REGEXP(7)

NAME

CB—-UNIX 2.1 REGEXP (7)

regexp — regular expression compile and match routines

SYNOPSIS

#define INIT <declarations>

#define GETC() <getc code>

#define PEEKC() <peekc code>

#define UNGETC(c) <ungetc code>
#define RETURN (pointer) <return code>
#define ERROR (val) <error code>

#include <regexp.h>

char scompile(instring, expbuf, endbuf, eof)
char sinstring, =expbuf, =endbuf;

int step(string, expbuf)
char sstring, *expbuf;

DESCRIPTION

This page describes general purpose regular expression matching routines in the form of ed(1),
defined in /usr/include/regexp.h. Programs such as ed(1), sed(1), grep(1), bs(1), expr(1),
etc., which perform regular expression matching use this source file. In this way, only this file
need be changed to maintain regular expression compatibility.

The interface to this file is unpleasantly complex. Programs that include this file must have the
following five macros declared before the ‘‘#include <regexp.h>’’ statement. These macros
are used by the compile routine.

GETC()

PEEKC()

UNGETC(¢)

RETURN (pointer)

ERROR (va/)

Page 1 -

Return the value of the next character in the regular expression pattern.
Successive calls to GETC() should return successive characters of the
regular expression.

Return the next character in the regular expression. Successive calls to
PEEKC() should return the same character (which should also be the
next character returned by GETC()).

Cause the argument ¢ to be returned by the next call to GETC() (and
PEEKC()). No more that one character of pushback is ever needed and
this character is guaranteed to be the last character read by GETC(). The
value of the macro UNGETC(c) is always ignored.

This macro is used on normal exit of the compile routine. The value of
the argument pointer is a pointer to the character after the last character
of the compiled regular expression. This is useful to programs which
have memory allocation to manage.

This is the abnormal return from the compile routine. The argument va/
is an error number (see table below for meanings). This call should
never return.

November 1979

REGEXP(7) CB-UNIX 2.1 REGEXP(7)

ERROR MEANING
11 Range endpoint too large.
16 Bad number.
25 “\digit™ out of range.
36 Illegal or missing delimiter.
41 No remembered search string.
42 \('\) imbalance.
43 Too many \ (.
44 More than 2 numbers given in \{ \}.
45 } expected after \.
46 First number exceeds second in \{ \}.
49 [| imbalance.
50 Regular expression overflow.

The syntax of the compife routine is as follows:
compile (instring, expbuf, endbuf, eof)

The first parameter “‘instring’’ is never used explicitly by the compile routine but is useful for
programs that pass down different pointers to input characters. It is sometimes used in the INIT
declaration (see below). Programs which call functions to input characters or have characters in
an external array can pass down a value of ((char *) 0) for this parameter.

The next parameter ‘““expbuf’’ is a character pointer. [t points to the place where the compiled
regular expression wiil be placed.

The parameter “‘endbuf’ is one more that the highest address that the compiled regular expres-
sion may be placed. If the compiled expression cannot fit in (endbuf —expbuf) bytes. a call to
ERROR(50) is made.

The parameter ‘“‘eof” is the character which marks the end of the regular expression. For
example, in ed(1), this character is usually a /.

Each programs that includes this file must have a #define statement for INIT. This definition
will be placed right after the declaration for the function compile and the opening curly brace
({). It is used for dependent declarations and initializations. Most often it is used to set a
register variable to point the beginning of the regular expression so that this register variable
can be used in the declarations for GETC(), PEE() and UNGETC(). Otherwise it can be used

to declare external variables that might be used by GETC(), PEEKC() and UNGETC(). See
the example below of the declarations taken from grep(1).

There are other functions in this file which perform actual regular expression matching, one of
which is the function siep. The call to swep is as follows:

step(string, expbuf)

The first parameter to swep is a pointer to a string of characters to be checked for a match. This
string should be nuil terminated.

The second parameter ‘“‘expbuf’’ is the compiled regular expression which was obtained by a
call of the function compile.

The function swep returns one, if the given string matches the regular expression, and zero if
the expressions do not match. If there is a match, two external character pointers are set as a
side effect to the call to srep. The variable set in step is “‘locl™. This is a pointer to the first
character that matched the reguiar expression. The variable “loc2’’, which is set by the func-
tion advance, points the character after the last character that matches the regular expression.
Thus if the regular expression matches the entire line. locl will point to the first character of

November 1979 Page 2 - ., «

REGEXP(7) CB—UNIX 2.1 REGEXP (7)

“‘string”” and *‘loc2”" will point to the null at the end of *‘string™.

Step uses the external variable ‘‘circf”’ which is set by compile if the regular expression begins
with *. If this is set then siep will only try to match the regular expression to the beginning of
the string. If more than one regular expression is to be compiled before the the first is exe-
cuted the value of “‘circf”’ should be saved for each compiled expression and *‘circf”” should be
set to that saved value before each call to srep.

The function advance is called from step with the same arguments as siep. The purpose of siep
is to step through the ‘‘string’’ argument and call advance until advance returns a one indicating
a match or until the end of ‘‘string’’ is reached. If one wants to constrain ‘‘string’ to the
beginning of the line in all cases, siep need not be called, simply call advance.

When advance encounters a * or \{ \} sequence in the regular expression it will advance its
pointer to the string to be matched as far as possible and will recursively call itself trying to
match the rest of the string to the rest of the regular expression. As long as there is no match,
advance will back up along the string until it finds a match or reaches the point in the string
that initially matched the * or \{ \}. It is sometimes desirable to stop this backing up before
the initial point in the string is reached. If the external character pointer “‘locs’ is equal to the
point in the string at sometime during the backing up process, advance will break out of the
loop that backs up and will return zero. This is used be ed(1) and sed(1) for substitutions done
globally (not just the first occurrence, but the whole line) so, for example, expressions like
**s/y=*//g’" do not loop forever.

The routines ecmp and gewrange are trivial and are called by the routines previously mentioned.

EXAMPLES

FILES

The following is an example of how the regular expression macros and calls look from grep(1):
#define INIT register char *sp = instring, /* First arg points to RE string */
#define GETC() (xsp+ +)

#define PEEKC() (*sp)

#define UNGETC(¢) (~—sp)
#define RETURN(c¢) return;
#define ERROR(¢) regerr()

#include <regexp.h>
compile(=argv, expbuf, &epruf[ESIZE], \0);

.if(step(linebuf, expbuf))
succeed();

/usr/include/regexp.h

SEE ALSO

BUGS

Page 3

ed(1), grep(1), sed(1).

The handling of *‘circf™ is kludgy.

The routine ecmp is equivalent to the Standard 1/0 routine sirncmp and should be replaced by
that routine.

The actual code is probably easier to understand than this manual page.

November 1979

