INTRO(1) CB—UNIX 2.1 INTRO(1)

NAME
intro — introduction to commands and application programs

DESCRIPTION

This section describes, in alphabetical order, publicly-accessible commands. Certain distinctions
of purpose are made in the headings:

n Commands of general utility.

(1C) Commands for communication with other systems.

(1G) Commands used primarily for graphics and computer-aided design.
(IM) Commands used primarily for system maintenance.

(1S) Commands used for Source Code Control.

(1X) Games and useful commands.

SEE ALSO
How to Get Started, at the front of this volume.

DIAGNOSTICS

Upon termination, each command returns two bytes of status, one supplied by the system and
giving the cause for termination, and (in the case of ‘‘normal’’ termination) one supplied by
the program (see wait(2) and exit(2)). The former byte is 0 for normal termination; the latter
is customarily O for successful execution and non-zero to indicate troubles such as erroneous
parameters, bad or inaccessible data, or other inability to cope with the task at hand. It is called
variously ‘‘exit code’’, ‘‘exit status’’, or ‘“‘return code”, and is described only where special
conventions are involved.

November 1979 Page 1 November 1979

ABORT(1) CB—-UNIX 2.1 ABORT(1)

NAME
abort — remove previously queued line printer jobs

SYNOPSIS
abort type item [item]

DESCRIPTION -
Abort removes a set of line printer requests from their respective queues. Type (either user,
printer, or job) indicates the type of items which follow. At least one item is required.

In the case of type user, the items are login ids of users with queued jobs. For each specified
user, abort removes all of the user’s line printer requests, regardless of the queue in which the
request resides. If the type is printer, then each item is a printer name, and abort terminates the
currently printing job on each of the named printers. For type job, each of the specified jobs is
removed from the queue.

SEE ALSO
hold (1), init(1), Ipr(1), release(1), restrain(1), start(1)

November 1979 Page 1 November 1979

AC(1) CB—UNIX 2.1 AC(1)

NAME
ac — login accounting

SYNOQOPSIS
ac [=w wtmp] [—p] [—d] people

DESCRIPTION
Ac produces a printout giving connect time for each user who has logged in during the life of
the current wrmp file. A total is also produced. The =w option is used to specify an alternate
wtmp file. The ~p option prints individual totals; without this option, only totals are printed.
The —d option causes a printout for each midnight to midnight period. Any people after —p
will limit the printout to only the specified login names. If no wemp file is given, /etc/wtmp is
used.

The accounting file /ete/wtmp is maintained by init, date, and login. Neither of these programs
creates the file, so if it does not exist no connect-time accounting is done. To start accounting,
it should be created with length 0. On the other hand if the file is left undisturbed it will grow
without bound, so periodically any information desired shouid be collected and the file trun-
cated.

FILES
/etc/witmp

SEE ALSO
date (1), init(1IM), login(1), wtmp(5)

November 1979 Page 1 November 1979

ACCTON(1) CB—UNIX 2.1 ACCTON(1)

NAME
accton — turn accounting on/off

SYNOPSIS
/etc/accton [file]

DESCRIPTION '
Accton is used to turn system level accounting on and off. If the file argument is given,
accounting is turned on and accounting information for each process is placed at the end of file.
If the file argument is not given, accounting is turned off.

This command is effective only if system accounting is enabled at system generation time by
specifying the parameter SYSACCT in /usr/include/sys/param.h.

FILES
/usr/include/sys/param.h.

SEE ALSO
sa(1), acct(2)

November 1979 Page 1|) November 1979

ADB(1)

NAME

CB—UNIX 2.1 ADB(1)

adb — debugger

SYNOPSIS

adb [—w] [objfil [corfil]]

DESCRIPTION

Adb is a general purpose debugging program. It may be used to examine files and to provide a
controlled environment for the execution of UNIX programs.

Objfil is normally an executable program file, preferably containing a symbol table; if not then
the symbolic features of adb cannot be used although the file can still be examined. The
default for objfil is a.out. Corfil is assumed to be a core image file produced after executing
objfil, the default for corfil is core.

Requests to adb are read from the standard input and responses are written to the standard out-
put. If the —w flag is present then both objfil and corfil are created if necessary and opened for
reading and writing so that files can be modified using adb. Adb ignores QUIT; INTERRUPT
causes return to the next adb command.

In general requests to adb are of the form
{ address] [, count] [command] [;]

If address is present then dot is set to address. Initially dot is set to 0. For most commands
count specifies how many times the command will be executed. The default countis 1. Address
and count are expressions.

The interpretation of an address depends on its context. If a subprocess is being debugged then
addresses are interpreted in the usual way in the address space of the subprocess. For further
details of address mapping see ADDRESSES.

EXPRESSIONS

Page 1

The value of dot.
+ The value of dot incremented by the current increment.
The value of dot decremented by the current increment.
" The last address typed.

integer An octal number if integer begins with a 0; a hexadecimal number if preceded by # or
0x otherwise a decimal number.

integer.fraction _
A 32 bit floating point number.

“cccc” The ASCII value of up to 4 characters. \ may be used to escape a .

< name
The value of name, which is either a variable name or a register name. A4db maintains a
number of variables (see VARIABLES) named by single letters or digits. If name is a
register name then the value of the register is obtained from the system header in
corfil. The register names are r0 ... r3 sp pe ps.

symbol A symbol is a sequence of upper or lower case letters, underscores or digits, not starting
with a digit. The value of the symbol is taken from the symbol table in 0&jfil. An ini-
tial _ or ~ will be prepended to symbol if needed.

_symbol
In C, the ‘true name’ of an external symbol begins with _. It may be necessary to utter
this name to distinguish it from internal or hidden variables of a program.

routine.name

November 1979

ADB(1)

CB-UNIX 2.1 ADB(1)

The address of the variable name in the specified C routine. Both routine and name are
symbols. If name is omitted the value is the address of the most recently activated C
stack frame corresponding to routine.

(exp) The value of the expression exp.
Monadic operators:
*exp The contents of the location addressed by expin corfil.
@exp The contents of the location addressed by expin objfil.
—exp Integer negation.
~exp Bitwise complement.
Dyadic operators are left associative and are less binding than monadic operators.
el+e2 Integer addition.
el—e2 Integer subtraction.
el»e2 Integer multiplication.
el%e2 Integer division.
el&e2 Bitwise conjunction.
elle? Bitwise disjunction.
el#e2 elrounded up to the next multiple of e2.

COMMANDS

Most commands consist of a verb followed by a modifier or list of modifiers. The following
verbs are available. (The commands ? and / may be followed by *; see ADDRESSES for
further details.)

?2f Locations starting at address in objfil are printed according to the format £ dot is incre-
mented by the sum of the increments for each format letter (q.v.).

lf Locations starting at address in corfil are printed according to the format fand dot is
incremented as for ?.

=f The value of address itself is printed in the styles indicated by the format £ (For i for-
mat ? is printed for the parts of the instruction that reference subsequent words.)

A format consists of one or more characters that specify a style of printing. Fach format charac-
ter may be preceded by a decimal integer that is a repeat count for the format character. While
stepping through a format dot is incremented by the amount given for each format letter. If no
format is given then the last format is used. The format letters available are as follows:

=
(9]

Print 2 bytes in octal. All octal numbers output by adb are preceded by 0.
Print 4 bytes in octal.

Print in signed octal.

Print long signed octal.

Print in decimal.

Print long decimal.

Print 2 bytes in hexadecimal.

Print 4 bytes in hexadecimal.

Print as an unsigned decimal number.

Print long unsigned decimal.

Print the 32 bit value as a floating point number.
Print double floating point.

Print the addressed byte in octal.

Print the addressed character.

6T mmEE WK OROR O
e 00 B BN AN RN RN

November 1979 s Page 2

ADB(1)

-Page 3

U-ﬂ'< mm
N

> a3y o~ -
‘a0 O o

I+

new-line

CB—UNIX 2.1 ADB (1)

Print the addressed character using the following escape convention. Character
values 000 to 040 are printed as @ followed by the corresponding character in
the range 0100 to 0140. The character @ is printed as @@.

Print the addressed characters until a zero character is reached.

Print a string using the @ escape convention. 7 is the length of the string
including its zero terminator.

Print 4 bytes in date format (see ctime(3C)).

Print as PDP11 instructions. 7 is the number of bytes occupied by the instruc-
tion. This style of printing causes variables 1 and 2 to be set to the offset parts
of .the source and destination respectively.

Print the value of dot in symbolic form. Symbols are checked to ensure that
they have an appropriate type as indicated below.

/ local or giobal data symbol
? local or global text symbol
= |ocal or global absolute symbol

Print the addressed value in symbolic form using the same rules for symbol
lookup as a. \

When preceded by an integer, tabs to the next appropriate tab stop. For exam-
ple, 8t moves to the next 8-space tab stop. ’
Print a space.

Print a new-line.

Print the enclosed string.

Dot is decremented by the current increment. Nothing is printed.

Dot is incremented by 1. Nothing is printed.

Dot is decremented by 1. Nothing is printed.

Repeat the previous command with a count of 1.

[2/11 value mask
Words starting at dot are masked with mask and compared with value until a match is
found. If L is used then the match is for 4 bytes at a time instead of 2. If no match is
found then dor is unchanged; otherwise dot is set to the matched location. If mask is
omitted then —1 is used.

[2/1w value ...

Write the 2-byte value into the addressed location. If the command is W, write 4 bytes.
0Odd addresses are not allowed when writing to the subprocess address space.

[2/1m b1 el f1(?/]
New values for (51, el, fI) are recorded. If less than three expressions are given then
the remaining map parameters are left unchanged. If the ? or / is followed by * then
the second segment (b2, e2,f2) of the mapping is changed. If the list is terminated by
? or / then the file (08jfil or corfil respectively) is used for subsequent requests. (So
that, for example, ‘/m?’ will cause / to refer to objfil.)

> name Dot is assigned to the variable or register named.

! A shell is called to read the rest of the line following !.

Smodifier

Miscellaneous commands. The available modifiers are:

<f
>f
r
f

Read commands from the file fand return.

Send output to the file f, which is created if it does not exist.

Print the general registers and the instruction addressed by pe. Dot is set to pe.
Print the floating registers in single or double length. If the floating point

‘November 1979

ADB(1)

g<oemRowgo

:modifier

CB—-UNIX 2.1 ADB (1)

status of ps is set to double (0200 bit) then double length is used anyway.

Print all breakpoints and their associated counts and commands.

ALGOL 68 stack backtrace. If addressis given then it is taken to be the address
of the current frame (instead of rd4). If count is given then only the first count
frames are printed.

C stack backtrace. If address is given then it is taken as the address of the
current frame (instead of r5). If C is used then the names and (16 bit) values
of all automatic and static variables are printed for each active function. If
count is given then only the first count frames are printed.

The names and values of external variables are printed.

Set the page width for output to address (default 80).

Set the limit for symbol matches to address (default 255).

All integers input are regarded as octal.

Reset integer input as described in EXPRESSIONS.

Exit from adb.

Print all non zero variables in octal.

Print the address map.

Manage a subprocess. Available modifiers are:

be

cs

S§

k
VARIABLES

Set breakpoint at address. The breakpoint is executed count—1 times before
causing a stop. Each time the breakpoint is encountered the command cis exe-
cuted. If this command sets dor to zero then the breakpoint causes a stop.

Delete breakpoint at address.

Run objfil as a subprocess. If address is given explicitly then the program is
entered at this point; otherwise the program is entered at its standard entry
point. count specifies how many breakpoints are to be ignored before stopping.
Arguments to the subprocess may be supplied on the same line as the com-
mand. An argument starting with < or > causes the standard input or output
to be established for the command. All signals are turned on on entry to the
subprocess.

The subprocess is continued with signal s (see signal/(2)). If address is given
then the subprocess is continued at this address. If no signal is specified then
the signal that caused the subprocess to stop is sent. Breakpoint skipping is the
same as for r.

As for ¢ except that the subprocess is single stepped count times. If there is no
current subprocess then o0éjfil is run as a subprocess as for r. In this case no
signal can be sent; the remainder of the line is treated as arguments to the sub-
process.

The current subprocess, if any, is terminated.

Adb provides a number of variables. Named variabies are set initially by adb but are not used
subsequently. Numbered variables are reserved for communication as follows.

0
1
2

The last value printed.
The last offset part of an instruction source.
The previous value of variable 1.

On entry the following are set from the system header in the corfil. If corfil does not appear to
be a core file then these values are set from objfil.

b

November 1979

The base address of the data segment.

Page 4

ADB(1) CB—-UNIX 2.1 ADB(1)

The data segment size.

The entry point.

The ‘magic’ number (0405, 0407, 0410 or 0411).
The stack segment size.

The text segment size.

nms(‘bﬁu

ADDRESSES

FILES

The address in a file associated with a written address is determined by a mapping associated
with that file. Each mapping is represented by two triples (b1, el, fI) and (82, e2, f2). The file
address corresponding to a written address is calculated as follows.

bl< address<el => file address=address+ f1—b1, otherwise,
b2< address< e2 => file address=address+f2—b2,

otherwise, the requested address is not legal. In some cases (e.g. for programs with separated I
and D space) the two segments for a file may overlap. If a ? or / is followed by an * then only
the second triple is used.

The initial setting of both mappings is suitable for normal a.out and core files. If either file is
not of the kind expected then, for that file, 57 is set to 0, el is set to the maximum file size and
f1is set to 0; in this way the whole file can be examined with no address transiation.

In order for adb to be used on large files all appropriate values are kept as signed 32 bit
integers.

a.out
core

SEE ALSO

ptrace(2), a.out(5), core(5)

DIAGNOSTICS

BUGS

Page §

““Bad core magic number’’ when the magic number of the corfil does not match that of objfil.
This message is expected when debugging a unix crash dump tape. ‘‘Adb’’ appears when there
is no current command or format.

Comments about inaccessible files, syntax errors, abnormal termination of commands, etc.
Exit status is 0, unless last command failed or returned nonzero status.

A breakpoint set at the entry point is not effective on initial entry to the program.

When single stepping, system cails do not count as an executed instruction.

Local variables whose names are the same as an external variable may foul up the accessing of
the external.

November 1979

N

ADDSCCS (1S) CB-UNIX 2.1 ADDSCCS(18)

NAME

addsccs — add SCCS keywords to a file

SYNOPSIS

addsces [w] file [file ...]

DESCRIPTION

The addsccs command will add SCCS keywords (%W%) to each named file. This is accom-
plished by the text editor ed(1). If one of the named files is ‘“‘w” then this is taken as a flag
and forces addsccs to write out the results of the edit commands into each named file. Other-
wise, addsccs just edits the file, adds the keywords, prints the addition, and exits the editor
without writing (this is useful to find out if addsccs knows about a particular suffix).

Addsccs knows about the following types of files and the correct syntax for adding the keywords
in the form of a comment:

* [chsyll, *.mk, *sh

The type of file is determined by its suffix.

Addsces is used by the gadd(1S) command to automatically add the SCCS keyword string when
entering new files into the SCCS form.

SEE ALSO

ed (1), gadd (1S), sccsfile (5)

DIAGNOSTICS

BUGS

All diagnostics are printed on file descriptor 2.

There is no way to specify the type of file other than the suffix. Also, the new shell comment
syntax is not used; rather the old form of colon and quoted string.

November 1979 Page 1 November 1979

ADMIN(1S) CB—-UNIX 2.1 ADMIN (1S)

NAME
admin — administer SCCS files
SYNOPSIS
admin [—n] [—ilname] [—rrel]]l [—tlnamell [~fadd-flag(flag-valll ... [—ddelete-flag] ...
[=aadd-login] @[—aadd-login] ... [—eerase-loginl ... [=h] [~z name ...
DESCRIPTION

Admin is used to create new SCCS files and change parameters of existing ones. Arguments to
admin, which may appear in any order, consist of keyletter arguments,which begin with ‘=,
and named files. If a named file doesn’t exist, it is created, and its parameters are initialized
according to the specified keyletter arguments. Parameters not initialized by a keyletter argu-
ment are assigned a default value. If a named file does exist, parameters corresponding to
specified keyletter arguments are changed, and other parameters are left as is.

If a directory is named, admin behaves as though each file in the directory were specified as a
named file, except that non-SCCS files (last component of the pathname does not begin with
‘s.”), and unreadable files, are silently ignored. If a name of ‘=" is given, the standard input is
read; each line of the standard input is taken to be the name of an SCCS file to be processed.
Again, non-SCCS files and unreadable files are silently ignored. '

The keyletter arguments are as follows. Each is explained as though only one named file is to
be processed, but the effects of any keyletter argument other than i and r apply independently
to each named file.

—n This argument indicates that new files are to be created. This argument must be
specified when creating new SCCS files. The i argument implies an n argument.

—i The name of a file from which the text of an initial delta is to be taken. If this
argument is supplied, but the file name is omitted, the text is obtained by reading
the standard input until an end-of-file is encountered. If this argument is omit-
ted, and the admin command creates one or more SCCS files; then their initial
deltas must be inserted in the normal manner, using ger(1S) anddelta(1S). Only
one SCCS fiel may be created by an admin command on which the i argument is
supplied.

—=r The release into which the initial delta will be inserted. This argument may only
be supplied if the i argument is also supplied. If this argument is omitted, the ini-
tial delta will be inserted into release 1. The level of the initial delta will always
be 1. '

—t The name of a file from which descriptive text for the SCCS file is to be taken. If
this argument is supplied and admin is creating a new SCCS file, the descriptive-
text filename must also be supplied. In the case of existing SCCS files, if this
argument is supplied but the file name is omitted, the descriptive text (if any)
currently in the SCCS file will be removed. If the file name is supplied, the text
in the file named will replace the descriptive text (if any) currently in the SCCS
file.

—f This argument specifies a flag, and, possibly, a value for the flag, to be added to
the SCCS file. Several f arguments may be supplied on a single admin command.
The allowable flags and their values are as follows:

b The presence of this flag indicates that the use of the b argument on a ger
command will cause a branch to be taken in the deita tree.

ceeil The ‘ceiling:’ the highest release (less than or equai to 9999) which may
be specified by the r argument on a ger with an e argument. If this flag is
not specified, the ceiling is 9999.

November 1979 Page | November 1979

ADMIN(1S)

November 1979

dSID
ffloor

mmod
ttype

vpgm]

-d

CB-UNIX 2.1 ADMIN (18)

The default SID to be used on a get when the r argument is not supplied.

The ‘floor:’ the lowest release (greater than 0) which may be specified by
the r argument on a get with an e argument. If this flag is not specified,
the floor is 1.

The presence of this flag causes the ‘No id keywords (ge6)’ message
issued by get or delta to be treated as a fatal error. In the absence of this
flag, the message is only a warning.

The presence of this flag indicates that delta is to create a ‘null’ delta (a
delta that applies no changes) in each of those releases (if any) beitn
skipped when a delta is made in a new release (e.g., in making delta 5.1
after delta 2.7, releases 3 and 4 are skipped). The null deltas serve as
‘place holders’ so that branch deltas may later be created in any release
desired. The absence of this flag causes skipped releases to be com-
pletely empty, preventing branch deltas from being created in them.

This flag specifies the module name of the SCCS file. Its value will be
used by get as the replacement for the %M% keyword.

This flag specifies the type of the module. Its value will be used by ger as
a replacement for the %Y% keyword. :

The presence of this flag indicates that defta is to promt for MR numbers
in addition to comments. If the optional value of this flag is present, it
specifies the name of an MR number validity checking program.

This argument specifies a flag to be completely removed from an SCCS
file. This argument may only be specified when processing existing SCCS
files. Several d arguments may be supplied on a single admin command.
See the f argument for the allowable flags.

A login name to be added to the list of logins which may add deltas.
Several a arguments may be supplied on a single admin command. As
many logins as desired may be on the list simultaneously. If the list of
logins is empty, then anyone may add deltas.

A login name to be erased from the list of logins. Several e arguments
may be supplied on a single admin command.

This argument provides a convenient mechanism for checking for cor-
rupted files. With this argument, admin will check that the sum of all the
characters in the SCCS file (the check-sum) agrees with the sum which is
stored in the first line of the file. If the sums are not in agreement a ‘cor-
rupted file’ message will be produced. This argument inhibits writing on
the file, so that it will nullify the effect of any other arguments supplied,
and is, therefore, only meaningful when processing existing files.

This argument will cause admin to ignore any discrepancy in the check-
sum of the SCCS file (see h argument), and to replace it with the new
one. (The same effect may be had by the first editing the SCCS file with
ed(1) in order to replace the five-character check-sum in the first line of
the file with five zeroes. A subsequent invocation of an SCCS command
which modifies the file (e.g., admin, deita), will cause check-sum valida-
tion to be by-passed, and a new check-sum to be computed). The pur-
pose of this is to correct the check-sum in those files which may have
been edited by the user. Note that use of this argument on a truly cor-
rupted file will prevent future detection of the corruption.

Page 2 November 1979

ADMIN(1S) CB—-UNIX 2.1 ADMIN(18)

FILES

The last component of all SCCS file names must be of the form ‘.s.modulename’. New SCCS
files are given mode 444. Write permission in the pertinent directory is, of course, required to
create a file. All writing done by admin is to a temporary x-file (see get(1), created with mode
444 if the admin command is creating a new SCCS file, or with the same mode as the SCCS file
if it exists. After successful execution of admin, The SCCS file will be deleted, if it exists, and
the x-file will be renamed with the name of the SCCS file. This ensures that changes will be
made to the SCCS file onlyif no errors occurred.

It is recommended that directories containing SCCS files be mode 755 and that SCCS files
thamselves be mode 444. The mode of the directories will allow only the owner to modify
SCCS files contained in the directories. The mode of the SCCS files will prevent any
modification at all except by SCCS commands.

If it should be necessary to patch an SCCS file for any reason, the mode may be changed to 644
by the owner, and then the owner may edit the file at will with ed(1).

Admin also makes use of the z-file, which is used to prevent simultaneous updates to the SCCS
file by different users. See ger(1) for further information.
SEE ALSO
ed (1), delta(1S), get(1S),-help(1S), prt(1S), what(1S) sccsfile(5)
SCCSIPWB User’s Manual by L. E. Bonanni and A. L. Glasser.

DIAGNOSTICS
Use help(1S) for explanations.

November 1979 Page 3 November 1979

AR(1) CB—UNIX 2.3 AR(1)
NAME
ar — archive and library maintainer
SYNOPSIS
ar key [posname] afile name ...
DESCRIPTION

Ar maintains groups of files combined into a single archive file. Its main use is to create and

update library files as used by the loader. It can be used, though, for any similar purpose.

Key is one character from the set drqtpmx, optionally concatenated with one or more of

vuaibel. Afile is the archive file. The names are constituent files in the archive file. The mean-

ings of the key characters are:

d Delete the named files {from the archive file.

~

r Replace the named files in the archive file. If the optional character u is used with r,
then only those files with modified dates later than the archive files are replaced. If an
optional positioning character from the set(abi)is used, then the posname argument
must be present and specifies that new files are to be placed after (a) or before (b or i)
posname. Otherwise new files are placed at the end.

q Quickly append the named files to the end of the archive file. Optional positioning
characters are invalid. The command does not check whether the added members are
already in the archive. Useful only to avoid quadratic behavior when creating a large
archive piece-by-piece.

t Print a table of contents of the archive file. If no names are given, all files in the
archive are tabled. If names are given, only those files are tabled.

p Print the named files in the archive.

m Move the named files to the end of the archive. If a positioning character is present,
then the posname argument must be present and, as in r, specifies where the files are to
be moved.

X Extract the named files. If no names are given, ail files in the archive are extracted. In
neither case does x alter the archive file.

] Verbose. Under the verbose optioﬁ, ar gives a file-by-file description of the making of
a new archive file from the old archive and the constituent files. When used with t, it
gives a long listing of all information about the files. When used with x, it precedes
each file with a name.

c Create. Normally ar will create afile when it needs to. The create option suppresses
the normal message that is produced when afile is created.

i Local. Normally ar places its temporary files in the directory /tmp. This option causes
them to be placed in the local directory.

FILES

/tmp/v* temporaries
SEE ALSO

1d(1), lorder(1), ar(S)
BUGS

If the same file is mentioned twice in an argument list, it may be put in the archive twice.

March 20, 1981 Page 1 March 20, 1981

ARCV(IM) CB—UNIX 2.3 ARCY(1IM)

NAME
arcv — convert archives to new format

SYNOPSIS
arcyv file ...

DESCRIPTION
Arev converts archive files (see ar(1), ar(5)) from 6th edition to 7th edition format. The
conversion is done in place, and the command refuses to alter a file not in oid archive format.

Old archives are marked with a magic number of 0177555 at the start; new archives have
0177545.

FILES
/tmp/v*, temporary copy

SEE ALSO
ar(1), ar(5)

October 9, 1980 Page 1 October 9, 1980

AS(1) CB—UNIX 2.1 AS (1)

NAME
as — assembler

SYNOPSIS
as [= 1 [—o objfile] file ...

DESCRIPTION
As assembles the concatenation of the named files. If the optional first argument = is used, all
undefined symbols in the assembly are treated as global.

The output of the assembly is left on the file objfile; if that is omitted, a.out is used. It is exe-
cutable if no errors occurred during the assembly, and if there were no unresolved external

references.
FILES
/lib/as2 pass 2 of the assembler
/tmp/atm[1-3]? temporary
a.out object
SEE ALSO

1d(1), nm(1), adb(1), a.out(5)
UNIX Assembler Manual by D. M. Ritchie

DIAGNOSTICS
When an input file cannot be read, its name followed by a question mark is typed and assembly
ceases. When syntactic or semantic errors occur, a single-character diagnostic is typed out
together with the line number and the file name in which it occurred. Errors in pass 1 cause
cancellation of pass 2. The possible errors are:

) Parentheses error

] Parentheses error

< String not terminated properly

* Indirection used illegaily

Illegal assignment to .

Error in address

Branch instruction is odd or too remote
Error in expression

Error in local (f or b) type symbol
Garbage (unknown) character

End of file inside an .if
Multiply-defined symbol as label

Word quantity assembied at odd address

m - o o w

podo

. different in pass 1 and 2
Relocation error
Undefined symbol

Syntax error

NE""GOB

BUGS
Syntax errors can cause incorrect line numbers in following diagnostics.

Page 1 November 1979

AT(1) CB—UNIX 2.1 AT(1)

NAME
at — execute commands at a later time

SYNOPSIS
at time [day] [file]

DESCRIPTION
At squirrels away a copy of the named file (standard input default) to be used as input to sh(1)
at a specified later time. A ¢d(1) command to the current directory is inserted at the begin-
ning, followed by assignments to all environment variables. When the script is run, it uses the
user and group ID of the creator of the copy file.

The time is 1 to 4 digits, with an optional following ‘A’, ‘P’, ‘N’ or ‘M’ for AM, PM, noon or
midnight. One and two digit numbers are taken to be hours, three and four digits to be hours
and minutes. If no letters follow the digits, a 24 hour clock time is understood.

The optional day is either (1) a month name followed by a day number, or (2) a day of the
week; if the word ‘week’ follows invocation is moved seven days further off. Names of months
and days may be recognizably truncated. Examples of legitimate commands are

at 8am jan 24
at 1530 fr week

At programs are executed by periodic execution of the command /usrfib/atrun from cron(1).
The granularity of ar depends upon how often atrun is executed.

Standard output or error output is lost unless redirected.

FILES
/usr/spool/at/yy.ddd.hhhh.uu
activity to be performed at hour hhhh of year day ddd of year yy. uuis a unique number.
/usr/spool/at/lasttimedone contains hhhh for last hour of activity.
/usr/spool/at/past directory of activities now in progress
/usr/lib/atrun program that executes activities that are due

SEE ALSO
calendar (1), cron(1)

DIAGNOSTICS
Complains about various syntax errors and times out of range.

BUGS
Due to the granularity of the execution of /usr/ib/atrun, there may be bugs in scheduling things
almost exactly 24 hours into the future.

November 1979 - Page 1| November 1979

ATGEX(1G) CB—UNIX 2.1 ATGEX (1G)

NAME
atgex — convert ascii file to GEX format

SYNOPSIS
atgex

DESCRIPTION
Atgex is a filter which converts an ascii file (i.e. its standard input) to a gex type file (i.e. its
standard output) which can then be edited with gex(1G).

SEE ALSO
gex(1G)

AUTHOR
D. J. Jackowski

BUGS
This is a half baked program. It should be reworked to give the user control over output
options. Right now it only defaults.

Page 1 November 1979

AWK (1) CB—-UNIX 2.1 AWK (1)

NAME

awk — pattern scanning and processing language
SYNOPSIS

awk [—Fc] [prog] [-ffile] ...
DESCRIPTION

Page 1

Awk scans each input file for lines that match any of a set of patterns specified in prog. With
each pattern in prog there can be an associated action that will be performed when a line of a

Jile matches the pattern. The set of patterns may appear literally as prog, or in a file specified as

-1 file.

Files are read in order; if there are no files, the standard input is read. The file name — means
the standard input. Each line is matched against the pattern portion of every pattern-action
statement; the associated action is performed for each matched pattern.

An input line is made up of fields separated by white space. (This default can be changed by
using FS, vide infra.) The fields are denoted $1, 32, ... ; $0 refers to the entire line.

A pattern-action statement has the form
pattern { action }
A missing action means print the line; a missing pattern always matches.
An action is a sequence of statements. A statement can be one of the following:

if (conditional) statement

while (conditional) statement

for (expression ; conditional ; expression) statement
{ [statement] ... }

variable = expression

variable + <+, variable ——

print [expression-list] [>expression]

printf format [, expression-list] [>expression]
next # skip remaining patterns on this input line
exit # skip the rest of the input

Statements are terminated by semicolons, newlines or right braces. An empty expression-list
stands for the whole line. Expressions take on string or numeric values as appropriate, and are
built using the operators +, =, %, /, %, and concatenation (indicated by a blank). The C
operators ++ and —— may be used to increment variables, but only in statement contexts,
not as expressions. Variables may be scalars, array elements (denoted x[i]) or fields. Variables
are initialized to the null string. Array subscripts may be any string, not necessarily numeric;
this allows for a form of associative memory. String constants are quoted (*).

The primt statement prints its arguments on the standard output (or on a file if >expr is
present), separated by the current output field separator, and terminated by the output record
separator. The priny statement formats its expression list according to the format (see
pringf(3)).

The built-in function /lengrh returns the length of its argument taken as a string, or of the whole
line if no argument. There are also built-in functions exp, log, sgrr, and inr. The last truncates
its argument to an integer. subsir(s, m, n) returns the n-character substring of s that begins at
position n. The function sprinyf{fint, expr, expr, ...) formats the expressions according to the
printf(3) format given by fmu.

Patterns are arbitrary Boolean combinations (, Il, &&. and parentheses) of regular expressions
and relational expressions. Regular expressions must be surrounded by slashes and are as in
egrep (see grep(1)). Isolated regular expressions in a pattern apply to the entire line. Regular
expressions may also occur in relational expressions.

November 1979

AWK (1) CB—UNIX 2.1 AWK (1)

A pattern may consist of two patterns separated by a comma; in this case, the action is per-
formed for all lines between an occurrence of the first pattern and the next occurrence of the
second.

A relational expression is one of the following:

expression matchop regular-expression

expression relop expression
where a relop is any of the six relational operators in C, and a matchop is either ~ (for contains)
or !~ (for does not contain). A conditional is an arithmetic expression, a relational expression,
or a Boolean combination of these.

The special patterns BEGIN and END may be used to capture control before the first input line
is read and after the last. BEGIN must be the first pattern, END the last.

A single character ¢ may be used to separate the fields by starting the program with
BEGIN { FS = "¢"}
or by using the —Fc option.

Other variable names with special meanings include NF, the number of fields in the current
record; NR, the ordinal number of the current record; FILENAME, the name of the current
input file; OFS, the output field separator (default blank); ORS, the output record separator
(default newline); and OFMT, the output format for numbers (default "%.6g").

EXAMPLES

Print lines longer than 72 characters:
length > 72
Print first two fields in opposite order:
{ print $2, $1}
Add up first column, print sum and average:

{s=3s+ 81}
END { print "sum is", s, " average is", s/NR |}

Print fields in reverse order:
{for (i = NF;i > 0; ——i) print Si }

Print all lines between start/stop pairs:
/start/, /stop/

Print all lines whose first field is different from previous one:
$1 != prev { print; prev = 81}

SEE ALSO

BUGS

November 1979

lex(1), sed(1), grep(1)
A. V. Aho, B. W. Kernighan, P. J. Weinberger, Awk — a panern scanning and processing
language Bell Laboratories CSTR #68, 1978.

Input white space is not preserved on output if fields are involved.

There are no explicit conversions between numbers and strings. To force an expression to be
treated as a number add 0 to it: to force it to be treated as a string concatenate the null string
") to it.

Page 2

BANNER (1) CB—UNIX 2.1
NAME
banner — make hgadlines
SYNOPSIS
banner string
DESCRIPTION

Banner prints its argument in large letters on the standard output.

Page |

BANNER (1)

November 1979

BASENAME (1) CB—UNIX 2.1 BASENAME (1)

NAME

basename, dirname — deliver portions of pathnames
SYNOPSIS

basename string [suffix |

dirname string

DESCRIPTION
Basename deletes any prefix ending in / and the suffix, if present in siwring, from siring, and
prints the result on the standard output. It is normally used inside substitution marks (' °) in
shell procedures.

Dirname delivers all but the last level of the pathname in sring.

EXAMPLES

This shell procedure invoked with the argument /usr/src/cmd/cat.c compiles the named file
and moves the output to cat in the current directory:

cc $1
my a.out ‘basename S1 .¢’

The following example will set NAME to /usr/src/cmd:
NAME="‘dirname /usr/src/cmd/cat.c*

SEE ALSO
sh(l)

Page | . November 1979

BC (1) CB—UNIX 2.1 BC (1)

NAME

bc — arbitrary-precision arithmetic language
SYNOPSIS :

be [—cl [—=11T1file..]
DESCRIPTION

_ Bc is an interactive processor for a language which resembles C but provides unlimited preci-
sion arithmetic. It takes input from any files given, then reads the standard input. The -1
argument stands for the name of an arbitrary precision math library. The syntax for bc pro-
grams is as follows; L means letter a—z, E means expression, S means statement.

Comments
are enclosed in /+ and »/.

Names
simple variables: L
array elements: L [E]
The words ‘ibase’, ‘obase’, and ‘scale’”

Other operands
arbitrarily long numbers with optional sign and decimal point.

(E)
sqrt (E)
length (E) number of significant decimal digits
scale (E) number of digits right of decimal point
L(E,..,E)
Operators
+ — = /% " (% is remainder; " is power)
++ - (prefix and postfix; apply to names)

me L= D>=1=< >

; = = o=/ =i ="

Statements
E
{S:...:S}
if (CE)S
while (E) S
for(E;E;E)S
null statement
break
quit
Function definitions
defineL (L ,..,L) |
auto L, ..., L
S; ... S
return (E)

}

Functions in =1 math library
s(x) sine
c¢(x) cosine
e(x) exponential
1(x) log
a(x) arctangent
j(n,x) Bessel function

Page | . November 1979

BC (1) CB—UNIX 2.1 BC (1)

All function arguments are passed by value.

The value of a statement that is an expression is printed unless the main operator is an assign-
ment. Either semicolons or new-lines may separate statements. Assignment to scale influences
the number of digits to be retained on arithmetic operations in the manner of dc(1). Assign-
ments (o jbase or obase set the input and output number radix respectively.

The same letter may be used as an array, a function, and a simple variable simultaneously. All
variables are global to the program. ‘Auto’ variables are pushed down during function calls.
When using arrays as function arguments or defining them as automatic variables empty square
brackets must follow the array name.

Bc is actually a preprocessor for dc(1), which it invokes automatically, unless the —c¢ (compile

only) option is present. In this case the dc input is sent to the standard output instead.
EXAMPLE

scale = 20

define e(x){
autoa, b, c, i, 8

a=1
b=1
s = |
for(i=1; 1==1; i++)|
a = axx
b = b#i
¢ =a/b
if (¢ == 0) return(s)
s =s+c¢C

|

defines a function to compute an approximate value of the exponential function and
for(i=1;i<=10; i+ +) e(i)
prints approximate values of the exponential function of the first ten integers.
FILES

/usr/lib/lib.b mathematical library

/usr/bin/d¢ desk calculator proper
SEE ALSO

de(l)

L. L. Cherry and R. Morris, BC — Au arbitrary precision desk-calculator language
BUGS

No &&, 11 yet.

For statement must have all three E's.

Quiris interpreted when read, not when executed.

November 1979 Page 2

BCLK (1M) CB—-UNIX 2.1 BCLK (1M)

NAME

belk, setbelk — reads and sets the battery clock
SYNOPSIS

belk

setbclk mon dd yy hh:mm
DESCRIPTION

Belk reads the battery clock (a TCU-100 battery clock) and reports the current time. The time
reported should be the current "standard” time. That is, during daylight savings time periods,
the battery clock should be one hour behind wall clock time.

Setbelk resets the battery clock. To use setbelk the user must have write priviedges for
/dev/imem. The date is entered as current wall time, a three letter mon, 2 decimal day, year,
and hours : minutes. When setbelk has successfully reset the battery clock, the time wiil be
reported as it is for belk.

FILES
/dev/mem

SEE ALSO
date(1)

November 1979 Page 1 November 1979

BD(1) CB—UNIX 2.1 BD (1)

NAME
bd — binary dump of a file

SYNOPSIS
bd { —rd] file

DESCRIPTION
Bd dumps file to the standard output in four sections with eight decimal bytes per row. The
first column is the octal address in the file; the next four columns represent the octal dump of
four words; the next eight columns represent the octal dump of eight bytes; the last column
consists of the eight bytes printed as ASCIL Bytes whose contents are not printable. ASCI
characters are translated into dot “.’. All numbers are in octal.
Options:
—r Print a restricted ascii character set in the 4SCII filed. The characters not printed are
the following characters * {|} .
-~d Print the data in a double line format. The address is on the first line in the following
format <001230>. The next line contains the octal dumps and the 4SCII This
option is used for TTYs with short carriages.

Bd can be used with a pipe as a filter. If muitipie files are to the dumped, the format:
cat filel file2|bd [~rd]
will work with or without the option flags.

SEE ALSO
od(1)

DIAGNOSTICS
Can’t open input file

AUTHOR
B. C. Hoalst

November 1979 Page 1 November 1979

BDIFF (1) CB-UNIX 2.1 BDIFF (1)

NAME

bdiff — big diff

SYNOPSIS

bdiff [—s] namel name2 [numarg]

DESCRIPTION

FILES

Bdiffis used in a manner analogous to dif{1) to find which lines must be changed in two files to
bring them into agreement. Its purpose is to allow processing of files which are too large for
diff(1). Bdiffignores lines common to the beginning of both files, splits the remainder of each
file into #-line segments, and invokes diffupon corresponding segments. The value of nis 3500
by default. If the optional third argument is given, and it is numeric, it is used as the value for
n. This is useful in those cases in which 3500-line segments are too large for diff, causing it to
fail. If namel (name2) is ““—", the standard input is read. The optional —s (‘‘silent’’) argu-
ment specifies that no diagnostics are to be printed by bdiff (note, however, that this does not
suppress possible exclamations by diff). If both optional arguments are specified, they must
appear in the order indicated above. The output of bdiff is exactly that of diff, with line
numbers adjusted to account for the segmenting of the files (that is, to make it look as if the
files had been processed whole). Note that because of the segmenting of the files, bdiff does
not necessarily find a smallest sufficient set of file differences.

SEE ALSO

diff (1)

DIAGNOSTICS

Use help(1S) for explanations.

November 1979 Page 1 November 1979

BDUMP (1M) CB—UNIX 2.1 BDUMP (1M)

NAME

bdump — read from block device
SYNOPSIS

/ete/bdump dev blockno [filename]
DESCRIPTION

Bdump seeks to the specified block on the specified device and copies one 512-byte block from
the device into either the filename argument (f it is given), or the default file name dtmpx oth-
erwise. Bdump prepends ‘/dev/’ onto the front of the dev argument and attempts to open the
device for reading. The blockno argument is assumed to be octal if it contains a leading zero,
otherwise decimal.

FILES
dtmpx

SEE ALSO
bload (IM)

DIAGNOSTICS
dev? - The device cannot be opened.
non - numeric character -- the blockno argument contains a bad character
destination file? -- "dtmpx" or filename cannot be created in the current directory

November 1979 Page 1 November 1979

BLOAD (1M) CB—-UNIX 2.1 BLOAD (1M)

NAME
bload — write on block device_

SYNOPSIS
/etc/bload dev blockno [filename]

DESCRIPTION
Bload seeks to the specified block on the specified device and copies one 512-byte block onto
the device Bload prepends ‘/dev/’ onto the front of the dev argument and attempts to open the
device for writing. The blockno argument is assumed to be octal if it contains a leading zero,

otherwise decimal.

FILES
dtmpx

SEE ALSO
bdump (1M)

DIAGNOSTICS
dev? - The device cannot be opened.
non - numeric character -- the blockno argument contains a bad character
destination file? -- "dtmpx" or filename cannot be created in the current directory

November 1979 Page 1 November 1979

BS (1) CB—UNIX 2.1 BS (1)
NAME
bs — a compiler/interpreter for modest-sized programs
SYNOPSIS
bs [file [arg ... 1]
DESCRIPTION
Bs is a remote descendant of Basic and Snobol4 with a little C language thrown in. Bs is
designed for programming tasks where program development time is as important as the result-
ing speed of execution. Formalities of data declaration and file/process manipulation are
minimized. Line-at-a-time debugging, the trace and dump statements, and useful run-time
error messages all simplify program testing. Furthermore, incomplete programs can be
debugged; inner functions can be tested before outer functions have been written and vice
versa.
If the command line file argument is provided, the file is used for input before the console is
read. By default, statements read from the file argument are compiled for later execution.
Likewise, statements entered from the console are normally executed immediately (see compile
and execute below). The result of an immediate expression statement is printed.
Bs programs are made up of input lines. If the last character on a line is the \, the line is con-
tinued. Bs accepts lines of the following form:
statement
label statement
A label is a name (see below) followed by a colon. A label and a variable can have the same
name.
A bs statement is either an expression or a keyword followed by zero or more expressions.
Some keywords (clear, compile, !, execute, and run) are always executed as they are compiled.
Statement Syntax:
gxpression
The expression is executed for its side effects (value, assignment or function call). The
details of expressions follow the description of statement types below.
break
Break exits from the inner-most for/while loop.
clear
Clears the symbol table and compiled statements. Clear is executed immediately.
compile [expression]
Succeeding statements are compiled (overrides the immediate execution default). The
optional expression is evaluated and used as a file name for further input. A clear is associ-
ated with this latter case. Compile is executed immediately.
include expression
The expression should evaluate to a file name. The file must contain s source statements.
Include statements may not be nested.
continue
Continue transfers to the loop-continuation of the current for/while loop.
dump
The name and current value of every non-local variable is printed. After an error or inter-
rupt, the number of the last statement and (possibly) the user-function trace are displayed.
exit [expression]
Return to system level. The expression is returned as process status.
Page 1 November 1979

BS (1) CB—UNIX 2.1 BS (1)

execute
Change to immediate execution mode (an interrupt has a similar effect). This statement
does not cause stored statements to execute (see run below).

for name = expression expression statement
for name = expression expression

next
for expression , expression , expression statement
for expression , expression , expression

next
The for statement repetitively executes a statement (first form) or a group of statements
(second form) under control of a named variable. The variable takes on the value of the
first expression, then is incremented by one on each loop, not to exceed the value of the
second expression. The third and fourth forms require three expressions separated by com-
mas. The first of these is the initialization, the second is the test (true to continue), and the
third is the loop-continuation action (normally an increment).

fun f(al, ...1) [v, ...]

nuf
Fun defines the function name, arguments, and local variables for a user-written function.
Up to ten arguments and local variables are allowed. Such names cannot be arrays, nor can
they be I/0 associated. Function definitions may not be nested.

freturn
A way to signal the failure of a user-written function. See the interrogation operator (M
below. If interrogation is not present, freturn merely returns zero. When interrogation is
active, freturn transfers to that expression (possibly by-passing intermediate function
returns).

goto name
Control is passed to the internally stored statement with the matching label.

if expression statement
if expression

[else
|

fi
The statement (first form) or group of statements (second form) is executed if the expres-
sion evaluates to non-zero. The strings 0 and " (null) evaluate as zero. In the second
form, an optional else allows for a group of statements to be executed when the first group
is not. The only statement permitted on the same line with an else is an if; only other fi’s
can be on the same line with a fi.

return (expression]
The expression is evaluated and the result is passed back as the value of a function call. If
no expression is given, zero is returned.

onintr label

onintr
The onintr command provides program controi of interrupts. In the first form, controf will
pass to the label given, just as if a goto had been executed at the time onintr was executed.
The effect of the statement is cleared after each interrupt. In the second form, an interrupt

November 1979 ; Page 2

BS(1)

Page 3

CB—UNIX 2.1 BS(1)
will cause bs to terminate.
ruan
The random number generator is reset. Control is passed to the first internal statement. If
the run statement is contained in a file, it should be the last statement.
stop
Execution of internal statements is stopped. Bs reverts to immediate mode.
trace [expression]
The trace statement controls function tracing. If the expression is null (or evaluates to
zero), tracing is turned off. Otherwise, a record of user-function calls/returns will be
printed. Each return decrements the trace expression value.
while expression statement
while expression
next
While is similar to for except that only the conditional expression for loop-continuation is
given.
! shell command
An immediate escape to the Shell.
...
This statement is ignored. It is used to interject commentary in a program.
Expression Syntax:
name i
A name is used to specify a variable. Names are composed of a letter (upper or lower case)
optionally followed by letters and digits. Only the first six characters of a name are
significant. Except for names declared in fin statements, all names are global to the pro-
gram. Names can take on numeric (double float) values, string values, or can be associated
with input/output (see the built-in function open() below).
name ([expression [, expression] ...])
Functions can be called by a name followed by the arguments in parentheses separated by
commas. Except for built-in functions (listed below), the name must be defined with a fun
statement. Arguments to functions are passed by value.
name [expression [, expression] ... |
Each expression is truncated to an integer and used as a specifier for the name. The resuit-
ing array reference is syntactically identical to a name. all,2] is the same as a[1li2]. The
truncated expressions are restricted to vaiues between 0 and 32767.
number
A number is used to represent a constant value. A number is written in Fortran style, and
contains digits, an optional decimal point, and possibly a scale factor consisting of an e fol-
lowed by a possibly signed exponent.
string
Character strings are delimited by " characters. The \ escape character allows the double
quote (\"), new-line (\n), carriage return (\r), backspace (\b), and tab (\t) characters to
appear in a string. Otherwise, \ stands for itself.
(expression)
Parentheses are used to alter normal order of evaluation.
(expression, expression [, expression ...]) [expression |
The bracketed expression is used as a subscript to select a comma-separated expression from
November 1979

BS (1)

CB—-UNIX 2.1 BS(1)

the parenthesized list. List elements are numbered from the left, starting at zero. The
expression

(False, True){a == b]
has the value True if the comparison is true.

? expression
The interrogation operator tests for the success of the expression rather than its value. At
the moment, it is useful for testing end-of-file (see examples in the Programming Tips sec-
tion below), the result of the eval built-in function, and for checking the return from user-
written functions (see freturn). An interrogation ‘‘trap’’ (end-of-file, etc.) causes an
immediate transfer to the most recent interrogation, possibly skipping assignment statements
or intervening function levels.

- expression
The result is the negation of the expression.

+ 4+ name
Increments the value of the variable (or array reference). The result is the new value.

— — name
Decrements the value of the variable. The result is the new value.

! expression
The logical negation of the expression. Watch out for the shell escape command.

expression operator expression _
Common functions of two arguments are abbreviated by the two arguments separated by an
operator denoting the function. Except for the assignment, concatenation, and relational
operators, both operands are converted to numeric form before the function is applied.

Binary Operators (in increasing precedence):

==
= is the assignment operator. The left operand must be a name or an array element. The
result is the right operand. Assignment binds right to left, all other operators bind left to
right.
_ (underscore) is the concatenation operator.

& |
& (logical and) has result zero if either of its arguments are zero. It has result one if both
of its arguments are non-zero. I (logical or) has result zero if both of its arguments are zero.
It has result one if either of its arguments is non-zero. Both operators treat a null string as
a zero.

< <= > >= == !=
The relational operators (< less than, < = less than or equal, > greater than, > = greater
than or equal, == equal to, != not equal to) return one if their arguments are in the
specified relation. They return zero otherwise. Relational operators at the same level
extend as follows: a> b>c is the same as a>b & b>c¢. A string comparison is made if both
operands are strings.

+ -

Add and subtract.

=/ %
Multiply, divide, and remainder.

November 1979 - Page 4

BS(1)

Page §

CB—UNIX 2.1 BS (1)

Exponentiation.
Built-in Functions:
Dealing with arguments
arg(i)
is the value of the i-th actual parameter on the current level of function call. At level zero,
arg returns the i-th command argument (arg(0) returns bs).

narg{()
returns the number of arguments passed. At level zero, the command argument count is
returned.

Mathematical

abs(x)

is the absolute value of x.
atan(x)

is the arctangent of x. Its value is between —#/2 and /2.
ceil(x)

returns the smallest integer not less than x.
cos(x)

is the cosine of x (radians).
exp(x)

is the exponential function of x.
floor(x)

returns the largest integer not greater than x.
log(x)

is the natural logarithm of x.
rand()

is a uniformly distributed random number between zero and one.
sin(x)

is the sine of x (radians).
sqrt(x)

is the square root of x.

String operations

size(s)
the size (length in bytes) of s is returned.
format(f, a)
returns the formatted value of 4. F is assumed to be a format specification in the style of
printf(3S). Only the %...f, %...e, and %...s
types are safe.
index(x, y)
returns the number of the first position in x that any of the characters from y matches. No
match yields zero.
trans(s, f, t)
Transiates characters of the source s from matching characters in f to a character in the

November 1979

BS(1) CB-—-UNIX 2.1 BS(1)

same position in . Source characters that do not appear in f are copied to the result. If the
string f is longer than ¢, source characters that match in the excess portion of f do not
appear in the result.

substr(s, start, width)
returns the sub-string of s defined by the szarfing position and width.

match(string, pattern)

mstring (n)
The pattern is similar to the regular expression syntax of the ed(1) command. The charac-
ters ., [, I, ~ (inside brackets), * and $ are special. The mstring function returns the n-th (1
<= n <= 10) substring of the subject that occurred between pairs of the pattern symbols
\(and \) for the most recent cail to match. To succeed, patterns must match the beginning
of the string (as if all patterns began with *). The function returns the number of characters
matched. For example:

match("al23ab123", "N\ (fa—z]\)") == 6
mstring(1) == "b"

File handling

open(name, file, function)

close(name)
The name argument must be a bs variable name (passed as a string). For the open, the file
argument may be 1) a 0 (zero), 1, or 2 representing standard input, output, or error output,
respectively, 2) a string representing a file name, or 3) a string beginning with an !
representing a command to be executed (via sh —c). The function argument must be either
r (read), w (write), W (write without new-line), or a (append). After a close, the name
reverts to being an ordinary variable. The initial associations are:

Open("get", 0, nrn)
Open("put", 1’ nwn
open ("puterr", 2, "w")
Examples are given in the following section.

access(s, m)
executes access(2).

ftype(s) -
returns a single character file type indication: f for regular file, d for directory, b for block
special, or ¢ for character special.

Odds and Ends

eval(s)
The string argument is evaluated as a bs expression. The function is handy for converting
numeric strings to numeric internal form. £val can also be used as a crude form of indirec-
tion as in

name = "xyz"
eval("++"_ name)

which increments the variable xyz. In addition, eval preceded by the interrogation operator
permits the user to control bs error conditions. For example,

2eval ("open(\"X\", \"XXX\", \"'\")")

returns the value zero if there is no file named "XXX" (instead of halting the user’s pro-
gram). The following executes a goto to the label L (if it exists).

November 1979 Page 6

BS(1) CB-UNIX 2.1 BS (1)

label="L"
if 1(?eval("goto "_ label)) puterr = "no label"

plot(request, args)
The plot function produces output on devices recognized by plot(1G). The requests are as

follows.

Call Function

plot(0, term) causes further plot output to be piped into plot(1G) with an
argument of -Tterm.

plot(1) ‘“‘erases’’ the plotter.

plot(2, string) labels the current point with string.

plot(3, x1, yi, x2, y2) draws the line between (xI,yI) and (x2,y2).

plot(4, x, y, r) draws a circle with center (x,y) and radius r.

plot(5, x1, y1, x2, y2, x3, y3) draws an arc (counterclockwise) with center (xI,yI) and
endpoints (x2,y2) and (x3,y3).

plot(6) is not implemented.

plot(7, x, y) makes the current point {x,y).

plot(8, x, y) draws a line from the current point to (x,y).

plot(9, x, y) draws a point at (x,y).

plot(10, string) sets the line mode to string.

plot(11, x1, y1, x2, y2) makes (xI,yI) the lower right corner of the plotting area

and (x2,y2) the upper left corner of the plotting area.

plot(12, x1, y1, x2, y2) causes subsequent x (y) coordinates to be multiplied by x/
(y1) and then added to x2 (y2) before they are plotted.
The initial scaling is
plot(12, 1.0, 1.0, 0.0, 0.0).

Some requests do not apply to all plotters. All requests except zero and twelve are imple-
mented by piping characters to plot(1G). See plot(5) for more details.

last()
in immediate mode, /ast returns the most recently computed value.

PROGRAMMING TIPS
Using bs as a calculator:

S bs

distance (inches) light travels in a nanosecond
186000 = 5280 = 12 / 1e9

11.78496

Compound interest (6% for 5 years on $1000)
int = .06/ 4

bal = 1000

fori = 1 5«4 bal = bal + bal*int

bal — 1000

346.855007

Page 7 November 1979

BS (1)

CB—-UNIX 2.1

exit

The outline of a typical bs program:

Initialize things:
varl = 1
open("read”, "infile", "r")

Compute:
while ?(str = read)

next
Clean up:
close("read"”)

Last statement executed (exit or stop):
exit

Last input line:

run

Input/Output examples:

D

2)

SEE ALSO

Copy "oldfile" to "newfile".
open("read”, "oldfile”, "r"

" " "

open("write", "newfile", "w")
while ?(write = read)

Close "read" and "write"
close("read")

close ("write")

Pipe between commands

open (s, "lIs *", "r")

open("pr", "lpr —2 —h 'List™, "w")
while ?(pr = 1s) ...

Be sure to close (wait for) these
close("s")
close("pr")

BS(1)

ed(1), plot(1G), sh(l), access(2), printf(3S), stdio(3S), Section 3 of this volume for further
description of the mathematical functions (pow(3M) is used for exponentiation), plot(5). Bs
uses the Standard Input/Output package.

BUGS

There are built-in design limits. Bs source programs are restricted to fewer than 250 lines and
fewer than 250 variables (the name of an array counts as a variable, as does each dimension
and each referenced element).

All names (labels, variables, functions, statement keywords) are internally truncated to six
characters.

November 1979

Page:-8

CAL (1) CB—UNIX 2.1 CAL(1)

NAME
cal — print calendar

SYNOPSIS
cal [month] year

DESCRIPTION
Caf prints a calendar for the specified year. If a month is also specified, a calendar just for that
month is printed. Year can be between | and 9999. The mont/i is a number between 1 and 12.
The calendar produced is that for England and her colonies.

Try September 1752.

BUGS
The year is always considered to start in January even though this is historically naive.
Beware that ‘cal 78’ refers to the early Christian era, not the 20th century.

Page | November 1979

CALENDAR(1) CB-UNIX 2.1 CALENDAR(1)

NAME

calendar — reminder service
SYNOPSIS

calendar [— |
DESCRIPTION

Calendar consults the file calendar in the current directory and prints out lines that contain
today’s or tomorrow’s date anywhere in the line. Most reasonable month-day dates such as
‘Dec. 7,” ‘december 7, ‘12/7,’ etc., are recognized, but not ‘7 December’ or ‘7/12’. On week-
ends ‘tomorrow’ extends through Monday.

When an argument is present, calendar does its job for every user who has a file calendar in his
login directory and sends him any positive results by mail(1). Normally this is done daily in
the wee hours under control of cron(1).

FILES
calendar
/usr/lib/calprog to figure out today’s and tomorrow’s dates
/etc/passwd
/tmp/cal*
/usr/lib/crontab

SEE ALSO
cron (1), mail (1)

BUGS
Your calendar must be public information for you to get reminder service.
Calendar’s extended idea of ‘tomorrow’ doesn’t account for holidays.
Calendar ignores lines that begin with tabs.

November 1979 Page 1 November 1979

CAT(1) CB—-UNIX 2.1 CAT(D

NAME
cat — concatenate and print files

SYNOPSIS
cat [=ul [—s] file ...

DESCRIPTION
Car reads each file in sequence and writes it on the standard output. Thus:

cat file
prints the file, and:
cat filel file2 >file3
concatenates the first two files and places the result on the third.

If no input file is given, or if the argument — is encountered, cas reads from the standard input

file. Output is buffered in 512-byte blocks unless the —u option is specified. The =—s option

makes caqr silent about non-existent files. No input file may be the same as the output file

unless it is a special file.
SEE ALSO

cp(D), pr(l).

Y

Page | November 1979

CB(1) CB—UNIX 2.1 CB(1)

NAME
c¢b — C program beautifier

SYNOPSIS
cb [file]

DESCRIPTION
Cb places a copy of the C program in file (standard input if file is not given) on the standard
output with spacing and indentation that displays the structure of the program.

November 1979 Page 1 November 1979

CcC(1) CB—UNIX 2.1 CC(1)
NAME
cc, pcc — C compiler
SYNOPSIS
cc [option] ... file ...
pee [option] ... file ...
DESCRIPTION

Cc is the standard UNIX C compiler. Other versions may exist with a single letter prefix; in

particular, occ is supplied as the previous C compiler, and ncc may be present as a new, experi-

mental C compiler. Pcc is the portable version for a PDP-11 machine. They accept several
types of arguments:

Arguments whose names end with .c are taken to be C source programs; they are compiled,

and each object program is left on the file whose name is that of the source with .o substituted

for .c. The .o file is normally deleted, however, if a single C program is compiled and loaded
all at one go.

In the same way, arguments whose names end with .s are taken to be assembly source pro-

grams and are assembled, producing a .o file.

The following options are interpreted by cc and pce. See /d(1) for load-time options.

- Suppress the loading phase of the compilation, and force an object file to be produced
even if only one program is compiled.

-p Arrange for the compiler to produce code which counts the number of times each rou-
tine is called; also, if loading takes place, replace the standard startoff routine by one
which automatically calls moniror(3C) at the start and arranges to write out a mon.out
file at normal termination of execution of the object program. An execution profile
can then be generated by use of prof(1).

-0 Invoke an object-code optimizer.

-8 Compile the named C programs, and leave the assembler-language output on
corresponding files suffixed .s.

-E Run only the macro preprocessor on the named C programs, and send the result to the
standard output.

-P Run only the macro preprocessor on the named C programs, and leave the result on
corresponding files suffixed .i.

-C Comments are not stripped by the macro preprocessor.

=D name =def

~ D name
Define the name to the preprocessor, as if by #define. If no definition is given, the
name is defined as 1.

- U name
Remove any initial definition of name.

—ldir ~ Change the algorithm for searching for #include files whose names do not begin with
/ to look in dir before looking in the directories on the standard list. Thus, #include
files whose names are enclosed in "" will be searched for first in the directory of the
file argument, then in directories named in —1 options, and last in directories on a
standard list. For #include files whose names are enclosed in <>, the directory of
the file argument is not searched. The current standard list consists of /usr/include.
If —7is used with no dir argument, search of the standard directory list is suppressed.

-B Instead of using the standard compiler, use a ‘*backup’ compiler (providing that the

Page |

November 1979

ccam CB—-UNIX 2.1 cC(1)

system administrator has provided one). This option is identical to using the occ com-
mand.

-tlp012] Find only the designated compiler passes in the files whose names are /sys/c/cl012] or
/sys/c/cpp. Used for testing compiler changes.

Other arguments are taken to be either loader option arguments, or C-compatible object pro-
grams, typically produced by an earlier cc or pec run, or perhaps libraries of C-compatible rou-
tines. These programs, together with the results of any compilations specified, are loaded (in
the order given) to produce an executable program with name a.out.

FILES
file.c input file
file.o object file
a.out loaded output
/tmp/ctm=* temporary
/1lib/cpp preprocessor
/lib/c[01] compiler, cc
/lib/oc[012] backup compiler,cc
/lib/ocpp backup preprocessor
/lib/c2 optional optimizer
/usr/lib/comp compiler, pcc
/lib/crt0.0 runtime startoff

/tib/mert0.0 startoff for profiling
/lib/libc.a standard library, see (3)
. /usr/include standard directory for #include files

SEE ALSO
B. W. Kernighan and D. M. Ritchie, T/e C Programming Language, Prentice-Hall, NY, 1978.
B. W. Kernighan, Programming in C~A Tutworial.
D. M. Ritchie, C Reference Manual.
adb(1), Id(1), prof(1), monitor(3C).

DIAGNOSTICS
The diagnostics produced by C itself are intended to be self-explanatory. Occasional MesS4ges
may be produced by the assembler or loader. Of these, the most mystifying are from the
assembler, in particular m, which means a multiply-defined external symbol (function or data).

November 1979 Page 2

CHDIR (1) CB—UNIX 2.1 CHDIR (1)

NAME
chdir, cd — change working directory
SYNOPSIS
chdir directory
cd directory
DESCRIPTION
Directory becomes the new working directory. The process must have execute (search) permis-
sion in directory.

Because a new process is created to execute each command, c/idir would be ineffective if it were
written as a normal command. It is therefore recognized and executed by the Shell.

SEE ALSO
sh(1), pwd(l)

Page | November 1979

CHECK (1M) CB~UNIX 2.1 CHECK (1M)

NAME

check — file system consistency check and repair

SYNOPSIS

check [—syna] [filesystem] ...

DESCRIPTION

Page 1

Check audits UNIX file systems for consistency and corrects any discrepancies. Since these
corrections will, in general, result in a loss of data, the program will request operator con-
curence for each such action. All questions should be answered by typing ‘‘yes’ or ‘“‘no’’, fol-
lowed by a line feed. Typing ‘‘yes’’ will cause the correction to take place. However, if the
program does not have write permission on the file system or the no option, —n, is on, then all
questions will automatically be answered ‘‘no’’. Alternatively the yes option, —y, will cause all
questions to be answered ‘‘yes’. If the -a option is supplied then check will attempt an
"automatic” check. In this case it will answer ‘‘yes’’ only to correct nonsevere errors. In all
other cases check will loop and print a message requesting manual intervention.

The program consists of six separate phases. Some phases are skipped if they are not needed.
In phase one, check examines all block pointers in all files, checking for pointers which are out-
side of the file system (BAD) and for blocks which appear in more than one file (DUP). A
table is made of all DUP blocks and all defective files are marked for clearing. Each error is
printed, but no correction takes place in this phase.

The second phase is run only if DUP biocks were found in phase one. This phase finds the rest
of the DUP blocks; marking each for clearing.

The third phase checks the directory structure of the file system. This is done by descending
the directory tree, examining each entry. A count is kept of the number of references to each
file. If any entry refers to an unailocated file, a file marked for clearing, or a file number out-
side the file system; then the entry is printed and, if the operator agrees, it is removed. Refus-
ing to remove an entry to a marked file will clear the mark, preserving the file and its subse-
quent entries.

In phase four all marked or unreferenced files are listed. With concurence from the operator,
each of these files is then cleared. In addition, any file whose link count does not agree with
the number of references is listed, and, if agreed, the link count is adjusted.

If the salvage option, —s, is on, then phase five is skipped. Otherwise, check examines the free
list. If any blocks are found which are outside the file system or which have been previously
encountered in a file or elsewhere in the free list, then the list is pronounced BAD and a sal-
vage is called for. Agreement will set the salvage option and proceed to the next phase. If
there are no defects in the free list and all blocks are accounted for, the check is finished. Oth-
erwise, the number of missing blocks (i.e. in neither a file nor the free list) is printed and a sal-
vage is requested.

The last phase is the salvage operation, where the free list is recreated. It is run whenever the
salvage option is on or a problem has been found with the free list. Simply stated, a new free
list is constructed containing all blocks not found in some file.

The system responses are in general self explanatory and follow the sequence described above.
In the specification that follows, the following notation will be used:

<bh> block number
<i> inode number

< fname>
file pathname

<n> positive integer

November 1979

CHECK (1M) CB—-UNIX 2.1 CHECK (1M)

<c> option character
Check begins with the following output:

< filesystem>{(NO WRITE)}
Phase 1 — Check Blocks

The “(NO WRITE)”’ message indicates that the program does not have write permission on
the file system. Therefore, subsequent corrections will be suppressed by automatically answer-
ing ““no’’ to all questions. Phase one then proceeds to list any BAD or DUP blocks and their
inode number, as follows:

 BAD I =<i>
 DUP 1= <i>
 EXCESSIVE DUPS 1 = <i>

If too many DUPs are encountered, the program will list all blocks, but will not mark the
excess DUPs for later processing. When Phase 1 is finished, Phase 2 is run if any DUPs were
encountered. Otherwise, Phase 2 is skipped. This Phase will list the rest of the DUP blocks as
follows:

Phase 2 — Rescan for more DUPS
 DUP I = <i>

Check now descends the directory tree, asking to remove any defective entries.

Phase 3 — Check Pathnames
IOUT OF RANGE [= <i> <fname> REMOVE?
UNALLOCATED [= <i> <fname> REMOVE?
BAD/DUP [= <i> <fname> REMOVE?

Unless the no option is on, the program will wait for a response of “‘yes’ or “‘no’’ after each
question. Note, a no answer to the BAD/DUP entry will unmark that inode for clearing. This
will suppress any subsequent correction to that file.

Now check will clear or adjust any defective files. Again, it will wait for a ‘‘yes™ or ‘‘no”’
response to each question. The program will also indicate whether each entry is a file or a
directory.

Phase 4 — Check Reference Counts
UNREFERENCED {FILE/DIRECTORY] [= <i> CLEAR?
BAD/DUP (FILE/DIRECTORY]} I = <i> CLEAR?
LINK COUNT {FILE/DIRECTORY} I = <i> ADJUST?

If the salvage option is not on, the program will now validate the free list. Otherwise, this
phase is skipped. If there are any errors in the free list, it will specify them and request a sal-
vage.
Phase 5 — Check Free List

BAD FREE LIST SALVAGE?

<n> MISSING SALVAGE?

Phase 6 is the salvage operation. It is only done if one has been requested.
Phase 6 — Salvage Free List
Finally, some totals are printed: the total number of allocated files (including directories and
special files); the number of blocks in use; and the number of blocks in the free list.
<n> FILES <n> BLOCKS <n> FREE

If the filesystem has been modified, then the following message is printed and the program goes
into a loop. This is only a reminder to the operator since the program can be forced to ter-
minate with a character.

November 1979 Page 2

CHECK (1M) CB—UNIX 2.1 CHECK (1M)

*+x+*BOOT UNIX(NO SYNC!)*»**~

FILES

/dev/rootdev default file system to be checked
SEE ALSO

sync(IM), dcheck(1M), update(1M), clri(1M), crash(6), updfs(IM), fs(5),
DIAGNOSTICS

Page 3

While running, a number of errors can occur which cause the check program to terminate. An
illegal option or the inability to open the file system are shown as:

<c¢> OPTION??
CAN NOT OPEN < filesystem >

An 170 error on the filesystem will also cause an error message. In this case, the operator is
given the choice of exiting (‘‘yes’) or continuing (‘‘no’’). This error is generally a hardware
error, and continuing is rarely a good idea.

CAN NOT READ < filesystem> BLOCK EXIT?
CAN NOT SEEK < filesystem > BLOCK EXIT?
CAN NOT WRITE <filesystem> BLOCK EXIT?

November 1979

CHESS (1X) CB-UNIX 2.1 CHESS (1X)

NAME
chess — the game of chess

SYNOPSIS
/usr/games/chess

DESCRIPTION
Chess is a computer program that plays class D chess. Moves may be given either in standard
(descriptive) notation or in algebraic notation. The symbol ‘+’ is used to specify check and is
not required; ‘o-o’ and ‘o-0-0’ specify castling. To play black, type ‘first’; to print the board,
type an empty line.

Each move is echoed in the appropriate notation followed by the program’s reply.

FILES
/usr/lib/book opening ‘book’

DIAGNOSTICS
The most cryptic diagnostic is ‘eh?’ which means that the input was syntactically incorrect.

WARNING
Over-use of this program has been known to cause it to g0 away.

AUTHOR
K. Thompson

BUGS
Pawns may be promoted only to queens.

Page | November 1979

CHGHIST (18) CB—UNIX 2.1 CHGHIST (18)

NAME

chghist — change the history entry of an SCCS delta

SYNOPSIS

chghist [—rSI/D] name ...

DESCRIPTION

FILES

Chghist changes the history information, for the delta specified by the SID, of each named
SCCS file.

If a directory is named, chghist behaves as though each file in the directory were specified as a
named file, except that non-SCCS files (last component of the pathname does not begin with
“s.”), and unreadable files, are silently ignored. If a name of ‘‘—"" is given, the standard input
is read; each line of the standard input is taken to be the name of an SCCS file to be processed.
Again, non-SCCS files, and unreadable files, are silently ignored.

The exact permissions necessary to change the history entry of a delta are documented in the
SCCS/PWB User's Manual. Simply stated, they are either (1) if you made a delta, you can
change its history entry; or (2) if you own the file and directory you can change a history entry.

The new history is read from the standard input. If the standard input is a terminal, the pro-
gram will prompt with “MRs? > (only if the file has a flag, see admin(1S)) and with “‘com-
ments? *°. If the standard input is not a terminal, no prompt(s) is (are) printed. A newline
preceded by a ‘“‘\"’ is read as a blank, and may be used to make the entering of the history
more convenient. The first newline not preceded by a ‘‘\"’ terminates the response for the
corresponding prompt.

When the history entry of a delta table record (see prr(1S)) is changed, all old MR entries (if
any) are converted to comments, and both these and the original comments are preceded by a
comment line that indicates who made the change and when it was made. The new information
is entered preceding the old. No other changes are made to the delta table entry.

x-file (see delta (18))
z-file (see delra (18))

SEE ALSO

admin(18), delta(1S), get(1S), help(1S), prs(1S), scesfile(5)
Source Code Control System User’s Guide by L. E. Bonanni and C. A. Salemi.

DIAGNOSTICS

Use help (1S) for explanations.

November 1979 Page 1 _ November 1979

CHKOLD (1M) - CB—UNIX 2.1 CHKOLD (1M)

NAME

chkold — file system consistency chkoid

SYNOPSIS

chkold [—Isuib [numbers]] [filesystem]

DESCRIPTION

FILES

Chkold examines a file system, builds a bit map of used blocks, and compares this bit map
against the free list maintained on the file system. It also reads directories and compares the
link-count in each i-node with the number of directory entries by which it is referenced. If the
file system is not specified, a chkold of a default file system is performed. The normai output
of chkold includes a report of

The number of blocks missing; i.e. not in any file nor in the free list,
The number of special files,

The total number of files,

The number of large files,

The number of directories,

The number of indirect blocks,

The number of blocks used in files,

The highest-numbered block appearing in a file,

The number of free blocks.

The —1 flag causes cikold to produce as part of its output report a list of the all the path names
of files on the file system. The list is in i-number order; the first name for each file gives the
i-number while subsequent names (i.e. links) have the i-number suppressed. The entries ‘.”
and ‘“..”" for directories are also suppressed. If the flag as given as =1l , the listing will include
the accessed and modified times for each file. The ~1 option supersedes ~s .

The -s flag causes chkold to ignore the actual free list and reconstruct a new one by rewriting
the super-block of the file system. The file system should be dismounted while this is done; if
this is not possible (for example if the root file system has to be salvaged) care should be taken
that the system is quiescent and that it is rebooted immediately afterwards so that the old, bad
in-core copy of the super-block will not continue to be used. Notice also that the words in the
super-block which indicate the size of the free list and of the i-list are believed. If the super-
block has been curdled these words will have to be patched. The ~s flag causes the normal
output reports to be suppressed.

With the —u flag, chkold examines the directory structure for connectivity. A list of all i-node
numbers that cannot be reached from the root is printed. This is exactly the list of i-nodes that
should be cleared (see ciri(1M)) after a series of incremental restores. (See the BUGS section
of mhrestor(1M)). The —u option supersedes —s .

The occurrence of i » times in a flag argument —ii...i causes chkold to store away the next n
arguments which are taken to be i-numbers. When any of these i-numbers is encountered in a
directory a diagnostic is produced, as described below, which indicates among other things the
entry name.

Likewise, n appearances of b in a flag like —bb...b cause the next » arguments to be taken as
block numbers which are remembered; whenever any of the named blocks turns up in a file, a
diagnostic is produced.

Currently, /dev/rp0 is the default file system.

SEE ALSO

check (1M), ciri(IM), mhrestor(IM), sync(1M), update (IM), updfs(I1M), fs(5)

November 1979 Page 1 November 1979

CHKOLD (1M) CB—-UNIX 2.1 CHKOLD (1M)

DIAGNOSTICS
If a read error is encountered, the block number of the bad block is printed and chkold exits.
‘‘Bad freeblock’ means that a block number outside the available space was encountered in the
free list. ‘‘n dups in free”” means that n blocks were found in the free list which duplicate
blocks either in some file or in the earlier part of the free list.

An important class of diagnostics is produced by a routine which is called for each block which
is encountered in an i-node corresponding to an ordinary file or directory. These have the form

b# complaint ; i= i# (class)
Here b# is the block number being considered; complaint is the diagnostic itself. It may be

blk if the block number was mentioned as an argument after =b ;

bad if the block number has a value not inside the allocatable space on the device, as indi-
cated by the devices’ super-block;

dup if the block number has already been seen in a file;

din if the block is a member of a directory, and if an entry is found therein whose i-

number is outside the range of the i-list on the device, as indicated by the i-list size
specified by the super-block. Unfortunately this diagnostic does not indicate the
offending entry name, but since the i-number of the directory itself is given (see
below) the problem can be tracked down.

The i# in the form above is the i-number in which the named block was found. The classis an
indicator of what type of block was involved in the difficulty:

sdir indicates that the block is a data block in a small file;

Idir indicates that the block is a data block in a large file (the indirect block number is not
available);

idir indicates that the block is an indirect block (pointing to data blocks) in a large file;
free indicates that the block was mentioned after —b and is free;
urk indicates a malfunction in cakold.

When an i-number specified after —i is encountered while reading a directory, a report in the
form

i# ino; i= d# (class) name

where i# is the requested i-number. d# is the i-number of the directory, class is the class of
the directory block as discussed above (virtually always ‘‘sdir’’) and name is the entry name.
This diagnostic gives enough information to find a full path name for an i-number without
using the —1 option: use —b 7 to find an entry name and the i-number of the directory con-
taining the reference to n, then recursively use —b on the i-number of the directory to find its
name.

Another important class of file system diseases indicated by chkold is files for which the number
of directory entries does not agree with the link-count field of the i-node. The diagnostic is
hard to interpret. It has the form

i# delta

Here i# is the i-number affected. Delta is an octal number accumulated in a byte, and thus can
have the value 0 through 377(8). The easiest way (short of rewriting the routine) of explaining
the significance of defta is to describe how it is computed.

If the associated i-node is allocated (that is, has the allocated bit on) add 100 to delta. If its
link-count is non-zero, add another 100 pius the link-count. Each time a directory entry speci-
fying the associated i-number is encountered, subtract 1 from delta. At the end, the i-number

November 1979 Page 2 November 1979

CHKOLD (1M) CB-UNIX 2.1 CHKOLD (1M)

and delta are printed if delta is neither 0 nor 200. The first case indicates that the i-node was
unallocated and no entries for it appear; the second that it was allocated and that the link-count
and the number of directory entries agree.

Therefore (to explain the symptoms of the most common difficulties) delta = 377 (—1 in 8-bit,
2’s complement octal) means that there is a directory entry for an unallocated i-node. This is
somewhat serious and the entry should be found and removed forthwith. Delta = 201 usually
means that a normal, allocated i-node has no directory entry. This difficulty is much less seri-
ous. Whatever blocks there are in the file are unavailable, but no further damage will occur if
nothing is done. A clrifollowed by a chkold —s will restore the lost space at leisure.

In general, values of delta equal to or somewhat above 0, 100, or 200 are relatively innocuous;
just below these numbers there is danger of spreading infection.

BUGS
Chkold —!or —uon large file systems takes a great deal of core.
Since chkold is inherently two-pass in nature, extraneous diagnostics may be produced if applied
to active file systems.
It believes even preposterous super-blocks and consequently can get core images.

November 1979 Page 3 November 1979

CHMOD (1) CB—-UNIX 2.1 CHMOD (1)

NAME

chmod — change mode of file

SYNOPSIS

chmed mode file ...

DESCRIPTION

The mode of each named file is changed according to mode, which may be absolute or symbolic.
An absolute mode is an octal number constructed from the OR of the following modes:

4000 set user ID on execution

2000 set group ID on execution

1000 sticky bit, see chnod(2)

0400 read by owner

0200 write by owner

0100 execute (search in directory) by owner
0070 read, write, execute (search) by group
0007 read, write, execute (search) by others

A symbolic mode has the form:
[whol op permission | op permission |

The who part is a combination of the letters u (for user’s permissions), g (group) and o (other).
The letter a stands for ugo, the default if who is omitted.

Op can be + to add permission to the file’s mode, = to take away permission and = to assign
permission absolutely (all other bits will be reset).

Permission is any combination of the letters r (read), w (write), x (execute), s (set owner or
group id) and t (save text — sticky). U, g or o indicate that permission is to be taken from the
current mode. Omitting permission is only useful with = to take away all permissions.

Multiple symbolic modes separated by commas may be given. Operations are performed in the
order specified. The letter s is only useful with u or g and t only works with u.

Only the owner of a file (or the super-user) may change its mode.

EXAMPLES

The first example denies write permission to others, the second makes a file executable:
chmod o—w file

chmod +x file

SEE ALSO

Page 1

Is(1), chmod(2), umask(2)

November 1979

CHOWN(1) CB—-UNIX 2.1 CHOWN (1)

NAME
chown, chgrp — change owner of group of a file

SYNOPSIS
choewn owner file ...
chgrp group file ...

DESCRIPTION

Chown changes the owner of the files to owner. The owner may be either a decimal UID or a
login name found in the password file.

Chgrp changes the group-ID of the files to group. The group may be either a decimal GID or a
group name found in the group-ID file. You must be current owner or in proper current group
to make change.

FILES
/etc/passwd
/etc/group

SEE ALSO
chown(2), group(5), passwd(5)

November 1979 Page 1 November 1979

CHROOT (1M) CB—UNIX 2.1 CHROOT (1M)

NAME

chroot — change root directory for a command

SYNOPSIS

chroot newroot command

DESCRIPTION

The given command is executed relative to the new root. Command may also be of form
*‘/bin/sh shelifile’’. The meaning of any initial slashes (/) in path names is changed for the
duration of command and any of its children to newroor. Furthermore, the initial working direc-
tory is newroot.

Notice that "chroot newroot command > x" will create the file x relative to the original root,
not the new one.

This command is restricted to the super user.

The new root pathname is always absolute: even if a chroor is currently in effect, the newroot
argument is relative to the real root of the file system.

SEE ALSO

BUGS

Page |

chdir(2)

One should exercise extreme caution when referencing special files in the new root file system.

November 1979

CLRI(1IM) CB—UNIX 2.3 CLRI(IM)

NAME
clri — clear inode

SYNOPSIS
/ete/clri i-number filesystem [i-number ...]

DESCRIPTION
Clri writes zeros on the 32 bytes occupied by the i-nodes specified. If the filesystem argument is —
given, the i-node resides on the given device. The filesystem must be a special file name refer-
ring to a device containing a file system. After clri, any blocks in the affected file will show up
as ‘“‘missing’’ in a check of the file system.

Read and write permission is required on the specified file system device. The i-node becomes
allocatable.

The primary purpose of this routine is to remove a file which for some reason appears in no
directory. If it is used to zap an i-node which does appear in a directory, care should be taken —
to track down the entry and remove it. Otherwise, when the i-node is reallocated to some new
file, the old entry will still point to that file. At that point removing the old entry will destroy
the new file. The new entry will again point to an unallocated i-node, so the whole cycle is
likely to be repeated again and again.

BUGS
Whatever the default file system is, it is likely to be wrong. Specify the file system explicitly.

If the file is open, clri is likely to be ineffective.

January 12, 1981 Page 1 January 12, 1981

CMP (1) CB—UNIX 2.1 CMP(1)

NAME

cmp — compare two files
SYNOPSIS

cmp [~1] [=s] filel file2
DESCRIPTION

The two files are compared. (If filel is =, the standard input is used.) Under default options,
c¢cmp makes no comment if the files are the same; if they differ, it announces the byte and line

number at which the difference occurred. If one file is an initial subsequence of the other, that
fact is noted.

Options:
= —1 Print the byte number (decimal) and the differing bytes (octal) for each difference.

—s Print nothing for differing files; return codes only.

SEE ALSO
comm (1), diff(1)

DIAGNOSTICS

Exit code 0 is returned for identical files, 1 for different files, and 2 for an inaccessible or miss-
ing argument.

November 1979 Page | November 1979

T =

CMPFS (1M) CB—UNIX 2.1 CMPFS (1M)

NAME

cmpfs — compare and archive file systems

SYNOPSIS

/etc/cmpfs [—Nmtvrseiobpan] [tapefile] [name] dirl [dir2]

DESCRIPTION

Cmpfs saves file systems on mag tape (or a specified file). It writes files on the tape in an
archive format; i.e., the tape consists of a sequential list of file headers and files. Whereas the
tp program collects all the file headers into a fixed-length directory on the tape, cmpfs writes a
header, then the file, followed by another header and the file, etc. When used in the compare
mode, it saves only the differences between the two file systems which are heirarchically under
the dirl and dir2 arguments. In this mode, dirl is taken to be the "old" file system, and dir2 is
taken to be the "new"; i.e., cmp/5 will produce all changes necessary in order tq take dirl to dir2
. When used in the non-compare mode, it saves the entire file system under the dir! argument.

Note: cmpfs is coded to run faster if dir/ is a path name which begins with "/". If dir2 is
present, it must also begin with a ‘/’ in order for the program to run faster.

The flags specify what action cmpfs is to take:

N Nis and optional one or two decimal digits which designate which tape drive the pro-
gram should use. Drive 0 is default if not drive is specified.

m Write the output to the file tapefile instead of the tape drive.

t Produce a list of the differences between the two file systems. If the second file system
is null, this will effectively be a list of all the files in the given file system. The pro-
duced listing consists of one of the flags [dcal] followed by a path name. The flags
mean:

d (Delete) The named file is in the dirl file system, but not in the dir2 file system.
This flag will never appear when the program is being run in the non-compare
mode.

¢ (Change) The named file is in both file systems and is different. "Different" may
be in any of the following senses; mode, owner, group or file contents. The one
exception is the case of directories; if the only difference between the two direc-
tories is their size, cmpfs will produce no output. This flag will never appear in
the non-compare mode.

a (Add) In the non-compare mode, this flag means that the file simply exists in
dir] . In the compare mode, this flag means that the files does not exist in dirl/
but does exist in dir2 .

1 (Link) The named file is a link to a previously found file. The previous file will
always be associated with a ¢ or a flag.

The list of names output by the program is in the order in which they appear in their
respective directories; ¢mp/fs does no sorting.

v Produce verbose output. For each file encountered which would produce some form
of output on the requesting terminal, ¢mpfs normally outputs the entry type [dcall and
the relative path name. The verbose option expands this output to include the mode,
link count, owner id, group id, and size of the file on the tape.

r Produce a tape representing the differences found. Each entry consists of a header
conwzining the entry type [deall, mode, owner id, group id, file size and name. The
name contains neither the dirl or dir2 name; hence it is relative. The remainder of the
entry produced depends on the [deal] flag associated with the file:

November 1979 Page 1 November 1979

CMPFS (1IM)

B e v o

CB—-UNIX 2.1 CMPFS (1M)

d No further information is required for a delete entry.

¢,a The contents of the file follows starting at the next tape record — unless the file
is a directory or a special file. For a directory, the contents of the directory is
dumped if the eflag is specified, but not otherwise. The contents of the directory
is used if the eflag is specified when the tape is read by updfs. For a special file
the major/minor device specification is recorded in the entry header.

1 The "link to" name follows immediately after the header.

Produce entries for special files. If this flag is missing, ¢mpfs will ignore all special files
it comes across. Hence if the tape is being generated for an installation which has a
different device configuration, the s flag should be left off, or the ignore capability of
the program should be used (see below).

Produce entries according to the current epoch time as define in the date file:
/etc/epoch. Dir2 may not be given. when the e flag is specified, cmpfs will look
through the file system specified by the dir/ argument and output (governed by the ¢,
r and s flags) those files and directories whose modification dates are later than the
epoch date. The command epoch(1M) may be used to modify the epoch date.

Ignore all files on the tape which have the same relative pathname as one of the path-
names in an ignore file, or which are heirarchically lower. The name of the ignore file
is taken to be the next argument in the argument list, i.e. name .

Look at only files which match a name in an only file or are heirarchically lower. The
name of the only file is taken to be the next argument in the argument list.

Output is blocked 5120 bytes per record instead of 512.
ignore file mode when doing comparsion.

ignore file user ownership when doing comparsion.
ignore file group ownership when doing comparsion.

An ignore/only file should be a list of relative pathnames (both file names and directory
names are allowed) separated by newlines. The "relative" requirement is important; for
example, it should be clear that no pathname may start with a "/". Although it is logicaily
possible to have a situation where it would be convenient to have both an ignore and an
only file, ¢cmpss allows only one or the other to be used.

FILES

/tmp/fsip? link bookkeeping
/tmp/fsin? link bookkeeping
/dev/mt?

SEE ALSO

epoch(1M), updfs(1M)

BUGS

Cmpfs does not know about directories that begin with “.".

. November 1979

Page 2 November 1979

CMT (18)

CB—UNIX 2.1 CMT (1S)

NAME
cmt — insert the delta commentary for an initial SCCS delta
SYNOPSIS
emt [—m[mrlist]] [—ylcomment]] name ...
DESCRIPTION
Cme inserts the delta commentary, for the initial delta created by admin (1S), of each named
SCCS file.
If a directory is named, cm: behaves as though each file in the directory were specified as a
named file, except that non-SCCS files (last component of the pathname does not begin with
s.) and unreadable files are silently ignored. If a name of *“—"’ is given, the standard input is
read; each line of the standard input is taken to be the name of an SCCS file to be processed.
Keyletter arguments apply independently to each named file.
~mlmriisd If the SCCS file has the v flag set (see admin(1S)) then a Modification
Request (MR) number mus: be supplied.
If —m is not used and the standard input is a terminal, the prompt MRs?
is issued on the standard output before the standard input is read; if the
standard input is not a terminal, no prompt is issued. The ‘“MRs?”
prompt always precedes the ‘‘comments?’’ prompt (see —y keyletter).
MRs in a list are separated by blanks and/or tab characters. An unes-
caped new line character terminates the MR list.
Note that if the v flag has a value (see admin(1S)), it is taken to be the
name of a program (or shell procedure) which validates the correctness
of the MR numbers. If a non-zero exit status is returned from MR
number validation program, cmr terminates (it is assumed that the MR
numbers were not all valid).
—ylcommend Arbitrary text used to describe the reason for making the deita. A null
string is considered a valid comment.
If —y is not specified and the standard input is a terminal, the prompt
comments? is issued on the standard output before the standard input is
read; if the standard input is not a terminal, no prompt is issued. An
unescaped new line character terminates the comment text.
The exact permissions necessary to insert the history entry of an initial delta are documented in
the Source Code Control System User’s Guide. Simply stated, they are either (1) if you created
the SCCS file, you can insert its delta commentary; or (2) if you own the file and directory you
can insert a delta commentary. No other changes are made to the delta table entry.
FILES
x-file (see delta (1S))
z-file (see delta (1S))
SEE ALSO
admin(1S), get(1S), delta(1S), prs(1S), help(1S), sccsfile(5)
Source Code Control System User’s Guide by L. E. Bonanni and C. A. Salemi.
DIAGNOSTICS

Use help(1S) for explanations.

Page |

November 1979

——.

CoL(1)

NAME

CB-UNIX 2.1 COL (1)

col — filter reverse line-feeds

SYNOPSIS

col [—bfx]

DESCRIPTION

Col reads from the standard input and writes onto the standard output. It performs the line
overlays implied by reverse line feeds (ASCII code ESC-7), and by forward and reverse half-
line-feeds (ESC-9 and ESC-8). Col is particularly useful for filtering muiticolumn output made
with the .rt command of nroff(1) and output resulting from use of the r4/(1) preprocessor.

If the —b option is given, cof assumes that the output device in use is not capable of backspac-
ing. In this case, if two or more characters are to appear in the same place, only the last one
read will be output.

Although co/ accepts half-line motions in its input, it normally does not emit them on output.
Instead, text that would appear between lines is moved to the next lower full-line boundary.
This treatment can be suppressed by the —f (fine) option; in this case, the output from co/ may
contain forward half-line-feeds (ESC-9), but will still never contain either kind of reverse line
motion.

Unless the —x option is given, co/ will convert white space to tabs on output wherever possible
to shorten printing time.

The ASCII control characters SO (\017) and SI (\016) are assumed by co/ to start and end text
in an alternate character set. The character set to which each input character belongs is remem-
bered, and on output SI and SO characters are generated as appropriate to ensure that each char-
acter is printed in the correct character set.

On input, the only control characters accepted are space, backspace, tab, return, new-line, SI,
SO, vT (\013), and ESC followed by 7, 8, or 9. The VT character is an alternate form of full
reverse line-feed, included for compatibility with some earlier programs of this type. All other
non-printing characters are ignored.

SEE ALSO

NOTES

BUGS

Page 1

nroff(1), tbi(1)

The input format accepted by co/ matches the output produced by nroff(1) with either the
—T37 or —=Tlp options. Use —T37 (and the —f option of co/) if the ultimate disposition of
the output of co/ will be a device that can interpret half-line motions, and —Tlp otherwise.

Cannot back up more than 128 lines.
Allows at most 800 characters, including backspaces, on a line.

November 1979

COMB (18) CB—-UNIX 2.1 COMB (1S)

NAME

comb — combine SCCS deltas
SYNOPSIS

comb [—o] [—s] [—psid] [—clist] name ..
DESCRIPTION

Comb generates a shell procedure (see sk (1)) which, when run, will reconstruct the given SCCS
files. The reconstructed files will, hopefully, be smaller than the original files. The arguments
may be specified in any order, but all keyletter arguments apply to all named SCCS files. If a
directory is named, comb behaves as though each file in the directory were specified as a named
file, except that non-SCCS files (last component of the pathname does not begin with s.) and
unreadable files are silently ignored. If a name of -~ is given, the standard input is read; each
line of the standard input is taken to be the name of an SCCS file to be processed. Again,
non-SCCS files and unreadable files are silently ignored.

The generated shell procedure is written on the standard output.

The keyletter arguments are as follows. Each is explained as though only one named file is to
be processed, but the effects of any keyletter argument apply independently to each named file.

—pSID The SCCS [Dentification string (SID) of the oldest delta to be preserved.
All older deltas are discarded in the reconstructed file.

—~clist A list (see ger(1S) for the syntax of a </iss>) of deltas to be preserved.
All other deltas are discarded.

-0 For each ‘‘get —e’’ generated, this argument causes the reconstructed file
to be accessed at the release of the delta to be created, otherwise the
reconstructed file would be accessed at the most recent ancestor. Use of
the o keyletter may decrease the size of the reconstructed SCCS file. It
may also alter the shape of the delta tree of the original file.

-5 This argument causes comb to generate a shell procedure which, when
run, will produce a report giving, for each file, the file name, size after
combining, original size, and percentage change computed by:

100 + (original — combined) / original
(Sizes are in blocks.) We recommend that before any SCCS files are actu-
ally combined, one should use this option to determine exactly how
much space is saved by the combining process.

If no keyletter arguments are specified, comé will preserve only leaf deltas and the
minimal number of ancestors needed to preserve the tree.

FILES
s.COMB The name of the reconstructed SCCS file.
comb????? Temporary.

SEE ALSO

get(1S), delta(1S), admin(1S), prs(1S), help(1S), sccsfile(5)
Source Code Controi System User’s Guide by L. E. Bonanni and C. A. Salemi.

DIAGNOSTICS
Use heip(1S) for explanations.

BUGS
Comp may rearrange the shape of the tree of deitas. It may not save any space; in fact, it is
possibie for the reconstructed file to actually be larger than the original.

Page | November 1979

COMM (1) CB-UNIX 2.1 COMM (1)

NAME

comm — select or reject lines common to two sorted files
SYNOPSIS

comm [— [123]] filel file2
DESCRIPTION

Comm reads file! and file2, which should be ordered in ASCII collating sequence (see sori(1)),
and produces a three-column output: lines only in filel; lines only in file2: and lines in both
files. The filename — means the standard input.

Flags 1, 2, or 3 suppress printing of the corresponding column. Thus comm —12 prints only
the lines common to the two files; comm =23 prints only lines in the first file but not in the
second; comm —123 is a no-op.

SEE ALSO
cmp(1), diff(1), sort(1), uniq(1)

Page 1 November 1979

CP(1) CB—UNIX 2.3 CP(1)

NAME
cp, In, mv — copy, link, or move files

SYNOPSIS
cp [—d] filel [file2 ...] target
In [—d] filel [file2 ...] target
mv [—d] filel [file2 ...] target

DESCRIPTION
Filel is copied (linked, moved) to target. Under no circumstance can filel and target be the
same. If targer is a directory, then one or more files are copied (linked, moved) to that direc-
tory.
If mv determines that the mode of rarget forbids writing, it will print the mode (see chmod(2))
and read the standard input for one line (if the standard input is a terminal). If the line begins
with y, the move takes place otherwise mv exits.

Only mv will allow file] to be a directory. In this case the directory rename will occur only if the
two directories have the same parent.

The —d switch will cause the date of the original file to be retained (or inherited) by the result-
ing file. This is particularly useful when moving files to new devices, where the original date
conveys useful information about the contents of the file. For the mv and In command, the ori-
ginal date can only be retained if the user is root or the owner of the file.

SEE ALSO
rm(1), chmod(2), utime(2)

BUGS

If file] and target lie on different file systems, mv must copy the file and delete the original. In
this case the owner name becomes that of the copying process and any linking relationship with
other files is lost. j

n

Ln will not link across file systems at all.

April 8, 1981 Page 1 April 8, 1981

CPIC(1)

NAME
épic = copy file arckive
STNGPSIS
cpio -0 | acEv |
cpio =i [EcdmrtuvfsSb6
cpio -p [adlmruv] dire
LESCRIPTICN
Cpio -0 (copy out) reads
of rainPrames and copies
cutput together with pat
Cpio -i (copy in) extrac
which 1s essumed to te 1
Opnly files with names tkh
Pattigrns are given
In petlerns, meta-cherac
/ ctaracter., Multip
pattsrns ere specified,
select all files). Tke

creeted and cupled inte
upon the cptions descrit

) reads tie
files that

Cpio -p (pass
pvatr names ¢of

orticns described below.

The meanings of the

a ReSiEil deldieis's
ccpied.

B Input/ouvtput is to
(does not apply to
with date directed

d Lirectories are tc¢

® Write header inform
pervashicl ety

o Interactively renapm
line, the file is: ¢

t Print & tgble of z¢
created.

u Copy upcongitionall
replace & newer fil

v Verbose: causes & 1
when used with the
looks 1like the outyp

1 Whenever poessitle,

Tsatbtle orly with

ki
0
o)
n
’_x

UNIX Z£.2

th

CPIO(1)

+

¢ in and out

7 [patterns]

¢ e 'y

put Te¢obhtain & 1ist
0 the stendard
=3

informeticn.
stenderd ingut

previcis cpio -o.
are sslecied

sf a
4

at mstchL patierns

B b - ———

extracted files are conditiornelly
the purrent diregicry tree besed
e€d telcw.

starnderd input to chbte
are conditicnally

AT ar L RE IR EaT

te tlocked £,12¢ tytes to the reccord
the pass cption; meaningful cnly

to or from /dev/rmt?).
be created a3c needed.

ation in A8CII cherecter form for

e files, 1If tke user types e null
Kipped.

ntents of the input. No files ere

y (rormally, &n older file will not

¢ with the same name).

ist of file names 1o be printed.

t opticn, the tabtle of contents

vt of an 1s =1 command (see 1s(1)).

link files rather then ccpying them.

e -p option.

mod. 2/17/84)

CPIC(1) UNIX E. CPIO(1)

Eetain previcus file medificetion time. This cprticn is
ineffective on directories thet ere being copiec.

Swap tytes. Use only with the -1 optior.

Swap halfwords. Use only with the =i option.

Swap toth bytes arnd halfwords. Use only with the -1
optien.

Frocess &b o0ld (i.e., ©
Cnly useful with -1 (co

D o H 3

NIX Sixth Editiorn format) file.
D

EXAMPLES
Tre first exemple below copies the contents cf & directory

intc en archive; the seconé¢ duplicetes & directory
kierarchy:

1s | cpic =-c >/dev/mtg

cd olddirz
find « —deptk -print | cpio -pdl newdir

SEE ALSC .
ar{1), find(1), “

BUGS
FTatl rnames are restricted to 1%2& cherecters. If there are
toc meny unique linked files, the program runs out of memory
te keepr track of them end, thereefter, linking informetior
is lost. '

Faee = (lact mod. 2/17/84)

