PPMKPAT (1L) CB-UNIX (SCCS May 28, 1985) PPMKPAT(1L)

NAME
ppmkpat - make a pattern (pattern prepass, optimizer and com-
piler) '

SYNOPSIS
pprkpat [patname] [options] < patdefinition

DESCRIPTION
Ppmkpat creates (makes) common pattern package patterns from pat-
tern definitions and previously defined (predefined) patterns.

The following is a brief description of the command line options:

+d The next argument is a pattern directory to be added to the
directory search order.

+fo Create the pattern in object format.

+fs Create the pattern in standard format (this is the default
if +fo is not present).

+ipok OCutput to stderr the characters IP when ppmkpat starts and
the characters OK when ppmkpat finishes if the pattern was
created with no errors.

+p Perform only the prepass on the pattern definition and out-
put the results to stdout. This is the same as performing
the cc(1) command with the -E option.

“p The prepass is not performed on the pattern definition.

+r Restrict the definition to a subset ¢of the normally allowed
built-in patterns. This is used by the ppsccsgp(3L) sub-
routine to prevent the use of special Dbuilt-in patterns
(e.g., frepeat and eofrpt). The pattern compiler source
header files should be consulted for a list of the specific
built-in patterns which are affected.

+t Perform a translation by mapping lower case string charac-
ters into upper case characters. This translation is only
performed on string argument characters.

-s Do not include pattern source definition in the compiled
output. This can be used to save space, and increase secu-
rity.

+s Include pattern source definition in the compiled output

(done by default).

-D Similar to the -D option of cc(l1). May be used as -Dsymbol
or -Dsymbol=value, where value is a number, or an ungquoted

(last mod. 5/28/85) Page 1 (last mod. 5/28/85)

PPMKPAT (1L) CB-UNIX (sccs May 28, 1985) PPMKPAT (1L)

string. The #if - #endif, and #ifdef - #endif preprocessor
directives will recognize these -D options. Multiple -D
options are allowed. '

Ppmkpat reads the the pattern definition <patdefinition> from
standard input <stdin>. The predefined patterns are read from
files. The directories which are searched for the predefined
patterns are controlled by +d coptions in the command line. If no
+d options are specified then the following directory search
order is used:

/keypat builtin pattern/keyword/primitives directory
. present working directory

/compat common pattern directory

/usr/pat common user pattern directory

If one or more +d options are present in the command 1line, then
all of the default directories will be removed from the search
order except /keypat. The keyword directory (/keypat) may never
be removed from the search order.

The argument directly following a +d (+d <dirname>) is the path
name of a directory. This path name is added to the end of the
search order list.

The following example should explain the Gl +d option dis-
cussed above:

ppnkpat +d . +d /type0l/pat +d /compat +d /usr/pat

For the command line above the directory search order will be:

/keypat

. (present working directory)
/type01/pat

/compat

/usr/pat

Ppmkpat Creates a pattern with one of several formats.

Standard format - This form will be produced by default (i.e. no
+fo in the command line).

Object format - This form will be produced if the +feo option is
used in the command line.
Ppmkpat puts its compiled output (the pattern) into a file. If

patname 1is specified in the command line, then some characters
are appended to the end of patname and used as the name of the

(1ast mod. 5/28/85) Page 2 (last mod. 5/28/85)

PPMKPAT (1L) CB-UNIX (ScCCS May 28, 1985) PPMKPAT (1L)

pattern file. If patname is not specified, then a default name
(PPDFLTNAM as defined in the /usr/include/ppsubs.h header file)
is appended with two characters and used as the name of the file.
The characters which are appended to the file name are .p for
standard format and .e for object format.

The object formated file may be link loaded into an a.out file
like any other object file.

FILES
/keypat builtin pattern/keyword/primitives directory
/compat common pattern directory
/usr/pat common user pattern directory
temp.p default standard output pattern file
temp.o default object format (both types) pattern
file
/tmp/ppsrc<prid>.c temporary file for prepass; <prid> = process
iD
SEE ALSO

a.out(5), pattern(5L) ppdpat(1L)

DIAGNOSTICS

BUGS

(last

The diagnostics produced by ppmkpat are intended to be self
explanatory. Ppmkpat exits with value PPSYNTAXERR if one or more
errors were found in the definition.

Ppmkpat will accept a long (over 60 characters in length) pat-
name . However the object formats use the first seven characters
after the last / character in patname as the C symbol name of the
pattern (e.g. if patname = /compat/sctab012, then sctab01 will be
the symbol name of the pattern when it is part of an a.eut file).

mod. 5/28/85) Page 3 (last mod. 5/28/85)

PPMKPAT(1L) SCCS October 21, 1980 PPMKPAT(1L)

/

FILES /

/keypat builtin pattern/keyword/primitives directory

/compat common pattern directory

/usr/pat common user pattern director

temp.p default standard output pattern file

temp.o default object format (botd types) pattern

/tmp/ppsrc<prid>. temporary file for prepags; <prid> = process
SEE ALSO

a.out(5), pattern(sL)

DIAGNOSTICS
The diagnostics produced ppmkpat are intended to be self ex-

planatory. Ppmkpat exits\with valye PPSYNTAXERR if one or more
errors were found in the definition

BUGS
Ppmkpat will accept a long (over
name. However the object form use the first seven characters
after the last / character in as the C symbol name of the

pattern (e.g. if patmame = /c at/sotab012, then sctab0l will be
the SymbOl name of the patter

0 characters in 1length) pat-

PPVPAT(1L) SCCs August 21, 1980 PPVPAT(1L)

NAME .
ppvpat - pattern package reverse compiler

SYNOPSIS
ppvpat <patfilename>

DESCRIPTION
ppvpat cutputs the pattern definition by reverse compiling the
part of a common pattern package pattern file.

The argument <patfilename> is the name of the pattern file, in-
cluding the format dependent ending (ex. temp.p).

FILES
/usr/incliude/ppsubs.h common pattern package header file
pp_kname .h header file inialization pattern keywords array
pp_kval .h pattern primitives value header file

SEE ALSO
ppmkpat (1L), pattern(5L)

DIAGNOSTICS
The diagnostics produced are intended to be self-explanatory.

PrOGRESS(IL) JNIX 9.0 (SCCs Feoruary 22 1983) PROGRESS(IL)

NAME
Progress = progyrass resort nandler
SYnNOPSIS
progress
DeoCrlpPTION
gro4ress is an iterative comuand tnat provides tne rfolluowing
functions across taz n:tworked SClUs systauss

1. create a reoort. Fals is usad to wrzatez an
Individuayr oroyrass report. Jsars are yiven tne
oplion to save orevious reports. I[n=2 entire re.ort
15 Jdistriout=d across all systens.,

2 bdic an exiscing, individual resport. This is used to
LOrrece or add Lo an already existing individual
rojress report. [ne entire report 1s distribucad
across all systeas.

G AJd tnfornation (v 4 yroup sumnary rzport. Unly tasz
new infornacion 1s Jdistriouted dacross taz systams
wihers it 1s tnen append:d to the full rzoorc.

4. odiTy a0y exXisting Jroup repori. fnes st be don:

' J 3 v
Wiln Cadtioa as tn2 enilre yrouo reJsort 4s
redisctriout2d. A race condition can develoose witn
upusdates Lo g saa2 report from ciffarent macaln:s,.

2. Viead a regort. ine outoubt of an individual or ,roup
repore Can o2 sz2nt to a file, a lines printar, or to
your Lerailnal.

D Update a dJdistrioution list. [nis iInclud:s
discriodtion 1ists for all yroup sdiawdary regsorts and
incaveddal orogress reports frow any glven
SUu2rvisory 4roup. Jnly the new inforwation 1is
distriodit=d acruoss ta2 systens wnerz 1t 1S tnen
app=2nded O the dJdistrivution list.

NOTES

Thne cowmand

will prowpe the user for any n2zaded Inforwaciocn

SucC. 4s inuaividuals inltials, supervisor’/s 1initials, =tc.

Ine coumwand

will continue oroupting for tine nexe fanction co

D2 performned until tne user rejuests Cne command TO siuyo.

SEcz ALSO

Qsrogressd(ipL)

FILES

/orogress/Jdis.

rage |

(last nod. 2/724/53)

PROGARESS(1L) UNIX 5.0 (SCCS February 22 1983) PROGRESS (1L)

/progress/<supervisor initials>/dist
/progress/<suparvisor initials>/group<uontn>

/progress/<suparvisor
initials>/old_sumuarys/group<aontn><year>

/orogress/<supervisor initials>/<individuals initials>

rage 2 (last awod. 2/724/53)

N.ME

putsrc - put source code on proper updste pack,

SYNOPSIS

putsrc [+0] <file_name> <pr-directory> <specific.make_named

DESCRIPTION

This routine puts gource code on the appropriate
update pack., This is accomplished by using the
<specific.make.name> argument to access s special
data file conteining control information, This
file contains the update pPacks to be utilized
for each specific make. A search is made of all
remaining update packs to determine {f this £ile
- 8lready exists, The user is informed if the file
Is found.

EXAMPLE putsrc 4o gen.rngli.c pr=ip135 SC516

NOTE: The user must ensure that all valid update and
source packs are mounted in order for this
routine te run properly. In addition the update
rack must be writeable from the computer being used.
ORIICOHN EEEELCT

+0 If <file_name> exists in the target directory,
overwrite it with new file and inform user,
If this option is not set the routine will ask
the user if the existing file is to be over
written,

Entering the command name (putsrc) elone, will result

in a printout of the command format and a listing of
8l1 accepasble make names,

FILES

/usr/bin/putsre /usr/bin/scii /usr/bin/sclz'

" SEE ALSO

getsrc(3L)

BUGS

g

v

NET(1) UNIX Programmer’s Manual NET (1)

NAME

net — execute a command on a remote machine

SYNOPSIS

net [=m machine] [=1 login] [=p password] [=rrespfile] [=][=f] [=n] [—=q]
command

DESCRIPTION

The ner command sends the specified command (which should be enclosed in quotes) over the
network to the specified (or default) remote machine. The network will notify the user when
the command has been executed and will return to him any output or error indication by ‘writ-
ing’ (see write(1)) to the terminal if he is still logged in, or ‘mailing’ (ses mail(1)) otherwise.

There are a number of options, which must precede the command. Options may be specified
on the command line, preceding the commiand, or in a file ‘“.netre” in the user’s login direc-
tory. The *‘.netrc’” file is not described here. The —m option specifies the desired remote
machine. If a remote machine is not specified, the default one is used. The machine name
may be a one letter abbreviation or a full name; upper— and lower-—case distinctions are
ignored. If the standard output and standard error files are to be saved, the —r option returns
to the originating user a file (respfile) containing the standard output and error files when the
command was executed on the remote machine. If this option is used, no message is written
back. The presence of a non-zero length respfile indicates completion. The =q option
suppresses all acknowledgements unless an error occurs, there is output from the command, or
the exit code of command is non-zero.

If the —1 and —p options are not specified, and the login name and password are not in the
‘.netrc” file, a remote login name and password is prompted for on the terminal; the —f flag
forces login name and password prompting. A single = indicates that the standard input from
the local machine is to be taken and transmitted to the remote machine, where it will be the
standard input for command. The —n flag forces all acknowledgment and output messages to be
mailed rather than written on the terminal. Options do not need to be separated by spaces, i.e.
either “—m C or *—mC” is accepted. There are also other options intended to be used by
higher level application programs and shell scripts only; they will not be described here.

The net command prepares a file to be sent to the remote machine and queues it in the ‘net-
work queue.’ Netg (1) gives information about the queues.

AUTHOR
Eric Schmidt

FILES
/usr/spool/berknet/logfile logfile with information about net activity
/ust/spool/berknet/plogfile? log file including packet transmission statistics
/usr/spool/berknet/netstat? statistics file
/usr/net/network.map local network names and topoiogy

BUGS

=g shouid be the defauit.

SEE ALSO

netrm(1), netq(1), netlog(1), netcp(1), netlpr(l), netmail(1), netlogin(1), mail(1)
““An Introduction to the Berkeley Network", by Eric Schmidt

4th Berkéley Distribution 2/6/80 1

NETLPR (1) UNIX Programmer’s Manual NETLPR (1)

NAME
netlpr — use a remote lineprinter through the net

SYNOPSIS
netlpr [—m machine] [=1 login] [=p password] [=f] [=q] [—n] [—c command] [
namel ... namen }

DESCRIPTION

Netipr sends the named files, (or the standard input if none are named), to a remote line-
printer; the —m option forces the files to be printed on the specified machine. (If not
specified, the default machine is used.) The —~1, —p, —f, —q, and —n options behave exactly
as in ner(1). If the —c option is specified, the command is used in place of ‘lpr’. This allows
the use of different lineprinters on the remote machine. See the file usr/net/network.map’ for a
list of available commands. Any other options are passed through to /pr(1) on the remote
machine. Copies of the files are not made on the remote machine.

Netipr executes the ner(1) command.

FILES

/usr/net/network.map lists the allowed local printer names
SEE ALSO

net(1), netrm(1), netg(1), netlog(1), netcp(1), netmail(1), netlogin(1), mail(1), ipr(1)
AUTHOR '

Eric Schmidt

sth Berkeley Distribution 2/6/30 1

NETQ(1) UNIX Programmer’s Manual NETQ(1)

NAME
netq — print contents of network queue

SYNOPSIS
netq [—a] [machine]

DESCRIPTION
Nerg lists the contents of the network queue, one request per line, for each directly-connected
machine. For each request, it shows the login name and machine of the originator, the destina-
tion machine and login name, and the length (in bytes) of the request (this will be larger than
any files transferred (e.g. by nercp), because of header information). Also described are the
queue filename which may be used as an argument to nerrm(1), the time entered the queue,
and the command being sent.

Netq summarizes requests by other users. If the —a option is specified, requests from all users
are listed.

If a machine is specified, only the queue for that directly-connected machine is listed.

The requests are listed in the order they will be sent; the queue for each machine is totally
independent from the other machine’s queues.

AUTHOR

Eric Schmidt
FILES »
/ust/spool/berknet/send? the directories where the queues are
/usr/spooi/berknet/logfile the log
SEE ALSO
net(1), netrm(l), netlog(1), netcp(1), netipr(1), netmail(1), netiogin(1), mail(1)
BUGS

Nerg should also list files in net queues on intermediate machines.
The commands are sent shortest-job first. There is no way to delay a shorter, earlier request.

4th Berkeley Distribution 2/6/80 ' 1

NETCP (1) UNIX Programmer’s Manual ., NETCP(1)

NAME

netcp — remote copy of files through the net

SYNOPSIS

netep [—1login] [—p password] [=f] [—n] [—q] fromfile tofile

DESCRIPTION

Netcp copies files between machines and is similar to ¢p(1). At least one of fromfile and foftle
must be remote. The —l, —p, —=f, —g, and —n behave exactly as in ner(1).

Fromfile and 1afile follow these conventions:

1. A simpie filename is assumed to be local and from the current directory.

2. A filename preceded by a machine designator (see below) is a reference to a file on the
specified remote machine. If a full pathname is not given, it is assumed to be from the
login directory.

Examples:

grades.p file in the current directory on local machine
C:junk file in your login directory on C

/usr/lib/pq file on local machine

C:comp/c2.c file in a subdirectory on C machine

When files are being “‘fetched”, that is, the fromfile is remote and the rafile is local, the tofile is
created zero-length mode 600. For security reasons, when the ‘‘fetched” file’s contents arrive
at the local machine, the file must still be zero-length and mode 0600. No confirmation is sent
to the user that the file has been “‘fetched”’; a non-zero file length indicates completion.

Netcp executes the ner(1) command.

SEE ALSO

net(1), netrm(1), netq(1), netlog(1), netlpr(1), netmail(1), netlogin(1), cp(1), mail(1)

AUTHOR

BUGS

Eric Schmidt

The second filename may not be defaulted to a directory name as in ¢p(1), it must be given
explicitly.
The file mode may or may not be set correctly.

4th Berkeley Distribution 2/6/80 1

R

NETRM (1) UNIX Programmer’s Manual NETRM (1)

NAME
netrm — remove a command from the network queue

SYNOPSIS
netrm [—] [namel ... namen }

DESCRIPTION :
Netrm removes files from the network queue which have been queued for transmission to -
remote machines (but not yet sent). The names specified are the filenames reported by the
netg(1) command. The — option indicates that all files owned by the person logged in are to
be removed.

Only the owner of the file or super-user can netrm the file.

AUTHOR
Eric Schmidt

FILES _

/usr/spool/berknet/send? the directories where the quaues are

BUGS
Files on network queues on intermediate machines cannot be removed.

There should be a —m flag to use with = to remove all your requests to one particular
machine.

SEE ALSO :

net(1), netq(1), netep(1), netlpr(1), netmail(1), netlogin(1), mail(1)

£

s
)
e

4th Berkeley Distribution 2/6/30 1

PROCRESS (1L) SCCS October 6 1981 PROGRESS (1L)

NAME
progress - progress report handler

SYNOPSIS
B progress

DESCRIPTION

Progress is an iterative type command that provides the following
functions:

iYys Create a report. This can be used to create both group
summary reports and individual progress reports. When a
= group's summary report is created, a news item will Dbe
produced. For group summary reports, the previous month's
reports are automatically saved. For individual progress

reports, users are given the option to save previous re-
ports.

Edit an existing report. This can be
append to an already existing group
individual progress report.

used to correct and
suinmary report or an

View a report. This can be accomplished by specifying the
output to go to a file, line printer, or to your terminal.

Add a name to a distribution list. This includes distri-
bution 1lists for all group summary reports and individual
progress reports from any given supervisory group.

NOTES
The command will prompt the user for any needed information
as login initials, supervisor's initials, etc.
continue prompting for the next function to bDe
the user requests the command to stop.

such
The command will
performed until

SEE ALSO
e progressd(1lL)

FILES
/progress/dist

/progress/<supervisor
/progress/<supervisor
/progress/<supervisor

/progress/<supervisor

initials>/dist
initials>/group<month>
initials>/old_summarys/group<month>

initials>/<login initials>

r

PROGRESSD(1L) SCCS October 6, 1981 PROGRESSD(1L)

NAME

progressd - daily progress repdrt generator

SYNOPSIS

progressd

DESCRIPTION

Progressd prompts the user for any progress made since the last
time the command was run. Any progress entered is appended to
the end of the same file used in the "progress" command.

When the user wants to start a new month's progress report, the
first day must be entered by using the "progress" command and
then choosing the option needed to create a new filen All the
rest of the days of the month can be done by "progressd".

SEE ALSO

FILES

progress(1L)

/progress/<supervisor initials>/<login initials>

PRETTY(1L)

SCCs March 7, 1978 PRETTY(1L)

NAME

pretty - adjust C code to coding standard
SYNOPS IS '

pretty [-a‘hlc[n:n:n .11 0 -rin[+1 1 [file ...]
DESCRIPTION

Pretty takes C code, either from the standard input or from the
listed files and reformats them to the coding standard specified
by the -a, -b, or -c¢ switch. If no coding standard is specified,
-a4 is assumed.

-r

-n[+]

Output is normally directed to the standard output. The -r
switch directs pretty to place the output temporarily in
tmppretty?7?77? and at the end of reformatting, rename origi-
nal to old.original and tmppretty????? to original, thus
preserving a copy of the original code.

Normally pretty makes an attempt to add four extra spaces to
any 1lines that it thinks are continuations of previous
lines. If a previous line did not end in ; : { or } and the
new 1line does start with a {, then pretty thinks it is a
continuation. The -i switch tells pretty not to worry about
continuation 1lines and no extra spaces are added to such
lines.

Pretty can handle the C formatting macros (Programmers Note
#113) if the -m switch is specified. This switch tells
pretty that comments can start with _Cx, _Bx, or Fx as well
as the usual /* sequence. It also tells pretty that braces
might be found as _{ and _} and that the occurance of __
should be treated as a complete statement. The "+" addi-
tionally specifies that all indents must be multiples of 8
and that when deindenting switch statement labels, they
should be deindented by 8 instead of the normal 2. This is
necessary for anyone using the _{ and _} in place of normal
pbraces and the __ to specify that nroff deindent the switch
statment labels. This is because the nroff formatting mac-
ros do not delete leading spaces in lines, though they do
delete 1leading tabs. Without the "+" option, the final
results after nroff'ing would not be what was desired. It
is suggested that people use the commenting aids of the
nroff macros, but allow pretty to handle the braces and in-
denting. If this is done, only the n option without the "+"
is required. It should be noted that the "+" on the n
switch overides any tab setting given with the a , b , or ¢
switches.

PRETTY(1L) SCCs March 7, 1978 PRETTY(1L)

The coding standards are:

-a :9.9:6:9.9.9:9.9.9.9.9.9.$.9.9.4.9,:9.9.6.0.0:9.4
{
XEXXXXXXXXXXXZXKXXR
§:9:9.9.9.9.9.9.9.9,6.9.9.9.9.9.9.9.4

}

-b b:6:9:0:9.9:6.9:6:0.5.6.0.0.:0:6.4.0.0.0.0.6.0.5:21
XEXXXXEXXXXXXXKXRXXKXX
XXXXXXXXXZXXXXXXXZX

}

=c :9.9:9,9.4.9.9.9.9.9.9.9.6.9.9:9.6,:6.0.9:0.6.0.4
{
EXXEXXXXXXKXXKXXXKXXX
XXXXXXXXXXXXKXXKXKXXX

}

A coding standard switch may be followed by an optional n:n:....,
where each n is the size of the next indent in the series. The
default has all indents set to 4 for coding standards a and b and
2 for coding standard e¢. This means that each new section of
code will begin four spaces further to the right than the previ-
ous section. In the following example

pretty -c2:6:2 file
produces code of type ¢ with the first indent at 2, the second at
2+6, the third at 2+6+2, and all later indents at 2 further in

from the previous indent. Sample code would appear as

subroutine()

{
D:0:0:6:9.9.0:9.0:0:9.0.6:0.0'1
{
b:5/9:9:0:0:6:6.9.0'0:0:0.04
XXXXXXXXXKKKKX
3
XXXXXXXXRKXXKKXXXK
XXXXXXXXXXXXKKKKK
}

Pretty makes certain assumptions that the user should be aware
of. Lines Dbeginning with # and comments beginning in the left-
most column are not adjusted. All other comments are indented
normally. If the user translates a file of C code from types -a
Or =c to -b it is possible to move a { from inside an #ifdef '
#1f or #else to the first statement preceding that conditional.
Code must not appear in this form or the following can happen:

PRETTY (1L) SCCs March 7, 1978 PRETTY(1L)

FILES

-a code -b code
if (a > b) if (a > b){
#ifdef TYPE #ifdef TYPE
{ -——> XXXXXXKXXXXX
XXXXXRXXKXXX 7 XXXKZXKXKXXXX ;
XXXXXXXXXXX ; }
} #else
#else XXXXXXXXXXX 7
XXXXXXXXXXX 7 #endif

#endif

As long as the code inside condtionals is syntactically complete,
this problem will not arise.

If code is translated to first one coding standard and then back,
there is the possibility of minor differences between the origi-
nal and final output, caused by movement of Dblank lines. No
functional changes in code appearance will take place.

Labels are checked for as the first printing item on 1lines. If
they are encountered, the label is printed left justified on a
line by itself to make it stand out. The keywords case and de-
fault of the switch statement are printed with the indent at that
point reduced by 2 spaces if possible. Lines that do not appear
to Dbe complete, that is not ending in a ; : { or } character,
cause the next line of code to be indented an extra 4 spaces as
long as the new line doesn't begin with a { character. This
feature is turned off by the -i switch.

READ:

NAME

0(1D) SCCs January 1, 1975 READ:0(1D)

read - read a character string from controlling terminal

SYNOPSIS

read string-variable

DESCRIPTION

Read reads a character string from the users terminal into one of
ten string variables (a thru 3Jj) by opening and reading from
*/dev/1in'. The strings then become available as arguments for
subsequent commands which may reference them as $a thru $3j.

Because the strings are available to any subsequent command exe-
cuted Dy the shell the strings must be stored in temporary vari-
ables within the Shell. Read is therefore a command which is
recognized and executed by the shell.

SEE ALSO

BUGS

sh:o(1)

RECOVER (1L) SCCS (DEV1&2) November 29, 1982 RECOVER (1L)

NAME

recover - Recover files from Incremental Dump

USAGE

recover <filename> [<filename>...<filename>]

DESCRIPTION

recover allows the retrieval of lost/scrambled files from the In-
cremental archives (dumps) created daily @ 1:00am (the dump be-
gins at 1:00; it may take several hours to complete, thus a file
may not actually be saved until 3:00 or 4:00am). Incremental ar-
chives contain all files which were modified/created since the

EPOCH Dump. They MIGHT NOT contain files which were removed (see
below) .

Each machine, DEV1 and DEV2 (scdl & scd2), has 2 dedicated disk
areas (numbered 1 & 2) utilized for Incremental Dumps. Each area
is used on alternate days (the EPOCH Dump day is typically
skipped) and thus provide a 2 day history of file system changes
(ie. every other day, a given area is overwritten with new data).
Their contents are referred to as the DAYl and DAY2 Incrementals.

See below for details of the files contained on an Incremental
Dump.

The <filename> argument to recover should be the entire relative
path name of the file you wish to recover. That is, the leading
(root) '/' must be omitted (files in the incremental archive are
referenced exclusively by their path name relative to the root
dir '/'). 1If you are not sure where a file was, enter as much of
the name as possible (since recover 'greps' a listing of Incre-
mental contents for <filename>, this will limit the number of ex-
traneous matches you must weed through).

recover will then:

Output a 'ls -1' of the latest 2 1Incremental Contents Listings
(listl & list2 - corresponding to DAYl & DAY2). Each listing is
created at the time of the Incremental. Its modification date is
the completion date/time for the last successful Dump for that
day.

'Grep' the listings for the string (<filename>) provided. A
match may be found in either, both or neither of the listings,
for the reasons outlined below. If found, the mode/uid/gid/size
of the file in the archive is output. This info and/or the date
of the listing may be used to determine from which 'DAY' the file
should be extracted.

Prompt the user for the necessary retrieval information:

Listing number where desired version found (1 or 2 - defaults
to 1)

e

RECOVER (1L) SCCS (DEV1&2) November 29, 1982 RECOVER({1L)

FILES

File name on Incremental (relative path name - defaults to
<filename> argqg)

New name of retrieved file (defaults to last component of
Incremental file name, above)

Path of target directory for retrieved file (defaults to .)

Background? (defaults to no - you must wait for file to be
retrieved)

The prompts are defaulted by entering a <Carriage Return> alone
as a response, '

recover will then retrieve the file from the Incremental archive
corresponding to the list number entered (/etc/updfs is used).

[Directories may not be retrieved with recover. Consult a gnome
when a large number of files must be recovered.]

HOTE:

Incremental dumps are only a 2 day history of file modifica-
tions. A given change made on a Thursday may be recovered before
1:00am Sunday AND, if no more mods are made, will be available
through the following Friday. If further modifications are made,
however, (eg. on Monday), the previous change will be lost after
1:00am of the 2nd day following the new change (ie. Wednesday).
Confusing? - you bet.

If a file has not been modified/created since the EPOCH, it will
not appear on the Incremental. Thus, files which have ‘vanished
mysteriously' cannot be recovered with recover unless they
were changed/created since the EPOCH and had been removed (or
vanished mysteriously) WITHIN the LAST 2 DAYS. Two days after a
changed/created file is deleted, the Incremental image of the
file systems will no longer contain the file.

The EPOCH packs must be consulted for retrieval of unmodified
files and those modified files removed more than 2 days prior.

/incrdir/listl /incrdir/list2 /dev/rDAYl /dev/rDAY2

DIAGNOSTICS

' BUGS

'Cannot mount /dev/incrdir'. This is where the list? files re-
side. There are probably too many file systems mounted already.

Note that Incrementals are not guaranteed to be successful every
day. Perturbances in the file systems can cause the incremental
areas of disk (56k blocks each - 2 per/machine) to be filled to
capacity and not contain all the changes since the EPOCH. At~

RECOVER (1L) SCCs (DEV1&2) November 29, 1982 RECOVER (1L)

tempts are made to ensure that the user directories are dumped
first, but even this 1isn't gquaranteed (perturbances include
things like 'touch'ing every file in your directories -~ eg. by
changing their modes/groups, etc. =-or- copying an entire PR
directory into your own).

Since the incremental directory, /incrdir, is a mounted file sys-

tem, a failure to mount /dev/incrdir will result in an aborted
Incremental Dump.

8

g W

R KR 20 S i g e S = R NEE B S S P e oo SO0 e " por e R DL A ROE SRt ST L

RETRIEVE(1L) SCCS Juae 27, 1984 RETRIEVE(1L)
NAME

retrieve -— used to retrieve scripts, test files from save areas
SINOPSIS

retrieve
DESCRIPTION

This prcgram is used to retrieve test files from various storage
file systems on the Load Testi Machine. It is totally interactive
with the user and it provides explanations of prompts wheu given
a ?<cr> to a prompt. The user should know the nare of the testy
plan associated with the test tiles they want if the files are
stored in a resiricted area.

SEE ALSO
save

DIAGNOSTICS
None

BUGS

Only one but, it is still hidden at this time.

RPG(1L) S5CCS February 26, 1982 RPG(1L)

NAME

rpg = run an rp3 projram

SYNOPSIS

rp3 [options) <filename> larguments]

DESCRIPTION

Tne "rpa" command is used to execute RPG prourams from
tne UNIX shell. On some systems the command hame may
pbe "nrpa". Several ootions are available with this
command: - '

+d = invoke dynamic depbuygjer

=d <« do not invoke dynamic debugger (default)

. o
+t = turn on execution tracing
~f = do not turn on execution tracing (default)

+p '~ trace all "#switch", "¥sccs", and "*xeq"
COoONUMAaNnds,

~<%=p = 40 not trace paths (default)
"+w = oprint all warning messages (default)

-4 = "d0 ndt print warning messages

BUGS

RPG was a bug,

RERRLIIA AL o € 0 o e St b it b s s S i, R R B I e Sk il e e R el ik S A s e St e v el Al DRI R

SAVE(1L) SCCS June 27, 1984 SAVE(1L)
NAME
save —-- save scripts, message, and other test files
SINOPSIS
save
DESCRIPTION =

This program will save scripts, message, and other types of files
in either the restricted file system used by system test or in a
non-restricted file system for developer files.

If the user wants to store files in a restricted file system,
they must know the password to the save program. Normrally, only
system test coordinators will gnow this password. Storing files
in a@ nosn-restricted file system does not regquire a password.

The program will prompt the user for any necessary input. If the
user has a guestion concerning the prompts, Jjust type & guestion
mark followed by a carrage return and the program will give an
explanpavion.

SEE ALSO
retrieve

DIAGNOSTICS
None

LIBRARY
None

BUGS
There is one put, it is unknowh at this time.

VRO AT P Y AR T

S

SCCHK{1n) SCCS Sepit. 13, 1982 SCCMK(1L)

NAME
sccak = maxae/lint A Wo. 2 S5CCE pldent

SYNQPSIS
sccmk L=flaas! [+flags) pafile [source=~dirl
sccmk [=flaags)] [+flags! surile
scemk [=flags! L+flags! aufile laufile] ...

DESCRIPTION
ihe sgccmk proaram v¢ill make/lint an au file by pertorming com=
mands listed 1in the #S8XTUPR, #LINT, #MAKE, #CLEANUP, and #COPY
sectiomns nf an au file. IT will make/lint au files listed in a
gu flle and orocess 7gu filles listed in a py file,

T“he f£lads to tne ggogomk brodram are turned on by preceding it with
a plus (+) sinn and turned off by preceding it with a minus (=)
sign 71he flaus an3 defaults settings sre as follows?

FLAG DEFAULTY MEgam NG
c on rerform #CUFY section of au file
m on rerfora tmakKkE zection of an au file
K ¢ff rerforn #LiHT section of an au file, insert thne

=K avtian foirlowing all lint commands. The
c and m f£laas are turned off,
S off Ferfors sLinT section of an au file, insert the
~& optien following all lint commands. The
c and m flags are turned off.

V off perforam #LInY section of an au file, The
c and m flags are turned otf.
o oft Coamvare onrioinating and target £iles of the
zoxe/cupy commands in #COPY section ¢of an au file.
r afE Do a replace in lieu of the moxe/cpmid commands in

the #0NpY saction of an au file.

§ off o a regtore in lien ot the wgue/cpad commands in
rive #C0PY section of an au file,

£ on rerform HFINAL PIDRHTS section of gu fille

i on perform s[8[vIAL PIDENTS section of gu file

p on parform #PIDENTS section of the gu tlle,

X @ rerform the $PREMAKE section ¢of a pg file.

y off perform tne #xAKE sectlon of a pg file

Z OFff perform the #FIHAL section of a pg file

1l eff perform statistical gatherinu tasks (not yet avail,)

The sgeowy nrooram ~ill always execute the commands found 1n the
#SETUR ang #CLapmijp sections of the au file regardless 0t the
sccnk ootions given,

yote in the 3hova that wnen a lint option 1is given, the ¢ and m
flags are turned off, rhev can be turned back on by following
the lint ootien #4ith tne desired ¢ and/or m options, (e.d.,
+Kme) .

The sccamk oroaram #ill examlne the file argument(s) to determine

SCCnk (i) 3CC3 Sgbt, 13, 1982 SCCMK(1L)

shetner it is a n3, qgu, or au file., A pqg file must begin with a
2PG section identifier. A gu file must begin with a #PR section
identifler, 2An aun {ile must begin with a gIDENTIFICATION section

identirier, Tne sSccw& program will chalr to the specified
source~dir (/8zg¢ it none is provided) before proc¢essing the en-
gries within tne na file. While processing a gu or au file tne
SCERE Dprograr assumes all referenced files are in the current
directory. 3ccuk assumnes the tollowing:

- 3 waximun of 200 characters per line in a pg, gu, and 3au
file, Vo checxkxing is done, nowever,
Ea - inhe #COPY section of an au file contains only the commands
@oN2 and Gpayv. Uhis rule is enforced wnen performing a re=-
plece (+I) or a compare (+0) or a restore (+s).

1f either tne +r flao or tne +s f£laa is specified, the +¢ flag is
1gnored aitnodah the sgcuk program still recoagnizes the +¢C flag
as being on, [f the +r, +s and +0 flags are speclifled in any
combhinatiopn tonetner, the restore will pe performed first fol-
lowed ov tne comparison and then the replace.,

ihe folilowinu @Xampie #ill make The #MAKE section of every au
file 1isted 1In tLne #PILEHNTS section of the gu file given as an
argument, Tne #CNPY section ot every "made® au file willl do 4
—~ rerlace insteas of a DEYUL Or CRRBY. '

scemk =fi +r pr=ip137-01,.9u

FILES
/bin/sn renlace

SEE ALSO
anfile(s), oufilacs), votfilie(5), sh(l), replace(?)

DIAGNGSTICS
Jf the scemk rcomaand line optilons direct the command to eXecute
command lines in tne LINT and/or MAKE sections of a .au and these

i sectinns can not ke found, ftnen a diagnostic message will be out=

put.
BUGS

A line nf > 200 characters epncountered wnile processing a pg, gu
or au fiis ran Cause strange resulits, €.3., 4 core peing dropped.
Lf toe +r, +s, or +0 options are specified and a command in the

o #C0PY section of an au tlle is continued across several lines,
the maximun nunther cnharacters assumea for that command is 250,
I1f this 1imit 4is exceeded, strange things may nappen, €.da., 4
aropped core,

o all lines coatainina only bhlanks/tabs are tnrown away by the

SCCIE DLIONIr3am. ience, 1in the 4MAKE or #COPY sectlon of an au
tile, & ovlang Line snould not pe used atter a continued line (one
andina in a o03Ckslasn).

SCCMK (1L) SCCS FEB. 7 1978 SCCMK (1L)

NAME

sccmk - make a No. 2 SCCS program

SYNOPSIS

scemk [-flags] [+flags] pgfile [source-dir]
scemk [-flags] [+flags] gufile
scemk [-flags] [+flags] aufile [aufile] ...

DESCRIPTION

The sccmk program will make an au file by performing commands
listed in the #MAKE and #COPY sections of an au file. It will
make au files listed in a gu file and process gu files listed in
a pg file.

The flags to the sccmk program are turned on by preceding it with
a plus (+) sign and turned off by preceding it with a minus ()
sign The flags and defaults settings are as follows:

FLAG DEFAULT MEANING

¢ on Perform #COPY section of au file

m on Perform #MAKE section of an au file

o off _Compare originating and target files of the
move/cpmv commands in #COPY section of an au file.

r off Do a replace in lieu of the move/cEmv commands in
the #COPY section of an au file.

s off Do a restore in lieu of the move/cgmv commands in
the #COPY section of an au file.

on Perform #FINAL PIDENTS section of gu file
on Perform #INITIAL PIDENTS section of gu file
on Perform #PIDENTS section of the gu file.

off Perform the #PREMAKE section of a pg file.

off Perform the #MAKE section of a pg file

of f Perform the #FINAL section of a pg file

of f Perform statistical gathering tasks (not yet avail.)

e T B - T)

The sccmk program will examine the file argument(s) to determine
whether it is a pg, gu, or au file. A pg file must begin with a
#PG section identifier. A gu file must begin with a #PR section
identifier. An au file must begin with a #IDENTIFICATION section
identifier. The sccmk program will chdir to the specified
source-dir (/EEE if none is provided) before processing the en-
tries within the pg file. While processing a gu or au file the
sccmk program assumes all referenced files are in the current
directory. Sccmk assumes the following:

- a maximum of 200 characters per line in a pg, gu, and au
file. No checking is done, however.

- The #COPY section of an au file contains only the commands
move and cpmv. This rule is enforced when performing a re-
place (+r) or a compare (+o) or a restore (+s).

If either the +r flag or the +s flag is specified, the +e¢ flag is
ignored although the sccmk program still recognizes the +e flag

SCCMK (1L) SCCs FEB. 7 1978 SCCMK(1L)

as being on. If the +r, +s and +o flags are specified 4in any
combination together, the restore will be performed first fol-
lowed by the comparison and then the replace.

The following example will make the #MAKE section of every au
file 1listed in the #PIDENTS section of the gu file given as an
argument. The #COPY section of every "made" au file will do a
replace instead of a move or cpmv.

scecmk -fi +r pr-1pi137-01.gu

FILES

/bin/sh replace

SEE ALSO

aufile(5), gufile(5), pgfile(5), sh(i), replace(?)

DIAGNOSTICS

BUGS

A line of > 200 characters encountered while processing a pg, dgu
or au file can cause strange results, e.g., a core being dropped.
If the +r, +s, or +o options are specified and a command in the
#COPY section of an au file is continued across several lines,
the maximum number characters assumed for that command is 250.
If this 1limit is exceeded, strange things may happen, e.g., a
dropped core.

All lines containing only blanks/tabs are thrown away by the
sSccmk program. Hence, 1in the #MAKE or #COPY section of an au
file, a blank line should not be used after a continued line (one
ending in a backslash).

SECPRT(1L) SCCs Jul 19 1976 SECPRT(1L)

NAME
secprt - print section of prologue or PG files

SYNOPSIS
secprt [section ...] file

DESCRIPTION
The command secprt will print out the contents of a given section
or sections of the listed files. The files given as arguments
must be either prologue files or PG files.

The acceptable section arguments are:

COPY
DATA
IDENT
MAKE
PIDENT
PRDOC
PRINT
PROGRAM

Output is to the standard output, file descriptor two.
FILES
SEE ALSO

PG(5), au(s)

DIAGNOSTICS
BUGS

SED:0(1L) SCCS OCTOBER 24, 1975 SED:0(1L)

NAME
sed - stream editor

SYNOPSIS
sed [-g] [»n][-f commandfile] ... [[-e] command] ... [
file] ...

DESCRIPTION
Sed copies the input files (standard input default) to the stan-
dard output, perhaps performing one or more editor commands (see
ed (I)) con each line.

The following flags are interpreted by sed :
-e Indicates that the next argument is an editor command.

-f Indicates that the next argument is a filename; the file
contains editor commands, one to a line. Commands which are
inherently multi-line, like a or ¢, should be written with
the interior newlines preceded by “\'. Append mode is ter-
minated by an unhidden newline.

The -e and -f flags may be intermixed in any order. If no
e or -f flags are given, the first argument is taken by de-
fault to be an editor command.

Addresses are allowed. The meaning of two addresses is:
"Attempt this command on the first line matching the first
address, and on all subsequent lines until the next 1line
containing a match of the second address; then begin watch-
ing for a match of the first address and iterate.”" One ad-
dress means: "Attempt this command on all the lines which
match the address." allowable as addresses. A 1line number
matches the cumulative 1line number of the input files. A
*$' as an address matches the last line of the last input
file.

g Indicates that all s commands should be executed as though
followed Dby a g. If only some substitutes are to be done
globally, leave out the -g flag, and put the g's at the end
of the appropriate command lines.

n Prevents the copying of lines to the output by default.
Only 1lines which are explicitly printed by P commands are
written. 1In order to avoid getting double copies of some
lines, the p command is & no-op unless the -m flag is set.

The intention is to simulate the editor as exactly as possible,
but the line-at-a-time operation makes certain differences una-

SED:0(1L) SCCSs OCTOBER 24, 1975 SED:0(1L)

voidable or desirable:

il There is no notation '.'; and no relative addressing.

2 commands with no addresses are defaulted to
1,$ rather than to dot.

Sie Context addresses must be delimited by v/'; '?' is an error.
4, Expressions in addresses are not allowed.

5. Commands may have only as many addresses as they can use.
That is, no command may have more than two addresses; the a,
i, r, and 1 commands may have only one address.

6. A p at the end of a command only works with the s
command. For other commands, or if the -n flag is not in
effect, a p at the end of a command line is a no-cp.

e A w may appear at the end of a substitute command.

It should be followed by a single space and a file name. If
the substitute command is successfully executed, the line 1is
written to the file. All files are opened when the commands
are Dbeing compiled, and closed when the program terminates.
Only ten different file names may appear in w commands in a
single run. Unlike p, W takes effect regardless of the -n
flag. 1If both p and w are appended to the same substitute
command, they must be in the order pw.

8. The only commands available are
a, ¢, 4, i, s+ Br 9+ I+ YW 91 Yo and =. A successful execu-
tion of a g command causes the current line to be written
out if it should be, and execution terminated. When a 1line
is deleted by a d or ¢ command, no further commands are at-
tempted on the corpse, but another line is immediately read
from the input (but see the next point (9)).

9. If an a, i, or r command
is successfully executed, the text is inserted into the file
whether or not the line on which the match was made is later
deleted or not. Thus the commands:

SED:0(1L) SCCS OCTOBER 24, 1975 SED:0(1L)

/b/a\
XXX

/b/,/c/a
applied to the file

0o

will produce
a
XXX
d

on the output.

10. Text inserted in the output stream by the
a, i, cor r commands is not scanned for any pattern
matches, nor are any editor commands applied to it.

SYNTAX:

Blank lines, blanks, and tabs at the beginning of a 1line in
the command file are completely ignored.

Commands may be grouped by curly braces. The opening brace
must appear in the place where a function would ordinarily ap-
pear; the closing brace must appear on a line by itself (ex-
cept, of course, for leading blanks or tabs).

If the first line of a command file has #n as its first two
characters, the no-copy flag is set, as though the -n option
had been given on the command line. The rest of the 1line is
ignored; it may be used for a title or a comment.

PATTERN MATCH COMMANDS:

These three capital letter commands are intended tec allow pat-
tern matches across new-line characters in the input file.

Next line is appended to the current line;
the two lines are separated by a new-line character which
may be matched by “\n' (see below).

SED:0(1L) SCCS OCTOBER 24, 1975 SED:0(1L)

o

Delete up to and including first (leftmost) new-line

in the current pattern space. If the pattern space becomes
empty (the only new-line was at the end of the space), read
another line from the input. In any case, begin the list of
editing commands again from the beginning.

o

Print up to and including the first new-line in the
pattern space.

META-CHARACTERS:

\n Matches imbedded newlines in the pattern space.
\\ Matches '\'

\] Matches ']
Examples:
The file /mnt/btl/dir contains telephone-book entries.
Most are on a single line; double line entries are sig-
naled by having the second line begin with a blank.
To print out all double-line entries:

sed =n

N
/\n/p
D /mnt/btl/dir

To combine all double line entries into single lines:

sed n
N
/\n/{
s// /p
j (see flow-of-control commands)
}
P
D /mnt/btl/dir >newdir

NEXT LINE COMMAND:

SED:0(1L)

i

SCCs OCTOBER 24, 1875 SED:0(1L)

The current line is replaced
by the next line from the input file, and the list of edit-
ing functions is continued after the n function.

FLOW-OF-CONTROL COMMANDS:

These commands do no editing on the input line, but serve to con=-
trol the order in which multipule editing commands are applied to
an input line.

:<label>

The lapel command marks a place in the list of editing com-
mands which may be referred to by J and t commands. The <la-
bel> may be any sequence of eight or fewer characters; if two
different colon commands have identical labels, a compile
time diagnostic will be generated, and no execution attempt-
ed..

J <label>

The jump command causes the sequence of editing commands be-
ing applied to the current input line to be restarted immedi-
ately after the place where a colon command with the same
<label> was encountered. If no colon command with the same
label can be found after all the editing commands have been
compiied, a compile time diagnostic is produced, and no exe-
cution is at tempted.

A j command with no <label> is taken to be a jump to the end
of the list of editing commands; whatever should be done with
the current input line is done, and another input 1line is
read; the list of editing commands is restarted from the be-
ginning on the new line.

t <label>

The t command tests whether any successsful substitutions
have Dbeen made on the current input line; if so, it jumps to
<label>; if not, it does nothing. The flag which indicates
that a successful substitution has been executed is reset by:

1) reading a new input line, and

2) executing a t command.

SED:0(1L) SCCS OCTOBER 24, 1975 SED:0(1L)

Example:

#n This file prints each non-blank line following a blank

line.
1{
/./p
¥
/2874
: loop
n
e
p
]
3
j loop
}
FILES
SEE ALSO
ed (1)
DIAGNOSTICS
BUGS

Lines are silently truncated at 512 characters.

SHLERR(1L) sces Jul 22 1875 SHLERR(1L)

NAME
shlerr - shell error
SYNOPSIS
shlerr mode spcl etype ecode enum emsg
DESCRIPTION
Shlerr permits shell programs to0 call the sccerr or glberr
subroutines to print error messages.
Shlerr has five or six arguments, depending on what value is
specified for mode. A description of each argument follows.
mode is '0' if the error information is to be passed to
subroutine sccerr.
is '1' if the error information is to be passed to
subroutine glberr.
spel is the address of a string containing the special characters
associated with an error message. It is provided only if
mode= '0Q'.
etype is the address of a string containing the type or severity
of an error.
ecode is the address of a string containing the three-character
error code.
enum is the address of a string containing the three-character
error number.
emsg is the address of a string containing the message associated
with an error.
FILES
SEE ALSO
sccerr(3L), glberr(3L)
DIAGNOSTICS

Value for mode must be '0O' or 'l'. If not then the following er-
ror message is printed:

By USR 100 INVLAID ARGUMENT

sSuen

NAME

TO1L) SCCS August 10, 1981 ' SUBMIT(1L)

sutrit - run @ backround process

- = -

SYNOPSIS

submit [=p oriority 1 command [arguments]

DESCRIPTION

BUGS

Suprit is based on the T50 supmit command. It is used
an execute an indecendent tackround process. i1t is par-
ticularly useful if you wish to execute a long running
process without tyina un a terminal, Frocess output
(including error output) is directed ta & file named
"subzarEg,oul", A file namea submit.loo is created to
record start and finisn times for submitted processes,
Finally, if the user 1s siuyned=on w¥hen a submitted pro=
cess completes (s)he recesives a messaqae onh the termie
nal.

The user may specify a priority for 3 supmitted process
by including a =p flag followed by & number from v to
20, Finimum priority is 20 and maximum 1s U, For
further information see the "nice" command.

Probahly

SPP(1L) SCCS August 15, 1979 SPP(1L)

NAME
spp - shell command file pre-processor
SYNOPSIS :
spp file [args ... 1
DESCRIPTION
Spp provides a subroutine facility for shell procedures. ISERNG S
a21so be used to package a set of shell procedure files and data
files into a single file.
File contains a set of shell commands interspersed with *“label''
lines. A ““label'' line commences with a “‘name'’ (up to four-
teen lower-case alphabetic characters) followed immediately Dy &
colon. Each such ‘‘name'' may be used elsewhere in file as the
name of a command (i.e., as a routine name). Spp creates a tem-
porary directory and copies into it files obtained by splitting
file at “‘label'' boundaries. The first such file is called
““main'' and succeeding ones are named from the “‘labels'' that
precede them in file. Spp changes the value of $PATH so that the
temporary directory is searched initially when command names are
resolved and then executes the command “vargs ...'', or, if this
is null, ““main''.
EXAMPLE
If the file “‘sample'' contains:
for i in “1s°
do show $i; done
show: subroutine
echo $1
old: free standing routine
we * A tail -1
the commands spp sample and spp sample old will display the con-
tents of the current directory and its size, respectively. Note
that the first command is equivalent to spp sample main and that
everything that appears on a label line after the colon is treat-
ed as a comment and ignored.
FILES
/usr/tmp/sSpps$ temporary directory
/usr/tmp/spps$s/. .- temporary shell procedures
/usr/lib/breakup program to rewrite command file
SEE ALSO
sh(l).
BUGS

Label names must consist of lower case alphabetics only. Spp
will fail if S$PATH is not exported properly by the shell. Occa~
sionally, the temporary directory is not deleted.

TM(1L) SCCs October 10, 1979 TM(1L)

NAME
tm - magnetic tape manipulate

SYNOPSIS
tm <filename>

DESCRIPTION
Tm can open, read, write and close <filename> on command. For
more info type '?' after ':' prompt.

Ea i 3 RL.H"\C."\.I.

UPDSRC(®8) GA=MANUAL 1,0 UPDSRC(BJ
NAME
_updsrc = Installation or retrieval of code
SYNOPSIS
updsrc {+0,+8,+¢Cc,+d,+gV]

ca=<ca.number(s)>
ma=<resolved.by.name>
pr=<pr..directory>
maz<makKe,.name
<flle(s)=and/or=-av(s)>

DESCRIPTION

Updsrc is twofold in nature, First, it is a special routine

= for Generic Administration (GA) housekes=ping of the update
packs, It will be used to allow GA to control what code ig
on the packs. Alsc, it will provide correlation between all
code on the update pacKs and the associated Change Adminis-
trations (CAs), All code to be made on the <make_name> nusi
be submitted via undsrc. All CA(s) to be signed=-off for all
code in <make.name>, must be submitted via updsrc.

Second, it provides the user with a retrieval of the latest
code on the gensrc and update packs to update thelr local
directory,

¥hen Invoking updszc the user has three main options of com=.
mand line wsages:

1 = Type the command name alone,
EFFECY: The SYNTAX line will bz returned,

2 - Type the command name and any one or more of its argu-~
ments in any non~-specified order.
EFFECT: The user will be prompted for any missing argu=
ments, except for optional arguments denoted in
SYNOPSIS section o0f this IM,

3 - Type the command name and all necessary arquments in
any non-~specified order.
EFrECTS lpdsrc will execute according to the specified
arguments and will not prompt anything more for the
command line,

The command line is totally non+-positional, The user may
place in any order the four Keywords and thelr associated .
arguments, The options can be placed in any point of the
string of arguments, And filenames eand/or au names can be
blaced anyvwhere between and/or around the other arquments,

The <pr.cirecicry>, <file(s)-and/or~ad(s)> and <make.name>
arouments willl be checked and the code will be sent to the
appropiate update pack via putsr¢; or they will be checked

(printeg 8/10/81) Page 1 (printed 8/10/81)

o ek

TR e TR TRNe | Eme T e W - T T B T -

UPDSRC(8) GA-MANUAL 1.0 UPDSRC(8)

anéd the code retrieved via getsrc, depending on the options
used. Unless the “+9’ type option is used, specifing the
retrieval option; the default Is to update the update pack
specified by <make.name>,

The arguments to URASIC are as follows:
L 3

QRIINN EEEECT

+0 If <file(s)~and/or-au(s)> exist {n
the target directory, overwrite
them with the new flles and inform

P user. If this option is not set,
the routine will prompt the user if
the existing files are to be over=
written., CAUTION: Do not use this
option unless sure of what i{s being
over-written; the over=-written
source will be gone and may only be
retrievable via tape dumps,

+a If this option is specified, the au
file npames specified will be opened
and the ¥ PROGRAM UNITS and the
#DATA UNITS sections will be read. .
All the source files and header
files listed in those sections will
be executed upon also,

+C When this opticon Is used, updszc

will not copy <file(s)=and/or-

au(s)> to the specified 1location,

but instead will be used to record

any <CA.numbers> for the

<make.name> for «<file(s)=and/or=

au(s)> that the user forgot ¢to

input previously when the

= : <file(s)=and/or=au(s)> were first
brouocht over via LpdsiCe .

+d (Delete option not available at
" this time,)
+qv The “+4g’° or *+gv’ options cause .
. Lpdsre to retrieve the latest
i ' -) copies of the <file(s)~and/or=

au(s)> off the gensrc and/or update
packs. The «code 1is derosited in
your present working directory., The
usage of ‘v7 with the “+g’ obption
turns on the verbose mode., This

(printed 8/10/81) Page 2 "(printed 8/10/81)

A BT e

ATTACHMENT 1 (con®t)

UPDSRC(8) GA=MANUAL 1.0 UPDSRC(8)

ARGUEEND:

<file(s)=and=au(s)>

<pr.dlirectory>

<make.name>

<ca.number(s)>

<resolved..by.name>

In terms of putting code

can be very helpful in finding out
the status of all the update packs
and gensrc concerning where vyour
code resides,

RDEEILE

The name or names of source and/or
the name or names of au files to be
updated, If an au file name and the
‘+a’ option is used, updsrc will
not only copy the au files over,
but will also read the #PROGRAM
UNITS and the #DATA UNITS sections
of the au and will copy over all
the source and header files listed
there, (Note: “%*° is allowed in the
command line for shell expansion of
source file names or au file names
in the local directory, but will be

rejected if used: to expand names _

when prempting option is used.)

The update pack directery where

code Iis to reside, or currently.

resides,

The appropiate generic and issue in:4

which the source 1s to be made,
(i.e, SC711, SC6I4, etc,)

Multiple CA numbers should be
separated by spaces, This argument
is not necessary and will not be
prompted for: When ’+g’ type option
is used or if <pr.directory> 1is a
new pr as defined by GA,

The name of the CA ‘RESOLVED BY’
person, This argument is not
necessary and will not be prompted
for: vYhen “+g” type option is used
or if <pr.directory> is a new pr as
defined by CA,

on update packs: All elements

entered irto updsrgc w%ill be checked for complete correlas=

tion, After the user has

answered the all prompts, updsng

returns the user to the UNIX enviroment and spins off the
backround check, If there is any problem in updsrecls check
of given data, the user will receive mail concerning thc

(printed 8/10/81)

Page 3 ‘ (printed 8/10/81)

I

- ATTACHMENT § (con’t

e e e e e v e = — = o i

UPDSRC(8) GA=MANUAL 1,0 UPDSRC(8)

error, And, if there are no problems, the user still will
recieve mail confirming the code’s acceptance by GA,

In terms of retrieving code: Updsric willl precess the request
on line, i

SEE ALSQO L
putsrc(3L), getsrc(3L) -

(printed 8/10/81) Page 4 (printed 8/10/81)

J

USERLIST(1L) SCCs May 5, 1980 USERLIST(1L)

NAME
userlist - generates SCCS USERS REGISTER from password file(s)
supplied as argument(s)

SYNOPSIS
userlist passwordfilel [passwordfile2 ...]

DESCRIPTION

Userlist extracts and formats a sorted list of SCCS Laboratory
Users from the named password file(s) and sends the list to the
standard output. Userlist expects the comment fields oftne
password file entries to follow a prescribed format as described
under PASSWORD FILE FORMAT.

PASSVWORD FILE FORMAT
Userlist extracts the SCCS USERS REGISTER from the GCOS fields of
the password file entries. In the SCCS Lab the GCOS field is
used as a comment field and will be referred to as the comment
field in the remainder of this description.

For userlist to function properly, the comment field of each
password file entry is divided into 4 or 5 subfields separated by
commas. Five subfields are required if a user priority is in-
cluded as described in passwd(5); otherwise, only four subfields
are required. Most SCCS password file entries have four sub-
fields called name, telephone, location, and department. The
telephone and/or location subfield may be 1left Dblank, but the
terminating comma for each missing subfield must appear.

The four subfields must conform to the following conventions or
an appropriate diagnostic will be issued to the user's standard
error output:

name

This subfield contains the wuser's first and last names,
first name first. The name included in the subfield may
consist of more than two words, but the second word is al-

= ways assumed to be the last name for sorting purposes. If
the name subfield is too long, userlist truncates it to 23
characters. A legal character in the name subfield is any
of the upper or lower case letters, a blank, or a period.

Both the first and 1last names must Dbegin with capital
letters. If the first name begins with a lower case letter,
userlist ignores that password file entry, and that user
will not appear on the SCCS USERS REGISTER unless he/she has
a subsequent password file entry with an appropriately for-
matted comment field.

telephone

The telephone subfield has a maximum length of 15 characters

=

USERLIST(1L) - - - SCCS May 5, 1980 USERLIST(1L)

which may be any of the following:

blank

- A password file entry having a telephone number longer than
iL5 cnaracters wlll be: rejected.
location

The locaiion suﬁfieiﬁ has a maximum length of 12 characters,
‘the. ‘only -illegal ‘character being a comma. BTL locations
should be of the form XX+SHFYY where,

two-letter location code
building section number
hall letter

floor number

= FOOM.number -.w: -

SHonwonom

Users are divided into two categories —-- direct and spon-
sored.. Direct users are those employees currently reporting
to a BTL supervisor at Columbus. Sponsored users are WECo
emplqyees, Telco employees, and BTL employees at other BTL
locations. Each sponsored user has a sponsor who is a
direct user. Userlist uses the department subfield to dis-
tlngulsh between dlrect and sponsored users.

The department subfield for a direct user consists of a cap-
ital D followed by a 4-digit department number. The depart-
ment subfield for a sponsored user consists of the login id
of the user S sponsor in lower case letters.

The degartmen subfleld must contain from 1 to 5 non-blank
characters.

DIAGNOSTICS
- UserTist issues two kinds of diagnostics to the standard error
output -- fatal and non-fatal errors. A fatal error will occur

if any of the following conditions are encountered:
1. No password file names were supplied as arguments.

2. The number of users found in the password file(s) ex-
ceeded 150.

3% Userlist could not open one of the named password files
for reading.

A fatal error will cause userlist toO issue an appropriate error
message and to exit with a status of minus one (-1).

USERLIST(1L) scecs May 5, 1980 ' USERLIST(1L)

SEE ALSO e cHAE ESce

BUGS

A non-fatal error will occur if the comment fleld cannot be ex-
tracted from a password file entry or if one of the,formatting
conventions described under PASSWORD FILE FORMAT is V1olated. If
such an error occurs, the user will not appear on the SCCS USERS

REGISTER unless userlist finds a subsequent: password £i¥él entry

for that user with an appropriately formatted comment fl‘»d.

Userlist assumes that the first valid comment field found for .a.:
particular user is correct and uses that comment. fleld to build

his/her entry in the SCCS USERS REGISTER:. ~If a:- subsequent com-
ment field is encountered which dlffers from thes flrSt one found,
an approprlate non-fatal error message *Wwill be issued.- -

;H

passwd(5s)

- -

Userlist sorts first by department number- and ‘then by last names.
No sorting is done by first name. People with tne same last name -

and different first names appear in random order Wlthln' t”
department and last name grouping, :

- XREAD:0(1L) ' sccs . Nov 12, 1975 XREAD:0(1L)

. NAME
‘ read, open, cnend - sequential file read
SYNOPSIS Jean uE
onend * label] o
open { fname i
read
DESCRIPTION :
Within a command flle,_Eead accesses .data, one 1line at a time
from. another flle.» The: read is done sequentially from the begin-
nlng of the file.
OEen is» needed to# 1dent1ry the file to be read. Only one file
‘may” be’ open . at any time.. Wlthout an argument the standard input
5 g used» e .
Onend. prov;des~arbranch\ to -label - when " the EOF condition is
_reached‘cn fname.AIf label‘;s not supplled,.a diagnostic is writ-
" ten to ne’error output andg a null string is sent to the standard
«outpu,.3p
FILES e T
-SEE - ALSO)
sh- (l). .goto (1), read (1) o
xDIAGNOST}CS
BUGS

Standard Shell syntax is v;olated to allow pipe and redirected

inputs; tos take: precedence o¥er an open flle, which in turn takes
precedence over ‘standard. Shell- input.
Don e try to read a dlrectory file. &

Bell Laboratories

o e, NEw Mawa Bres =0 XPR e :i,/igjsz
FROM: sl E.‘Q'Feﬁder‘;‘-e(‘

Attached is the new manual page for xpr which produces printed :
listings and/or cross references (x-refs) of source files. The new
version is on the development machines.

In summary, the changes to xpr are: ‘
¢ A new option, -d, which produces x-refs of "definitions" (i.e.
— defined symbols, structure and union definitions, and typedef's).
. A definition x-ref is particularly useful for header file
listings.
¢ New options, -moO, which facilitate listings intended for double
sided copying (e.g. UNIX opsys listings). A
¢ A new option, ~j, which causes file names rather than file
numbers to appear in the x-refs. This is most useful when you
produce listings via another program like spr, and you also want
the x-refs of xpr.
e Improvements in the heuristic parsing of C files to reflect new C
features and remove selected deficiencies. ' ;

Some Notes on General Use. A few comments on the three options of xpr
which are frequently used, -w<wid>, -!, and -h:
¢ The -] option produces all three x-refs. The best x-refs are
produced when headers precede other source .files in the listings.
¢ For code without function prologues (frequent in UNIX code and
less frequent in SCCS code), the -h option helps visually
identify the start of functions.
¢ xpr, with a default line width (72 characters), produces a
listing which is ideal for 8.5"x11" sheets for notebook
insertion. Unfortunately, lots of code is very wide, and so many
lines are folded that the listing is crummy. Thus, an option of
-w80 or -wl00 is often necessary. I avoid the problem by writing
narrow code which easily fits in program notebooks. Code which
- is barely too wide for xpr's defaults, may fit notebooks without
excessive line folding by manipulating several options
simultaneously; for example, dropping the line numbers using =-n,
increasing the width, and/or decreasing the left margin with
-c<page offset>.

Your comments and suggestions are welcome.

Copy Yo+
‘:’ﬁP\l‘:\5 Nembecs of Tepts. SIGNED 706 ore. 29472
S

9477 omd 59475 '
= o LOCATION CE Z_@ZOS EXTENSION /(1/52’7_.

THIS FORM IS DESIGNED FOR INFORMAL HANDWRITTEN MEMORANDA.

E-§90-B (1.74)

XPR (1

_NAME

L) CB-UNIX (SCCS February 3, 1980) XPR(1L)

- Xpr - Make listing and cross reference of C program

USAGE

xpr [-bc<ecol>dfFghijl<lines>mnoOsuvw<wid>x<num>] file file

ZSCRIPTION

Produces printed listing and/or cross references of one or more
files. Each page is headed with the current date, the file name,
the file number, the page, and the first line number of the file
on the page. By default, printed lines are prefixed with line
numbers. Lines over 72 characters long are folded at a blank,
tab, comma, semicolon, closing bracket, brace, or parenthesis;
lines without any of the seven fold characters are not folded.
The "overflow" text of a folded line is prefixed with the leading
white space of the original line, and it is not truncated again
even 1if it wvery long. Optionally, each function definition is
highlighted.

Optionally, cross reference lists may be generated for functions,
external wvariables, and definitions. In the cross reference
lists, each entry includes the function of the reference, the
line number of the reference, and the line of code. Options:

=b Print nesting level on each line (default = OFF).
-c<col> Column offset of output (default = 4).

-3 — : Definition cross reference (default = OFF).

-f — Function cross reference (default = OFr).

-F Function definifion listing (default = OFF).

-g Global cross references (across all input files)

(default = OFF).

-h — Highlight function definitions (default = OFF).
-1 Inhibit program listing (default = OFF).
-3 - File numbers in cross references are replaced by file

names (default = OFF).
fl(lines> Number of lines in a page (default = 66).

-m Page headers are "mirrored" for even pages which is
useful for double sided printing (default = OFF).

-n Print lines numbers on each line (default = ON).

-0 Skip to odd page before starting next file (default =

(last mod. 11/14/82) Page 1 (last mod. 11/14/82)

XPR(1L) CB-UNIX (ScCS February 3, 1980) XPR(1L)

—*ILES

BUGS

OFF).
-0 Skip to odd pages before all files (default = OFF) .
-8 Substitute the next argument as the printed name of

the next file processed,
-y —= Variable cross reference (default = OFF) .

=w<wid> Width of printed lines, which does not include the
column offset, 1line numbering, or nesting level
(default = 72). i

=x<num> Set file number of next processed file.

-1 Selects the set of options, "gfFvd", which opts for
all cross references and each to be global.

®pr will read the environmental parameter, XPR, as a set of
options to the program. Thus, you may reset any of the defaults
listed above. Each invocation of an OFF/ON flag toggles that
flag. You may put options between file names to change the
treatment of subsequent files. If you call xpr with no argu-
ments, then it tells you how to use it. If you call it with an
argument of just "-", then standard input is read as a file.

/tmp/FCxXXXXXX — Temp sort file for function x-ref
/tmp/VCxXXXXXX - Temp sort file for variable x-ref
/tmp/DCxXXXXXX - Temp sort file for definition x-ref

Uses heuristics to produce the cross reference; in particular,
“defines" can be used in such a way as to really screw the cross
references up. References to external variables are not col-
lected until the program encounters an external declaration for
that variable; thus, the ordering of the files may cause a
difference on the variable cross reference although the function

cross reference is often correct regardless of the ordering.

(last mod. 11/14/82) Page 2 (last mod. 11/14/82)

