variable will represent the field as though no
leading zeroes were present. If the field is all
zeroes, then the value of the variable 1is a single
zero, '0'.

Exit - the program is terminated. The *e command does
not require a semicolon, but may have one.

*f nl,al,az2;

Open file to read or write - 'nl' is a file descriptor
which is associated with the file 'a2'. 'a2' is a vari-
able containing the full path name of the file, other-
wise the full path name of the file is given in double
quotes. The file 'a2' is opened as described by 'al'.
If a previous file with this number was opened, it is

RPG(6L)

*g nl[IO];

*g nil,l;

sces September 28 1979 RPG(6L)

first closed automatically. If 'al' is "r" the file is
opened to read, if "w" to write. The "we" option also
opens the file to write, but an End-of-Text character
(003) 1is placed after every message so the resulting
file can be read as a message file. Note: when speci-
fying the argument 'al', double quotes should not Dbe
used. They are used here for clarity only.

Mark current position - the current block and displace-
ment for the file descriptor 'nl' is saved. Only one
block and displacement may be saved at any one time.
The marked positicn may be restored as described in 'xg
ni,1;' below.

Restore marked position - the saved block and displace-
ment for the file descriptor 'nl' is restored. 'ni'
must have been marked as described in ‘'xg ni[,0];'
above.

*g nl,2,ali,az;

Open file to read or write - 'nl' is a file descriptor
which is associated with the file 'a2'. 'a2' is a vari-
able containing the full path name of the file, other-
wise the full path name of the file is given in double
quotes. The file 'a2' is opened as described by 'al’.
If a previous file with this number was opened, it is
first closed automatically. If 'al' is "r" the file is
opened to read, if "w" to write. The "we" option also
opens the file to write, but an End-of-Text character
(003) is placed after every message so the resulting
file can be read as a message file. A "1" is returned
if the open is successful and a "0" is returned on
failure. Note: when specifying the argument ‘al', dou-
ble quotes should not be used. They are used here for
clarity only.

*h ali,nl,n2;

Hexidecimal bit extraction - 'al' is a previously de-
fined word or field. This word or field must consist
of No. 101 ESS hexidecimal numbers (-, 1, 2, 3, 4, §5,
6, 7, 8 9, 0, ¥, 8, C, T, R). Each No. 101 ESS hexi-
decimal number represents four binary bits. '‘nl!
represents the leftmost bit to be extracted and 'n2'
represents the rightmost bit. Bits are counted from the
rightmost bit of the predefined word or field to the
leftmost, beginning with zerc. The bits Dbetween 'ni’
and 'n2' are returned as a right adjusted binary

RPG(6L)

*1 nil;

*i nl,n2;

*1 nl,n2;

ScCs September 28 1979 RPG(6L)

number. 'nl minus n2' must be less than 15.

Increment register - 'ni' is the name of a register
whose value is incremented Dy one.

Set register - 'nl' is the name of a register whose
value is set to the value if 'n2'. If 'n2' is a nega-
tive number, it should be inclosed in parenthesis.

Log (output) message buffer - 'nl' is the number of the
message buffer whose contents are written to file
descriptor 'n2'. Everything is written up to an End-
of-Text character (003) or 512 bytes, whichever occurs
first. A "1" is returned on success and & "O" on
failure. An error will result if 'n2' is not open for
writing (see *f and =*g) or if 'nl' is empty.

*m base,al,nl;

*Nn

*O al;

*p aa...a;

Integer to ASCII conversion - 'nl' is an expression to
be converted into an ASCII string representing digits
of the ‘'base' chosen. 'base' must equal "b" for binary,
"3dw for decimal, or "o" for octal. The result is stored
in variable 'al'. Only one converted string may be
stored at any one time. Thus each time the command is
invoked, any previous result will Dbe overwritten.
Note: when specifying the argument 'base', double
guotes should not be used. They are used here for clar-
ity only.

Newline - outputs a new line character (012). The =*n
command does not reguire a semicolon, but may have cne.

Output word or field - 'al' is & previocusly defined
word or field that is output as an ASCII string.

Print string - 'aa...a' is a string of characters. All
output is directed to the standard output, file
descriptor 1.

The string 'aa...a' may include:

RPG(6L)

SCCS September 28 1979 RPG(6L)

1. = commands - this allows *p to be used as a
grouping command.

2o Expressions - all expressions are evaluated
and output as decimal.

e ASCII characters - these are printed direct-
ly.

4. Special ASCII characters preceded by '=!
which escapes the regular meaning. Hence, x;
x(*x) and *x will allow the ; () and * to be
printed, respectively.

*xr ni[,n2);

xS al;

Read message into buffer - 'nl' is the number of the
message buffer into which the next message is read,
where 'nl' ranges in value from 0 through 3. Buffer 0
through 3 can each hold a maximum of 512 bytes. The
read will continue until an End-of-Text character (003)
is read or the last complete line of the message prior
to the 512 byte boundary. Registers 30, 31, and 32 may
be used to determine the number of characters read,
whether the message overflowed the Dbuffer, and the
number of lines read, respectively. Subsequent reads
may be performed to read the remainder of a message
into a buffer. The optional value 'n2', if given, is
taken to be the file descriptor, otherwise zero is as-
sumed. If other than file descriptor 0 is used as in-
put, the corresponding file must be open for reading
(see xf and *xg). A "1" is returned if the message is
successfully read into a buffer and a "0" is returned
on failure.

Switch to another file of commands - 'al' is a variable
containing the full path name of the file from which
the next program statement is taken, otherwise the full
path name is given in double gquotes.

*t ni,n2,0,ail,a2];

Lexical table search - 'nl' specifies the buffer into
which the found record is to be read minus the keywords
on which the search is performed. It is permitted for
this command to specify a value of "4" for 'ni'. This
is a special buffer only 80 characters in length. 'n2°'
specifies the RPG file descriptor of the file tc be
searched as opened for reading (see *f and =g). The
table 1is assumed to be lexically ordered with fields
delimited by spaces (040) and records delimited by the

RPG(6L)

SCCSs September 28 1979 RPG(6L)

newline character (012). A binary search of the table
is performed in this case. 'al' and 'al' represent the
keywords on which the binary search is to be performed
and must match the first two fields of a record. Key-
word 'a2' is optional. If a record is found a "1" is
returned. If not a "O" is returned.

=t nil,n2,1,n3;

Index table search - 'nl' specifies the Dbuffer into
which the found record is to be read. It is permitted
for this command to specify a value of "4" for 'nl’'.
This is a special buffer only 80 characters in length.
'n2' specifies the RPG file descriptor of the file to
pe searched as opened for reading (see *f and *g). The
table is assumed to represent an indexed table with
records of egqual length. 'n3' specifies the index into
the table to be searched. If a record is found a "1" 1is
returned. If not a "Q" is returned.

=t nl,n2,2,ai;

Range table search - 'ni' specifies the Dbuffer into
which the found record is to be read. It is permitted
for this command to specify a value of "4" for 'nl'.
This is a special buffer only 80 characters in length.
'‘n2' specifies the RPG file descriptor of the file to
be searched as opened for reading (see *f and =g). 'al’
is the keyword on which the range check is performed. A
record whose first entry is less than or equal to the
keyword 'al' and whose second entry is greater than or
equal to the keyword 'al' is retrieved and stored in
buffer 'nl'. The table must be sorted in ascending ord-
er on the first field. Note that the entire record in-
cludig keywords are placed in buffer 'nl’'.

*w nl,al,n2,n3,n4;

Define word - 'nl' is the number of the message buffer
into which the message has been previously read. 'al’
is the variable to be defined. ‘n2' is the line on
which the word is found. Lines are counted from top to
bottom beginning with zero. 'n3' is the leftmost char-
acter of the word and 'nm4' is the rightmost character.
The characters are counted from the leftmost character
of the 1line t¢ the rightmost, beginning with Zzero.
This command returns the value "1" if the word is suc-
cessfully defined or "O" if it cannot be defined. Cau-
tion: the End-of-Text character (003) which delimits
messages is stripped by RPG and should not be counted
as a character when defining a word on the same line.

= .= . =

RPG(6L)

x*xX al,az;

sces September 28 1979 RPG(6L)

Character string comparison = 'al' is a previously de-
fined word or field which is compared to the previously
defined word or field ‘'ta2'. 'a2' may also be a string
contained in double quotes. 'al' is permitted to have
more characters than 'a2' but not vice-versa. Only the
number of characters in 'a2' will be compared with 'al'
beginning with the left-most character of 'ai'. a "1"
is returned if the strings match, "O" if they do not.

Exact character string comparison - 'al' is a previous-
ly defined word or field which is compared to the pre-
viously defined word or field 'a2'. 'a2' may also be a
string contained in double quotes. A "1"™ will be re-
turned if ’'al' and 'a2' match identically, i.e. same
length, same characters, same order. A "O" will be re-
turned if 'al' and 'a2' do not match identically.

xy al,az2,ni,nz2;

*Z nl;

Define subset of word or field - 'al' is the variable
to Dbe defined which may be equal to 'a2'. 'a2' is a
previously defined variable. 'nl' specifies the left-
most character to be extracted and 'n2' specifies the
rightmost character. The characters are counted from
the rightmost character of the predefined word or field
to the leftmost, beginning with zero. 'al' is defined
to Dbe the string specified by 'nli' through 'n2' of
'a2'. If this string is larger than 'a2', then 'al’
will be defined as 'a2'. A "1" is returned if the word
is successfully defined and a "0O" is returned on
failure.

Zero register - 'nl' is the name of a register which is
set to zero.

*x? (expression) command

If statement - if '(expression)' is non-zero, execute
‘command', otherwise, skip this command. The termina-
tor of the command is also the terminator of the if
statement. Multiple commands may follow the 1f state-
ment if the %!] command is utilized.

x! command 1,command 2,...,command n]

Grouping - allows multiple commands to be handled as a
single command following an if statement. If these com-
mands are executed, they are executed only once. Ncte:
A *>, *<, cr *s command cannot be used within a =x!]

-..lo_

RPG(6L)

*>

*<

sSccs September 28 1979 RPG(6L)

command. Also, its terminator is a right square brack-
et.

(expression),command 1,...,command n]

al,az;

While statement - the list of commands is executed as
long as '(exXpression)' is non-zero. Note: A x>, =<, Or
*s command cannot be used within a *!(exp)] statement.
Also, its terminator is a right square bracket.

Forward goto - jump forward to label 'a’. Label names
may be 1longer than one character, but only the first
character is significant.

Backward goto - return to the beginning of the program,
then Jjump forward to 1label 'a'. Label names may be
longer than one character, but only the first character
is significant.

Assignment of word or field - 'al' is a previously de-
fined word or field whose contents are set equal to
word or field 'a2'. 'a2' may be string contained in
double guotes. Caution should be exercised when 'al’
and 'a2' are of unequal length. The entire contents of
'32' are written into the buffer on which 'al' is de-
fined, but the length of 'al' remains unchanged. This
means two things: if 'a2' is shorter than 'al’', 'al’
will contain all of r'a2' (left adjusted) and the
remaining portion of its previous value. If 'aZ' is
longer than 'al', 'al' will contain only the left-most
portion of 'a2' that it can hold.

=$ no,ai,nl/.../am,nm;

Initialize and allocate space in a buffer - buffer 'no'
is initialized with space characters (040). Then a tem-
plate is created in the buffer by defining the name and
length of each variable. For instance, variable 'al’
would have a length of 'ni' characters. Subsequent
words are defined accordingly. Note that the contents
of the buffer is still space characters (040). Data may
be placed into each variable in buffer 'nO' via the ==
command. All data entered is left adjusted.

—ll....

RPG(6L) sces September 28 1979 RPG(6L)

DIAGNOSTICS

RPG provides two methods of invoking a trace mechanism so that the
flow of the program may be followed. One method is by means of an ar-
gument, i.e. "rpg <file> -1" or "rpg <file> =-2".

=3l Prints a message each time a goto is executed.
=% Prints a message each time any *» command is encountered.

When either argument is used, trace is invoked for the entire duration
of the program, including any programs given control by means of the
xs command.

The second method allows trace to be turned on and off in 1line with
the code via an * command. This allows a particular portion of code to
be examined without decing a trace on the entire program. Also, two
commands (identical) are available that will cause a core image to be
created which can be examined with the debugger.

x'0; Causes a core image to be created.

x'1; Turn on trace. This causes messages to be printed each time
an *x command is encountered, the same as the -2 option
above.

x'2: Turn off trace.
x'3; Identical to the ='Q command.

ERROR MESSAGES
In the following error messages <file> is the program in which the er-
ror was detected.

RPG 100 CANNOT SWITCH MAIN REPORT FILE. PROGRAM: <file>.

The system call to open the file specified as the main re-
port file failed.

RPG 101 SYS CALL TELL FAILED. PROGRAM: <file>.
The system call TELL on the standard input has failed.

RPG 102 SYS CALL STAT FAILED. PROGRAM: <file>.
The system call STAT on either the standard input or the
file /dev/logdev has failed.

RPG 103 READ ERROR. PROGRAM: <file>.

In executing the »r command, one of the system calls READ or
SEEK has failed.

RPG 104 EQF. PROGRAM: <file>.
RPG detected an end of file without enccuntering an *e com-
mand.

RPG 105 'I' INDEX OUT OF RANGE. PROGRAM: <file>.

RPG(6L)

RPG

RPG

RPG

RPG

RPG

RPG

RPG

RPG

RPG

RPG

RPG

RPG

BUGS
RPG is a

sccs September 28 1879 RPG(6L)

The index specified for an I register is outside the allow-
able range.

106 ILLEGAL JMP. PROGRAM: <file>. -
An attempt was made to execute an illegal jump statement.

107 CANNOT SWITCH FILE <file a>. PROGRAM: <file>.
An error has occurred in attempting to switch control to
ancther file of commands, <file a>.

108 UNDEFINED VARIABLE. PROGRAM: <file>.
An attempt was made to evaluate an undefined variable.

108 ERROR IN BIT CONVERSION. PROGRAM: <file>.
In attempting to convert an octal or hexidecimal character
string to a binary number, an error occurred.

110 BUFFER NUMBER OUT OF RANGE. PROGRAM: <file>.
A value supplied as an argument to a function was outside an
allowable range of values for message buffers.

111 WRITE ERROR. PROGRAM: <file>.
In attempting to write a message buffer to a file, an error
occurred.

112 FILE OPEN ERROR. PROGRAM: <file>.
In attempting to open a file, an error occurred.

SISINS TOO MANY CHARACTERS. PROGRAM: <file>.
In executing the *$ command, one of the arguments encoun-
tered was too large or else there were too many arguments
supplied.

114 INVALID OPERATOR. PROGRAM: <file>.
In evaluating an expression, the interpreter has detected an
invalid operator.

115 INVALID OPERAND. PROGRAM: <file>.

While evaluating an expression, the program has detected an
invalid operand.
116 CHL # OUT OF RANGE. PROGRAM: <file>.

The argument to the =*t command specifying an index into the
channel file was out of range.

LIy BAD SCCERR CALL. PROGRAM: <file>.
In executing an *aé command, an error occurred.

bug.

_13..

