T RN T

TR | T

A e -

| i it o a g LS s e

< OT NN (
1. INPUT MESSAGE FORMAT A L -5« CFTON /L’>

al_sceptor [-phw] <interceptee>

where the flags mean:
p -> Don't print the messages being received.
W => Don't send watch dogs on to the destination.
h =-> Hold the message until manually released.

Valid Intercepted Processes and Abbreviations are:

ad almdst
t1 ompr
az2 alz
mi mmtpars
& ac acme
ab almbld
tf trfde
d1 dataclerk

2. PURPOSE:

This command will intercept UNIX messages being sent to the
named process. It is assumed that the messages correspond to
the PIPE structure named in "/usr/include/alert.h". The
contents of the message are displayed and the message then
sent on to the destination process.

Options are available to eliminate watch dog messages and to
hold messages until manually released (by typing a new-line
char).

When a non-watchdog message is received, the screen is < e::ed,
the contents of the message header and corresponding mess::t
are displayed, and the program sleeps for 5 seconds. As wr
dogs are received, a message indicating reception is printeu, v
the screen is not cleared. A sequence number is added to each

. watchdog for convenience of viewing.

EXAMPLE:
al_sceptor
Wwill print help information for running the command.

al_sceptor ompr

will cause all messages being received by ompr
to be displayed.

al_sceptor -w almdst
will cause all non-watchdog messages to be sent
- to the almdst.

al sceptor -wh acme
- will cause all non-watchdog messages to be sent
to acme but each message received will only be
sent on to acme after al_sceptor receives any
new-line terminated input.

BUGS:

If the interceptee process is not running, al_sceptor will sit
in a loop and try =svery 10 seconds to arouse that process.
If the interceptee process should die while running al sceptor,

al_sceptor will again try every 10 seconds to talk to the
destination.

A delete will terminate al_sceptor.

Race conditions may occur while reading/setting process semaphores.
When al_sceptor is run, the process id and semaphore number of the
intercepted process is printed. When al sceptor is terminated, the
process id restored is also printed. If the process ids printad
on entrance and exit are not the same, you may have to kill the
intercepted process to restore sanity.

This procedure should rarely have to be used.

ALLOFC(1L) SCCs October 21, 13880 ALLOFC(1L)

NAME

allofe - update/upgrade utility program
SYNPOSIS

allofc [TYPE ...] [OPTION [ARG ...] ...] command ...
DESCRIPTION

The allofc utility program was created to simplify the
update/upgrade procedures. Allofc permits a sequence of UNIX
commands to be performed in some or all office and type direc-
tories. The sequence of commands must all be UNIX commands which
includes user programs, user shell files and SCCSH commands if
they can be executed as UNIX commands. The allofc command line
keywords (and arguments) are used to specify which commands to
perform and which office or type directories the commands are
performed in. These command line arguments and options are as
follows:

TYPE is a string on one or more two-digit SPCS type numbers
(e.g. "01" for No. 1 ESS; "01 02" or "0102" (the space is
optional) for No. 1 ESS and No. 2 ESS). If one or more
TYPEs are specified, then commands are executed only in
office (or type for "+t" option) directories correspond-
ing to these types. If no TYPE is specified, then com-
mands are executed in all office (or type) directories.

OPTION is an option of the form "+<option>" or "-<option>", pos-—
sibly requiring one or more arguments (ARG). For the
present the following <eoptions> are available:

+e <filename>
The existance of the file, <filename>, is checked for
before any commands are executed. If <filename> does
not exist, then no commands are executed (i.e., only
the directories in which <filename> exXists will have
commands executed in them).

+f all offices (or type) directories are finished despite
any errors which may occur. If an error does occur,
then allofc will report the error (including the
directory in which it occurred) and the next office
(or type) directory is tried. After completion the
number of errors is printed, but only if one or more
occurred.

+i All errors (abnormal terminations, sysfen errors,
etc.) which occur while executing commands are ignored
by allofc.

+sh <ccmmand>
Execute <command> using the shell and "-c¢" option
(i.e., "sh -¢ <command>). This is only useful if er-
rors from <ccmmand> are to be ignored.

ALLOFC(1L) SCCs October 21, 1980 ALLOFC(1L)

+t Use type directories ("/type??") instead of office
directories ("/office/<name>").

+u Append "/sccdev" to all directory names. This is used
when the allofc command is part of the update/upgrade
procedure.

-e <filename>
The exXxistance of the file, <filename>, is checked for
before any commands are executed. If <filename> ex-
ists, then no commands are executed (i.e., only the
directories in which <«filename> does not exist will
have commands executed in them.

command is a UNIX command, optionally with arguments. If argu-
ments are present the entire command must be enclosed in
quotes (so that it appears to allofc as one argument).
Allofc uses the execvp() subroutine described in see
exec(2) when it executes a command. The order in whnich
the commands appear in the allofc command line is the
order in which the commands will be eXecuted in a direc-
tory.

A1l "+e" options, "-e" options and TYPE specifications must be
satisfied before any commands are executed in a particular direc-
tory. For example:

allofc 0107 -e .thresh +e .type/analth.proto \
Ye¢p .type/analth.proto .thresh”

For the allofc command above ”“cp .type/amalth.proto .thresh” will
be executed only in No. 1 ESS (01) and No. 1A (07) office direc-
tories in which ".thresh" does not exist and in which
".type/analth.proto" does exist.

SEE ALSO
exec(2) sh(l) perror(3)

DIAGNOSTICS

The diagnostics produced by allofc are intended to be self expla-
natory. In some cases perror(;) is used.

If allofc detects an error it will normally terminate. The use
of the "+sh <command>" option will cause errors (non zero
'wait()’' values) which occur in <command> to be ignored by al-
lofc. The use of the "+i" opticon will cause errors in any of the
commands to be ignored.

ALLOFC(1L) SCCS October 21, 1980 ALLOFC(1L)

BUGS

Any command which starts with a digit ('0'-'9') is assumed to be
a "TYPE" specification, so do not start any commands with digits.
The correction of this bug would cause allofc to be unable to re-
port syntax errors in a "TYPE" specification because it would not
know which command line arguments were commands and which are
"TYPE" specifications.

Allofc is very slow!

ARCV(1L) SCCS September 16, 1975 ARCV(1L)

NAME
arcv - archive converter

SYNOPSIS
arcv afile [...]

DESCRIPTION
Arcv converts old-format archives into new-format archives. Arcv
will not affect any file other than an old-format archive (first
word contains 0177555). Appropriate comments are made while arcv
works.

FILES
/tmp/arc???? temporary

SEE ALSO

archive(5)

AUDPR(1L) SCCs October 9, 1878 AUDPR(1L)

NAME
audpr - Audit PR directory

SYNOPSIS
audpr [-aensvy] [alternate] name ...

DESCRIPTION
Audpr outputs the AU, GU, and PG files referenced by a given set

of source files. The set of source files is given as an argument
to audpr.

There are four ways, or modes, to express the arguments. Modes
1, 2, and 3 may be mixed as arguments; mode 4 arguments should
not be mixed with the others. They are:

Mode 1 - name is an update directory on /genupd or src. If srec is
specified, /gensrc/src is assumed. Audpr assumes that the
given directory contains pr directories. The set of source
files 4includes all source files within the pr directories.
An example of this mode is: audpr ull.

Mode 2 - name is an update directory on /genupd or src¢ followed
by a pr directory. The set of source files includes all
files within the given pr directory. An example of this
mode is: audpr ul0/pr-1ipl171.

Mode 3 - name is an update directory on /genupd or src followed
by a pr directory followed by a source file name. The set
of source files is the given scource file. An example of
this mode is: audpr src/pr-1pl137/mke02.c.

Mode 4 - name is a simple source file name, not a partial or full
path name. For example, make.C is okay, but pr-1pl37/make.c
is not. A mode 4 argument should not be mixed with argu-
ments of modes 1, 2 or 3. Other simple source files may Dbe
specified. This mode should only be used when one's current
directory is a pr directory within /gensrc/src cr an update
directory. Audpr will determine the pr directory and update
directory from the names of the current directory's parent
and grandparent. An example cf this mode is: audpr make.c.

Audpr "knows" which update directories exist on /genupd, their
sequence, and that /gensrc/src contains the latest "accepted"
source for all generics. It knows that the first in the sequence
of update directories (typically the 1lowest numbered update
directory) will be incorporated into /gensrc/src before any other
update directory. This means that a source file on an update
directory is a more recent copy than and will eventually
overwrite the corresponding older copy on /gensrc/src. Thus,

AUDPR(1L) SCCs October 9, 1878 AUDPR(1L)

when given an update directory as an argument, audpr will use the
latest copy of any data files residing on the update directory.
The data files audpr must read to generate its output are AU, GU,
and PG files.

As an example of how audpr examines update directories, assume
there are two update directories, Ul and U2. Ul is sequenced
first to be included into /gensrc/src. The process, audpr U2
will examine first U2 for data (ie., AU, GU and PG files) then Ul
and finally /gensrc/src. If there are copies of an AU file
residing on U2, Ul, and /gensrc/src, then audpr will prccess only
the copy on U2 (the latest copy), ignoring the other two. The
process, audpr Ul will examine Ul first for data and then
/gensrc/src. /gensrc/src is the last directory examined.

The flags available to audpr are:

a In its output, audpr normally abbreviates and combines the
generic names of which a source file is a member. This flag
inhibits this feature.

e Only errors are output. Error messages begin with an aster-
isk (*).

n A source file on an update directory but not on /gensrc/src
(or alternate if specified) is denoted with a (mew) message
indicator when this flag is specified.

s Changes the default last directory examined from /gensrc/src
to alternate. The alternate directory must be a full path-
name and need not be a source directory on gensrc. However,
audpr assumes it contains PR directories.

v causes audpr to verify the AU files it encounters in name.
Audpr will print an error message on file descriptor 2 if it
encounters an AU file satisfying one of the following:

1) The pident name in the NAME field differs from the name
of the AU file, minus the .au.

2) The DOC field of the AU file specifies a PR number dif-
ferent from the actual PR directory the AU file resides in.

L]

The pr name normally output prior teo processing a pr direc-
tory is inhibited. The pr name is output only while pro-
cessing an update directory.

AUDPR(1L) SCCs October 9, 1878 AUDPR(1L)

Audpr is designed to process efficiently pr directories with a
large gquantity of source files. As a result, the program may
seem to run very slowly while processing a single source file.

FILES
/tmp/audprrxxx

SEE ALSO
sort(1), au(sL), gu(sL)

DIAGNOSTICS
BUGS

AUEX(1L) SCCs December 16, 1977 AUEX(1L)

NAME

auex - execute command on source

SYNOPSIS

auex [-acou] file command-line

DESCRIPTION

Auex is a sophisticated program for sophisticated minds. In its
simplest form it can be thought of as a program which reads pg,
gu, and au files and executes a given command-line consisting of
a unix command and arguments. The pg, gu and au files read can
be specified as arguments via the use of special meaning Kkey-
words. The keywords which may be used and their special meaning
are:

Spr current pr number

Spe current pg file name

Sve version of the current gu file (assumes 2
charcaters)

Sgu current gu file name

Sau current au file name

$pr current pr number

Auex, when given a pg file as the file argument, will remember
the pg file name as the current pg file. The program then reads
the pg file for the gu files listed therein. Only the #PR sec-
tion 1is examined. Each gu file listed is processed one by one
and is remembered as the current gu file as it is processed. The
pr number of the gu file is also remembered as the current pr
number. Each gu file may be read for the au files listed within
sbigo Again, each au file, in turn, is remembered as the current
au file name. Finally, each au file may be read and each source
file therein remembered as the current source file name.

After all necessary readings are performed and the required spe-
cial keywords evaluated, auex will execute the command-line. The
actual execution is performed by executing the shell, sh (I), as
a child and sending the command-line to the shell via a pipe.

Variations of the above theme follows. If the command-line con-
tains no $src keyword, then no source file is processed. This
actually avoids the need to read the au file and as a result, the
program is faster because it does less work. Likewise, if no
$src and no $au keywords are present in the command-line then the
gu files are not read, saving more time. In short, auex reads
only those source control files (pg, gu, and au) which are neces-

sary to perform the keyword substitutions prior to executing the
command-line.

Auex may be used to process a gu file (and all au and source
files referenced by it) or an au file {and all source files
referenced by it) by specifying the gu or au file as the file ar-
gument. In such a case undefined keywords such as $pg would have

AUEX(1L) SCCS December 16, 1977 AUEX(1L)

a null value.

To process a pg file for the file argument, auex will chdir to
the current pr directory before executing the command-line. As
such, the program should be initially executed by a user whose
current directory contains all the required pr directories (eg.,
/gensrc/src). To process a gu (or au) file, the user should re-
side in the directory with the au files and source files refer-
enced by the gu file (or au file).

The flags available to auex:

-v inhibit verbose output. Auex will execute the shell with
the verbose option unless the -v option is specified.

-u do not sort files. Auex will sort the au files listed in
a gu file and the source files listed in an au file before
processing them unless the -u option is specified.

-¢ concatenate the source files listed in an au file into a
single 1long string; each file name is separated by a
blank. Backslash and newline characters are inserted
between every fourth file name to make the string more
readable by breaking it up into multi lines. The result-
ing string is used as the value for $srec. If the keyword
$src is not specified and the -c¢ option is on, then the au
files listed in a gu file are concatenated into one string
and used for the value of $au.

-a execute the command-line for all au files. Auex will nor-
mally not execute the command-line after processing an au
file if 1) the command-line contains $src¢ and 2) the au
file has no source files listed in the #PROGRAM UNITS and
#DATA UNITS sections. The -a option forces auex to exe-
cute the command-line for all au files, ignoring the above
exception.

The quantity of arguments in the executed command-line may be
large enough to exceed the shell's internal maximum number of ar-
guments. This problem is most probable when the -e¢ option is
specified. Hence, a mechanism is included in auex to execute a
command-line of at most 43 arguments when the -e¢ option is speci-
fied. Thus, for a single au file several executions of the
command-line may be required if the quantity of source files
listed in the au file is large. In the following example, the au
file, mine.au, has 50 source files:

auex °c mine.au ’ls $src’

and the ls command would be executed twice, the first time with
42 source files and the second time with 8 source files as the
value of $srec.

AUEX(1L) SCCs December 16, 1977 AUEX(1L)

Auex must remember a lot and unfortunately it may run out of

internal "memory". The only true solution is to recompile the
program with more memory.

The character $ has special meaning to auex. Besides interpreting
pg, Spr, Sgu, au, Ssrc as special keywords, $$ is mapped to $
and $<anything else> is mapped to <anything else>.

FILES
SEE ALSO
au(5L), gu(5L), pg(5L)

DIAGNOSTICS
Error messages are to file descriptor two.

BUGS
Auex should dynamically allocate memory

A line read from a pg/gu/au file of greater than 200 characters
may cause auex to drop a core

BATCH(1L) SCCsS August 17, 1981 BATCH(1L)

NAME
batch = run a process overnight

SYNQOPSIS
batch <filename>

DESCRIPTION
The "batch" command Iis wused to run large processes

= overnignt. The f£irst (and only) argument i{s the name

of a flle contalining a list of commands to be executed,
Batenh requests will be gueued and then executed at 8:00
P.M, every evening, Output will be placeé in the users
home directory 1in a file named "bat#g###t.s.0ut", The
starting and ending time for each batch process will be
recorded in the file *®batch,log" 1in the users home
directoery. 1In order to run "batch" the shell variables
"SHOME" and "SPATH" must be defined,

FILES

/usr/kbin/batch

/Zusr/bin/batchrun

/usr/lib/crontab

/etc/batchq

/etc/bat.lck

BUGS

If two people attempt to enter a batch request at
the same time = one user will get a "TRY AGAIN LATER" mes=
= sage.,

P A v S, T X e £ e o L PR BT A TR 8 e 5 Py A B A €N AT 5,1 VR ST 0 T, . T 25 TN S AT TSP Yo e s B e P A b T i 6300

BJ(1L) ' SCCSs March 15, 1972 BJ(1L)

NAME

pj - the game of black jack

SYNGPSIS

/usr/games/bj

DESCRIPTION

Bj is a serious attempt at simulating the dealer in the game cf
plack jack (or twenty-one) as might be found in Reno. The fol-
lowing rules apply:

The bet is $2 every hand.

A player ‘natural' (black jack) pays $3. A dealer natural 1loses
S2. Both dealer and player naturals is a ‘push' (no money ex-
change).

If the dealer has an ace up, the player is allowed to make an
“insurance' bet against the chance of a dealer natural. If this
bet is not taken, play resumes as normal. If the bet is taken,
it is a side bet where the player wins $2 if the dealer has a na-
tural and loses $1 if the dealer does not.

If the player is dealt two cards of the same value, he is allowed
to ‘“double'. He is allowed to play two hands, each with one of
these cards. (The bet is doubled also; $2 on each hand.)

If a dealt hand has a total of ten or eleven, the player may
‘double down'. He may double the bet ($2 to $4) and receive ex-
actly one more card on that hand.

Under normal play, the player may “hit' (draw a card) as long as
his total is not over twenty-one. If the player “busts' (goes
over twenty-one), the dealer wins the bet.

When the player ‘stands' (decides not to hit), the dealer hits
until he attains a total of seventeen or more. If the dealer
busts, the player wins the bet.

If both player and dealer stand, the one with the largest total
wins. A tie is a push.

The machine deals and keeps score. The following questions will
be asked at appropriate times. Each question is answered by y
followed by a new line for ‘yes', or just new line for ‘no'.

? (means, “‘do you want a hit?'')
Insurance?
Double down?

Every time the deck is shuffled, the dealer 50 states and the
‘action' (total bet) and ‘standing' (total won or lest) is print-
ed. To exit, hit the interrupt key (DEL) and the action and

BJ(1L) SCCs March 15, 1972

standing will be printed.

BUGS
Be careful of the random number generator.

BJ(1L)

CDB(1L) SCCs August 15, 1973 CDB(1L)

NAME !
cdb - C debugger
SYNOPSIS
cdb [core [a.out]]
DESCRIPTION
Cdb is a debugging program for use with C programs. It is by no
means completed, and this section is essentially only a place-
nolder for the actual description.
Even the present cdb has one useful feature: the command
$
will give a stack trace of the core image of a terminated C pro-
gram. The calls are listed in the order made; the actual argu-
ments to each routine are given in octal.
SEE ALSO
cc(1), C Reference Manual
BUGS

It has to be fixed to work with the new system.

CHGMSG(1L) SCCS April 14 1979 CHGMSG(1L)

NAME
chgmsg - modify SPCS output messages

SYNOPSIS
chgmsg [-sn] [-D] [-dn] [-en] [-N] [-oname] [-fx,y,2z] [-bx,y]
name

DESCRIPTION

Chgmsg is a utility to modify SPCS output messages. It's features
provide the ability to:

1. blank out n characters at the beginning of the original
SPCS output message, where n is a number between 1 and 6
which specifies the "sort code" offset relative to the
start of the original SPCS output message. The characters
to be blanked out normally contain the "alarm class" and
"time past hour" fields.

Ao use the system date and time as the starting information
to be placed in the message header for the first SPCS out-
put message. The date and time elements for the message
header of subsequent messages are incremented as necessary
to simulate messages arriving in chronological order. The
date and time elements are incremented as follows:

SECONDS Current value plus 30 seconds.
MINUTES Current value plus 5 minutes.
HOURS Current value plus 1 hour.
DAYS Current value plus 1 day.
MONTHS Current value plus 1 month.

S use the specified starting date and time, n, as the start-
ing information for the message header of the first SPCS
output message. The date and time elements for the mes-
sage header of subsequent messages are incremented as
described above in item 2. The permissible values of n

range from 0101000000 to 1231235559.

4. change the channel ID element of the message header for
all messages to n, where n is a number between 0 and 99.

5o change the message header delimiter fer all messages to
0212.

6. redirect the modified messages to a specified output file.
Vo change the contents cf a specified field to a new value.

If the 1length of the new field value is greater than the
length of the o0ld field value, then the new field value is

CHGMSG(1L) SCCs April 14 1979 CHGMSG(1L)

truncated to the length of the 0ld field and copied to the
message. When this happens, an appropriate error diagnos-
tic is generated.

8. change all bytes having the value X to the new value y.

Normal output from chgmsg consists of a summary report on the
standard error output device (file desc. 2) and a listing of all
modified messages on the standard output device (file desc. 1);
however, if the -o control option has been activated, then a
listing of all modified messages is sent to. the specified output
file. The summary report indicates how many messages have been
processed and prints a count of the number of times each request-
ed control option (discussed below) has been invoked.

Chgmsg accepts a number of contrcl options that specify how the
messages are to be changed. A description of each control option
follows:

-=sn Dblanks out the "alarm class"” and "time past hour" fields
in the SPCS output message, where n specifies the "sort
code" offset relative to the start of the original SPCS
output message.

-D uses the system date and time as the starting information
for the message header of the first message.

-dn uses the specified starting date and time for the message
header of the first message, where the range of values for
n is 0101000000 to 1231235959.

-e¢n uses the specified channel ID for all messages, where the
range of values for n is 00 to 99. ‘

-N changes the message header delimiter for all messages to
0212.

-oname redirects all modified messages to the specified out-
put file, name. Please note that the summary report is
not redirected.

-fx,y,Z changes the specified field to the specified value,
where X identifies the line (0 to GM_MAX_INS), y identi-
fies the field to be changed, and 2z specifies the new
value for the field. The value GM_MAX LNS is defined in
the header file, gtmhdr.h.

*bX,y changes all bytes having the specified "old" value,
X, to the specified "new" value, Y.

CHGMSG(1L) SCCs April 14 1979

CHGMSG(1L)

FILES
SEE ALSO
getfld(3L), gtmsg(3L)
DIAGNOSTICS
The following ocutput messages are routed to the user's standard
error output device (file descriptor= 2):
INVALID SORT CODE OFFSET. '-s' OPTION SKIPPED.
INVALID OPTION AND DATA FIELD, <opt>.
TIME OUT OF RANGE. '-d' OPTION SKIPPED.
DATE OUT OF RANGE. '-d' OPTION SKIPPED.
INVALID CHANNEL ID. '—-c' OPTION SKIPPED.
OPTION <opt> HAS BAD DATA FIELD.
LINE NUMBER GREATER THAN GM_MAX LNS. '-f' OPTION SKIPPED.
OLD VALUE OUT OF RANGE. '-b' OPTION SKIPPED.
NEW VALUE OUT OF RANGE. '-b' OPTION SKIPPED.

SKIPPING BAD OPTION, <opt>.
SYNTAX ERROR.

FILE <name> NONEXISTENT.

OLD FIELD SMALLER THAN NEW FIELD. NEW FIELD TRUNCATED TO <num>

BYTES.

CMPL(

1L) SCCS March 18, 1977 CMPL(1L)

NAME

cmpl - compare with large block size
SYNOPS 1S

empl [-1] filel file2
DESCRIPTION

FILES

Cmpl compares two files, byte by Dbyte.

Cmpl reads 10240 bytes per read. It will print out a check sum
of bpoth files whether an error has occurred or not. The check
sum is to file descriptor 1 and is NOT the same check sum as that
of the sum command. If a successful comparison has occurred, the
word, identical, will be printed and a O error code return
results. All other error code returns are 1. If the -1 option
is specified and the two files differ, the Dbyte address (in de-
cimal, starting with 0) and the differing bytes (in octal) are
printed. Output is to file descriptor 1.

Error outputs (e.g., cannot open) are to file descriptor 2.

SEE ALSO

cmp(1)

DIAGNOSTICS

BUGS

Two. First, the byte address is an unsigned integer and can
reach a maximum address of 65536. Second, the program will not
correctly compare two tapes with different record sizes even if
the sizes are less than to 10240.

CMPLIB(1L) sces May 17, 1977 CMPLIB(1L)

NAME

cmplib - compare two libraries

SYNOPSIS

emplib [-cp] 1libl 1ib2

DESCRIPTION

The two libraries are compared. The flags specify the types of
differences for which cmplib 1looks. In any case, a list of
differences between the two files is produced. The list consists
of a flag followed by the mode, owner id, group id, size of the
file, and a path name. The flags mean:

d (Delete) The named file is in 1libl, but not in 1ib2.

c (Change) The named file is in both 1libraries; however, a
difference between the files exists. If only the "p" option
is in effect, the detected difference is in protection (i.e.
mode, owner, or group). If only the "c" option is in effect
{which is the default option), then the difference is in
file content. Files have different content if the sizes are
different, or if they are not equivalent in a byte-forbyte
comparison. If Dboth options are in effect, the difference
is in protection or content.

a (Add) The named file exists in 1ib2, but does not exist in
libl.

If there are any file position differences, cmplib states that
fact. There is a file position difference if there exists a pair
of files such that: (i) both files exist in both libraries, and
(ii) the relative position of the two files is reversed in the
two lipraries. Moreover, return code 0 is yielded for identical
libraries, 1 for different libraries, and 2 for an inaccessible,
missing, or otherwise improper argument.

SEE ALSO

BUGS

archive(s)

-1 -

