CPI1O (1)

NAME

CB—-UNIX 2.1 CPIO(1)

cpio — copy file archives in and out

SYNOPSIS

cpio
cpio
cpio
DESCRIPTION

-0[Bv]
-i[Bdmrtuvé] [pattern]
-pld§mruv] [pattern | directory

Cpio —o (copy out) reads the standard input for a list of pathnames and copies those files onto
the standard output together with pathname and status information.

Cpio —i (copy in) extracts from the standard input (which is assumed to be the product of a
previous cpio —o) files whose names are selected by a parrern given in the name-generating
syntax of sh(1). The parern meta-characters ?, =, and [...] will match / characters. The par-
tern argument defaults to ».

Cpio —p (pass) copies out and in in a single operation. Destination pathnames are interpreted
relative to the named direcrory.

The options are:

B

[-

m

6
EXAMPLES

Input/output is blocked 5120 bytes to the record (does not apply to the pass option;
meaningful only with data directed from/to /dev/rmt?).

Directories are to be created as needed.

Interactively rename files. If the user types a null line, the file is skipped.

Print a table of contents of the input. No files are created.

Copy unconditionally (normally, an older file will not replace a newer file with the same
name).

Verbose: causes a list of file names to be printed. When used with the t option, the
table of contents looks like an ““Is —1" (see /5(1)).

Whenever possible, link files rather than copying them. Usable only with the —p
option.

Retain previous file modification time. This option is ineffective on directories being
copied.

Process an old (i.e., UNIX Sixs# Edition file). Only useful with —i (copy in).

The first example below copies the contents of a directory into an archive: the second dupli-
cates a directory hierarchy:

SEE ALSO

Is | cpio —o >/dev/mt0

cd olddir
find . —print | cpio —pd! newdir

ar(1), find(1)

BUGS

Path names are restricted to 128 characters. If there are too many unique linked files, the pro-
gram runs out of memory to keep track of them and subsequent linking information is lost.

Page |

November 1979

CPMYV (1) CB—UNIX 2.1 CPMYV (1)

NAME
cpmv — copy move

SYNOPSIS
cpmy source mode uid gid [destl dest2 ...]

DESCRIPTION
The cpmv command is similar to the move command in that it copies the source file to the desti-
nation files and sets the mode, user id and group id (mode, wid, and gid, respectively) of the
destination files. Unlike the move command, however, cpmyv does not remove the source file.
FILES
/tmp/cpmyv < pid>
SEE ALSO
mv(1l), cp(1), move(l)

Page l November [979

CREF (1) CB—-UNIX 2.1 CREF (1)

NAME

cref — make cross reference listing

SYNOPSIS

cref [—acilnostux123] name ...

DESCRIPTION

FILES

Cref makes a cross reference listing of program files in assembler or C format. The files named
as arguments in the command line are searched for symbols in the appropriate syntax.

The output report is in four columns:

(1 2) 3 (4
symbol file see text as it appears in file
below

Cref uses either an ignore file or an onjy file. If the —i option is given, the next argument is
taken to be an jgnore file; if the —o option is given, the next argument is taken to be an only
file. Ignore and only files are lists of symbols separated by new lines. All symbols in an ignore
file are ignored in columns (1) and (3) of the output. If an only file is given, only symbols in
that file appear in column (1). At most one of ~i and —o may be used. The defauit setting is
—1i. Assembler predefined symbols or C keywords are ignored.

The —s option causes current symbols to be put in column 3. In the assembler, the current
symbol is the most recent name symbol; in C, the current function name. The —1 option
causes the line number within the file to be put in column 3.

The =t option causes the next available argument to be used as the name of the intermediate
temporary file (instead of /tmp/crt??). The file is created and is not removed at the end of the
process.

Options:

assembler format (default)

C format input

use ignore file (see above)

put line number in col. 3 (instead of current symbol)
omit column 4 (no context)

use only file (see above)

current symbol in col. 3 (default)

user supplied temporary file

print only symbols that occur exactly once
print only C external symbols

sort output on column 1 (default)

sort output on coiumn 2

sort output on column 3

(VI S B — - B o B -]

/tmp/crt?? temporaries

/usr/lib/aign default assembler ignore file
/usr/lib/atab grammar table for assembler files
/usr/lib/cign default C jgnore file

/usr/lib/ctab grammar table for C files
/usr/lib/crpost post processor

/usr/lib/upost post processor for —u option
/bin/sort used to sort temporaries

SEE ALSO

Page 1

as(1), cc(1), xref(1)

November 1979

CREF (1) CB—UNIX 2.1 CREF (1)

BUGS
Cref inserts ‘‘delete’’ characters into the intermediate temporary file after the eighth character
of names which were eight or more characters in the source file.

November 1979 Page 2

CRON(1) CB—-UNIX 2.1 CRON (1)

NAME

cron — clock daemon

SYNOPSIS

/etc/cron

DESCRIPTION

Cron executes commands at specified dates and times according to the instructions in the file
/usr/lib/crontab . Cron should be started from an entry in the lines file: see init(1M).

/ust/lib/crontab consists of lines of six fields separated by spaces or tabs. The first five are
integer patterns to specify the minute (0-59), hour (0-23), day of the month (1-31), month of
the year (1-12), and day of the week (0-6 with 0=Sunday). Each of these patterns may con-
tain a number in the range above: two numbers separated by a minus (=) meaning a range
inclusive; a list of numbers separated by commas (,) meaning any of the numbers; or an aster-
isk (*) meaning all legal values. The sixth field is a string that is executed by s/ at the
specified times. A percent (%) in this field is normally translated to a new-line character.
Only the first line (up to a % or end of line) of the command field is executed by s# . The other
lines are made available to the command as standard input. To escape this special meaning of
%, immediately preceed the percent by a \. Similarily, to continue a line on subsequent lines
the last character of the line should be a \. In this latter case, both the \ and the newline are
discarded.

/usr/lib/crontab is examined by cron whenever cron is started, whenever cron is sent the inter-
rupt signal and every hour on the hour. Thus it could take up to an hour for entries to become
effective if cron is not signalled.

FILES
/usr/lib/crontab
SEE ALSO
init(1M), sh(1), kill(1)
DIAGNOSTICS
None - illegal lines in crontab are ignored.

Page 1

November 1979

CRYPT(1) CB—UNIX 2.1 CRYPT (1)

NAME

crypt — encode/decode

SYNOPSIS

crypt key

DESCRIPTION

Crypt reads from the standard input and writes on the standard output. The argument is a key
that selects a particular transformation. For any given key the transformation is idempotent;
that is,

crypt key <clear >cypher
crypt key <cypher

will print the clear.

The security of encrypted files depends on three factors: the fundamental method must be hard
to solve; direct search of the key space must be infeasible; ‘‘sneak paths’ by which keys or
clear text can become visible must be minimized.

Crypt implements a one-rotor machine designed along the lines of the German Enigma, but
with a 256-element rotor. Methods of attack on such machines are known, but not widely;
moreover the amount of work required is likely to be large.

The transformation of a key into the internal settings of the machine is deliberately designed to
be expensive, i.e. to take a substantial fraction of a second to compute. However, if keys are
restricted to (say) three lower-case letters, then encrypted files can be read by expending only a
substantial fraction of five minutes of machine time.

Since the key is an argument to the crypr command, it is potentially visible to users executing
ps(1) or a derivative. To minimize this possibility, crypr takes care to destroy any record of the
key immediately upon entry. No doubt the choice of keys and key security are the most
vulnerable aspect of crypt.

Crypt generates files which are compatible with the -x option in the editor.

SEE ALSO

Page |

ed(1)

November 1979

CSH{L1?

HAME

m_ﬁ%“f’ﬂi)i“‘ia}iﬁ
cah o o-oefinstyMsd DL

DESCRIPTION

gl shtruchurs

LEHCL)

e

—

o8 g

&

gt

ENTIAY 8

ITREN

AT Y

B

2 L4

AVHMSNBT S
oy)

oL om

RIS

LEHL

E LSHOL

R
£OHRm

SYS Y

{1

Ry

LAt vl

-
E

by
Fd

i3

* ?‘ ;:4':; ,!f" o

18

4
iy

S

£

ard

’
3Ty

L

O Wi

(=3

- -, =
m i
w3 a
g i
e i

CSHOLS

i,
Ll
et

P

E5H{1}

bk dom

i

14

able sub

A7

Wi

.
o
i

nav

HOLs

L5

i

i

e ot

k)

£

AT

Commarwd andd Filenasme substitubion

TN

C8H(13

b B

vhed

e

Yy

s o
e B

.3 K
WA ek

SN M]
REREES

o

L

i

wrd

“
1
2. o

s
£ o

3

=

1
#

o

LR

v

s S
S g

o

b

ooy o
s o

DAL

LSHOL)

ot

Tt

o

1Tow

¥

1

Covhen

{13

C5H

o

-
o]
?
i3

-

CS

(

b

20MPEN

i lhin

¥

.

31 Lo

Lt

2

Pk s

oy

CEHOLY

ohrdir
it

B

@lme
v
syt f
sruis

P b e

= Eieee

0
od

C8H(

CBH{1}

P

£

fLorw

las

nis

Il

o

}{':! AL

3

il f

CEHOLS

T

“Eits

Soins

-
! -

K

he %

Yiiing
niee
NLOE
nioe

THHULE
YL ommanc

oninbe
oninker -
oninhe

DITELY

HCL2

2 LEHOL

PN

SR 20

snd T

ahnift wvariabls

switon |
mane a

S

C8H{1)

fefanlhi

f,

i

gl

et

sl

W

.o g

imea
i

L
%

%
z

“r

e

1,

3

1WEN

=

e

umask,

-t

i

1z

(RS 22>

Y

R -

iy

AVHR

5

(S ¥

P
w

ad L

H

By

+
%

[

23

X

&

i

a

o

b
ERE

3

L3

i

i

‘
ol g

L
7
hat !

4s, o

o
i

B

£

5

Lables

a1

Ral:Ys JEVD

i

af

ot n]

iZZ

ag seq op ofe
e AN,

i1
&
i

s

#

L1y

1

5

nars

o

BT
nish

k3

o
&3

13
Ity o,

|2

)
aSnorsent

aTaT
i
m

e

1

LE O~ 3

CEH{1}

By
o8

¥
2

A4 o
555 tﬂm 13 gt |
o~ . -~
L - = S |
o o Q L 3 |
] ps} = 5 &
I.\dc Fd e St
o W & i .
- £ = et & S

ESH{1

LEHCL

T 1 mg

VETDDIEE

HMov-puilbin command exscubion

intire s st e
~

:
L yuoh,
i 3

B

.

; 3 fes
i RS]

Argument list processing

ES5H{1?

g

=

-7

e

onen o
&5,

e

RO

e S N B ¥ I

L viams

g

LEHOL)

TFILE

LIMITATIONS

v o
ST

7

SRS

LEHL

YiEhia)

S
SHLADIT:

CT(1C)

NAME

CB—UNIX 2.3 CT(1C)

ct — call terminal

SYNOPSIS

et —a][—-v][—wn][—sspeed] [telno]

DESCRIPTION

FILES

Ct dials the phone number of 2 modem that is attached to a terminal, and spawns a getty pro-
cess for the specified terminal whose arg0 begins with a minus sign. Telno is the telephone
number, with embedded w’s to wait for secondary dialtones.

Ct determines which dialers are associated with lines that are set to the appropriate speed by
examining the file /usr/lib/uucp/L-devices. If all such available dialers are busy, ar will ask if
it should wait for a line, and if so, for how many minutes it should wait before it gives up. Ct
will continue to try to open the dialers at one-minute intervals until the specified limit is
exceeded. The dialogue may be overridden by specifying the —wn option, where n is the max-
imum number of minutes that ¢t is to wait to get a line.

Normally ¢ uses datasets with the class ACU as specified in the L-devices file. The —a flag
causes ¢t to use datasets with the class ACUA instead. Such datasets are used to originate tele-
phone calls using the answer tone and are therefore suitable for calling terminals such as silent
700s or couplers that cannot operate in the answer mode. Ct will also use the ACUA class if it
finds that the environment variable $L0 contains —a.

If the —v option is used, et will send a running narrative to its error output.

The data rate may be set with the —s option, where speed is expressed in baud. The default
rate is 300 baud.

Jusr/lib/uucp/L-devices

SEE ALSO

April 10

cu(1C), getty(1M), login(1M), uucp(1C), dn(4)

, 1981 Page 1 April 10, 1981

CU(1C)

NAME

CB—UNIX 2.3 CU(1C)

cu — call another UNIX system

SYNOPSIS

cu telno [—tneoi] [—s speed] [—anytilda] [—tandem]

DESCRIPTION

April 10,

Cu calls up another UNIX system, a terminal, or possibly a non-UNIX system. It manages an —
interactive conversation with possible transfers of text files. Telno is either the telephone -
number, with w’s at appropriate places to wait for secondary dialtone(s), a telephone number
with the appropriate uucp(1C) dialcode prefixed, a system name listed in the wucp database
(L.sps(5) file), or a hardwired line. Cu distinguishes all these various possibilities by looking at
the telno character string. If no slashes appear and the first character is not a number, cu looks
in the uucp database for information about the name. First cu accuses the telno string of being a
system and looks in the L.sys(5) file of uucp. That failing, it tries to identify an initial string of
alphabetic characters as being a location prefix as found in the uucp file L-dialcodes(5). That —
failing, the string is handed to the conns(3C) subroutine for an attempt to connect. If a system
name was matched or a telephone prefix was found, cu generates a new teleno string (or if a
hardwired line was found for the system in L.sys(5) the device name string is used). If the —n
option is specified, cu prints the system name (if it exists), full telephone number and the line
speed and exits. This useful when trying to determine whether you have guessed the correct
system name or telephone location prefix.

The telno string is then handed to the conns(3C). subroutine which makes the actual connec-
tion to the remote system. If it fails, cu prints a message and exits.

The —t flag is used to dial out to a terminal. The —anytilda flag causes cu to accept the escape
sequences listed below anywhere on a line, not just at the beginning (this is very useful when
connecting to DEC ODT). Only the send process interprets the escape sequences anywhere on
the line; the receive process is unaffected. The —tandem flag designates that the TANDEMI
and TANDEMO flags are to be set meaning that XON/XOFF processing should take place.
This allows cu to take and put files at 9600 baud. The —e (—o) flag designates that even (odd)
parity is to be sent. If both —e and —o are on, marked parity is sent, ie. the high order bit is
always set. This is useful when talking to the dataswitch. The —i switch puts cu into an
interactive mode when selecting phone numbers from the uucp database. Since there may be
more than one entry for a system, this is the only way to select some other entry than the first
one encountered. When the —i switch is specified, cu will ask whether it should use each entry
it finds in the uucp database. When you respond with y<<return>, cu uses that number. Any
other response and cu will continue looking in the database for another entry for the same sys-
tem. Speed gives the transmission speed (110, 134, 150, 300, 1200, 4800, 5600); 300 is the
default value.

After making the connection with the conns, cu runs as two processes: the send process reads

the standard input and passes most of it to the remote system; the receive process reads from
the remote system and passes most data to the standard output. Lines beginning with ‘™ have
special meanings.

The send process interprets the following:

i terminate the conversation.

"EOT terminate the conversation

“<file send the contents of file to the remote system, as though typed at the
terminal.

B invoke an interactive shell on the local system.

“lemd ... run ¢cmd on the local system (via sh —¢):

1981 Page 1 April 10, 1981

CU(1C) CB—-UNIX 2.3 CU(1C)
“Semd ... run cmd locally and send its output to the remote system. _
“%take from [to] copy file from (on the remote system) to file to on the local system. If 10

is omitted, the from name is used in both places.
“%put from [to] copy file from (on local system) to file 10 on remote system. If 10 is
omitted, the from name is used in both places.
“%ed newdir change directory on local system.
“%speed newspeed change the speed of the remote line.
“%anytilda change the state of the anmytilda flag to opposite. A "was [OFF |ON I
message is printed. 4
“%xclude change the state of the XCLUDE bit for the remote line. A "was [OFF|
ON]" message is printed.
“%tandem change the state of XON/XOFF processing. A "was [OFF [ON 1" mes-
sage is printed.
“%break send a break to the remote system.
“%? print a list of wiggle (7) usages.
B send the line ~....
The receive process normally copies data from the remote system to its standard output. Any
line from the remote that begins with > initiates an output diversion to a file. The complete
sequence is: ’
>[>110:1/7fl
zero or more lines to be written to file
>
In any case, output is diverted (or appended, if >> is used) to the file. If : is used, the diver-
sion is silent, i.e., it is written only to the file. If : is omitted, output is written both to the file
and to the standard output. The trailing "> terminates the diversion.
The use of “%put requires stry(1) and car(1) on the remote side. It also requires that the
current erase and kill characters on the remote system be identical to the current ones on the
local system. Backslashes are inserted at appropriate places.
The use of ~%take requires the existence of echo and tee on the remote system. Also, stty
tabs mode is required on the remote system if tabs are to be copied without expansion.

FILES
/dev/null

SEE ALSO
cat(1), stty(1), uucp(1C), conns(3C), dh(4), dn(4), tty(4)

DIAGNOSTICS
Exit code is zero for normal exit, non-zero (various values) otherwise.

BUGS

At speeds greater than 1200 baud, characters are likely to be lost unless the TANDEMI and
TANDEMO bits are set by the option on the command line or through the wiggle escape
sequence described above.

The algorithm used to send breaks is somewhat unreliable. The requirements for transfers
(sty(1), cat(1), echo(1), and 1ee(1)) are not changeable.

April 10, 1981 Page 2 April 10, 1981

CUBIC(1) CB—-UNIX 2.1 CUBIC(1)

NAME
cubic — three dimensional tic-tac-toe

SYNOPSIS
/usr/games/cubic

DESCRIPTION
Cubic plays the game of three dimensional 444 tic-tac-toe. Moves are given by the three digits
(each 1-4) specifying the coordinate of the square to be played.

WARNING
Too much playing of the game wiil cause it to disappear.

Page 1 November 1979

CUT (1)

NAME

CB—-UNIX 2.1 CUT (1)

cut — cut out selected fields of each line of a file

SYNOPSIS

cut =—clist [filel file2 ..]
cut —flist [—dchar] [~s] [filel file2 ...]

DESCRIPTION

Use cuz to cut out columns from a table or fields from each line of a file; in data base parlance,
it implements the projection of a relation. The fields as specified by list can be fixed length, i.e.
character positions as on a punched card (—¢ option), or the length can vary from line to line
and be marked with a field delimiter character like b (—f option). Curcan be used as a filter;
if no input files are given, the standard input is used.

The meanings of the options are:

list A comma-separated list of integer field numbers, with optional — to indicate
ranges as in the =—o option of nroff/ rroff for page ranges; e.g. *“1,4,7 or
“1-3,8" or ““—5,10" (short for **1—5,10"") or *“3—" (short for third
through last field).

—clist The /st following —c¢ (no space) specifies character positions, e.g. “—c1—72f’
would pass the first 72 characters of each line.

=flist The list following —f is a list of fields assumed to be separated in the file by a
delimiter character (see —d); e.g. *“—f1,7" copies the first and seventh field
only. Lines with no field delimiters will be passed through intact (useful for
table subheadings), unless =s is specified.

—dchar The character following —d is the field delimiter (=—f option only). Default is
rab. Space or other characters with special meaning to the shell must be
quoted.

-3 Suppresses lines with no delimiter characters in case of —f option. Unless
specified, lines with no delimiters will be passed through untouched.

Either —c or —f option must be specified.

EXAMPLES
Is —1]cut —cl1,40— lists current directory preceded by file type
cut —c—75 file ; cut ~c76— file to print a file with lines too long for terminal
cut —f1,7 table | tbl | nroff ... prints columns 1 and 7 of rable
cut —d: —f1,5 /etc/passwd mapping of userids to names

name="‘who am i | cut —f1 —d" "* to set name to current userid

DIAGNOSTICS

line too long A line can have no more than 511 characters or fields.

bad list for c/f option Missing =c or —f option or incorrectly specified /isz. No error occurs, if a
line has fewer fields than the /s calls for.

no fields The Jist is empty.

SEE ALSO

Page |

grep(1) allows horizontal "cuts" (by context) through a file.
paste(1) allows to put files together columnwise, i. e. horizontally. To reorder columns in a
table, use curand paste.

November 1979

DATE (1) CB—-UNIX 2.1 DATE (1)

NAME

date — print and set the date

SYNOPSIS

date [=s 1 { =v] [mmddhhmmlyy]] [+ format]

DESCRIPTION

Page |

If no argument is given, or if the argument begins with +, the current date and time are
printed.

A numerical argument results in an attempt to set the system’s idea of the current date. The
argument is interpreted as follows:

The first mm is the month number; dd is the day number in the month; A/ is the hour number
(24 hour system); the second mm is the minute number; yy is the last 2 digits of the year
number and is optional. For example:

date 10080045

sets the date to Oct 8, 12:45 AM. The current year is the default if no year is mentioned. The
system operates in GMT. Dare takes care of the conversion to and from local standard and day-
light time.

If the -s option is used, date attempts to read a TCU100 battery powered clock and sets the sys-
tem time to the clock time read.

The -v option makes date ask for verification before setting the time.

If the argument begins with +, the output format of dare is under the control of the user. The
format specification for the output is similar to that used in the first argument to prinf/(3S). All
output fields are of fixed size (zero padded if necessary). Each field descriptor is preceded by "
and will be replaced in the output by its corresponding value. A single % is encoded by %%.
All other characters are copied to the output without change. The string is always terminated
with a newline character.

Field Descriptors:

insert a newline character

insert a tab character

month of year — 01 to 12

day of month — 01 to 31

last 2 digits of year — 00 to 99
date as mm/dd/yy

hour — 00 to 23

minute — 00 to 59

second — 00 to 59

time as HH:MM:SS

Julian date — 001 to 366

day of week — Sunday = 0
abbreviated weekday — Sun to Sat
abbreviated month — Jan to Dec
time in AM / PM notation

s i‘-"—lmgmc% ag—~3

November 1979

.

DATE (1) CB—UNIX 2.1

EXAMPLE
date “+DATE: % m/%d/%y%nTIME: %H :%M:%S"

would generate as output:

DATE: 08/01/76
TIME: 14:45:05

DIAGNOSTICS
Most diagnostics are self-explanatory. Here are a few that aren’t.

No permission if you aren’t the super-user and you try to change the date;
bad conversion if the date set is syntactically incorrect;
invalid option if the field descriptor is not recognizable.

FILES
/dev/mem
/etc/wtmp

November 1979

DATE (1)

Page 2

DC(1) CB-UNIX 2.1 DC(1)

NAME
dc — desk calculator

SYNOPSIS
de [file]

DESCRIPTION
Dc is an arbitrary precision arithmetic package. Ordinarily it operates on decimal integers, but
one may specify an input base, output base, and a number of fractional digits to be maintained.
The overall structure of dc is a stacking (reverse Polish) calculator. If an argument is given,
input is taken from that file until its end, then from the standard input. The following con-
structions are recognized:

number
The value of the number is pushed on the stack. A number is an unbroken
string of the digits 0—9. It may be preceded by an underscore (_) to input a
negative number. Numbers may contain decimal points.

+ =/e%"
The top two values on the stack are added (+), subtracted (=), muitiptied (s),
divided (/), remaindered (%), or exponentiated (*). The two entries are popped
off the stack; the result is pushed on the stack in their place. Any fractional part
of an exponent is ignored.

sx The top of the stack is popped and stored into a register named x, where x may
be any character. If the s is capitalized, x is treated as a stack and the value is
pushed on it.

Lx The value in register x is pushed on the stack. The register x is not altered. All
registers start with zero value. If the | is capitalized, register x is treated as a
stack and its top value is popped onto the main stack.

The top value on the stack is duplicated.

P The top value on the stack is printed. The top value remains unchanged. P
interprets the top of the stack as an ASCII string, removes it, and prints it.

f All values on the stack and in registers are printed.

q exits the program. If executing a string, the recursion level is popped by two. If

q is capitalized, the top value on the stack is popped and the string execution
level is popped by that value.

X treats the top element of the stack as a character string and executes it as a string
of dccommands.
X replaces the number on the top of the stack with its scale factor.

[...] puts the bracketed ASCII string onto the top of the stack.

<x >x =x
The top two elements of the stack are popped and compared. Register x is
evaluated if they obey the stated relation.

\4 repiaces the top element on the stack by its square root. Any existing fractional
part of the argument is taken into account, but otherwise the scale factor is
ignored.

! interprets the rest of the line as a UNIX command.

c All values on the stack are popped.

i The top vaiue on the stack is popped and used as the number radix for further

input. I pushes the input base on the top of the stack.

November 1979 : Page | November 1979

DC(1) CB—-UNIX 2.1 DC(1)

0 The top value on the stack is popped and used as the number radix for further
output.

0 pushes the output base on the top of the stack.

k the top of the stack is popped, and that value is used as a non-negative scale fac-
tor: the appropriate number of places are printed on output, and maintained dur-
ing multiplication, division, and exponentiation. The interaction of scale factor,
input base, and output base will be reasonable if all are changed together.

The stack level is pushed onto the stack.
replaces the number on the top of the stack with its length.

o N N

A line of input is taken from the input source (usually the terminal) and exe-
cuted.

R are used by bc for array operations.

EXAMPLE
This example prints the first ten values of n!:
[tal +dsa*plal0>ylsy
Osal
lyx
SEE ALSO

be(1), which is a preprocessor for dc providing infix notation and a C-like syntax which imple-
ments functions and reasonable control structures for programs.

DIAGNOSTICS
X is unimplemented
where x is an octal number.

stack empty
for not enough elements on the stack to do what was asked.

Out of space
when the free list is exhausted (too many digits).

Out of headers
for too many numbers being kept around.

Out of pushdown
for too many items on the stack.

Nesting Depth
for too many levels of nested execution.

November 1979 Page 2 November 1979

DCHECK (1M) CB—UNIX 2.1 DCHECK (1M)

NAME

dcheck — file system directory consistency check

SYNOPSIS

dcheck [—i numbers] [filesystem]

DESCRIPTION

FILES

Dcheck reads the directories in a file system and compares the link-count in each i-node with
the number of directory entries by which it is referenced. If the file system is not specified, a
set of default file systems is checked.

The —i flag is followed by a list of i-numbers; when one of those i-numbers turns up in a
directory, the number, the i-number of the directory, and the name of the entry are reported.

The program is fastest if the raw version of the special file is used, since the i-list is read in
large chunks.

/dev/rrootdev Default file system.

DIAGNOSTICS

When a file turns up for which the link-count and the number of directory entries disagree, the
relevant facts are reported. Allocated files which have 0 link-count and no entries are also
listed. The only dangerous situation occurs when there are more entries than links; if entries
are removed, so the link-count drops to 0, the remaining entries point to thin air. They should
be removed. When there are more links than entries, or there is an allocated file with neither
links nor entries, some disk space may be lost but the situation will not degenerate.

SEE ALSO

BUGS

Page 1

check (IM), ciri(1M), ncheck(1M) fs(3),

Since dcheck is inherently two-pass in nature, extraneous diagnostics may be produced if applied
to active file systems.

November 1979

DD (1)

NAME

CB—UNIX 2.1 DD (1)

dd — convert and copy a file

SYNOPSIS

dd [option=value] ...

DESCRIPTION

Dd copies the specified input file to the specified output with possible conversions. The stan-
dard input and output are used by default. The input and output block size may be specified to
take advantage of raw physical [/0.

option values

if=file input file name; standard input is default

of=/file output file name; standard output is default

ibs=n input block size » bytes (default 512)

obs=n output block size (default 512)

bs=n set both input and output block size, superseding ibs and obs; also, if no
conversion is specified, it is particularly efficient since no in-core copy need be
done

chs=n conversion buffer size

skip=n skip » input records before starting copy

seek=n seek nrecords from beginning of output file before copying

count=n copy only n input records

conv =ascii convert EBCDIC to ASCII
ebedic convert ASCII to EBCDIC
ibm slightly different map of ASCII to EBCDIC
lease map alphabetics to lower case
ucase map alphabetics to upper case
swab swap every pair of bytes
noerror do not stop processing on an error
sync pad every input record to /bs
., ... several comma-separated conversions

Where sizes are specified, a number of bytes is expected. A number may end with k. b or w to
specify multiplication by 1024, 512, or 2 respectively; a pair of numbers may be separated by x
to indicate a product.

Cbs is used only if ascii or ebedic conversion is specified. In the former case chs characters are
placed into the conversion buffer, converted to ASCII, and trailing blanks trimmed and new-line
added before sending the line to the output. In the latter case ASCII characters are read into
the conversion buffer, converted to EBCDIC, and blanks added to make up an output record of
size cbs.

After completion, dd reports the number of whole and partial input and output blocks.

EXAMPLE

This command will read an EBCDIC tape blocked ten 80-byte EBCDIC card images per record
into the ASCII file x:
dd if=/dev/rmt0 of=x ibs=800 cbs=80 conv=ascii,lcase

Note the use of raw magtape. Dd is especially suited to [/O on the raw physical devices because
it allows reading and writing in arbitrary record sizes.

SEE ALSO

Page 1

cp(l)

November [979

DD (1) CB—-UNIX 2.1 DD (D)

DIAGNOSTICS
f+p records inlout) numbers of full and partial records read (written)
BUGS

The ASCII/EBCDIC conversion tables are taken from the 256 character standard in the CACM

Nov, 1968. The ibm conversion, while less blessed as a standard, corresponds better to certain
IBM print train conventions. There is no universal solution.

New-lines are inserted only on conversion to ASCII; padding is done only on conversion to
EBCDIC. These should be separate options.

November 1979 Page 2

DEAD(IM) CB—UNIX 2.3 DEAD(1IM)

NAME

dead — crash analysis
SYNOPSIS

dead [—smpcrbPMif] crashfile [file]
DESCRIPTION

Dead produces formatted summaries of system tables from a crash dump. Rather than just
print the contents of the system’s tables, it attempts to put the information into a meaningful
form while checking the consistency of pointers in the tables.

Dead can produce a memory map, a swap map, a list of the i-nodes that were open in the sys-
tem (with fully qualified pathnames, including device name) and a list of the file descriptors
that each process has open with the pathname of the corresponding file. In addition, it will
analyze the block 1/O buffering system to determine which buffers are on each device queue,
which buffers are queued for I/O and which block devices are active. It can also retrieve the
configuration table of the system.

All addresses in the system tables are printed in symbolic terms and the options can be used
individually or in combination.

Dead assumes that the namelist for the crash dump is in "/unix” unless the s option is used, in
which case a file name may be specified. There are several options:

¢ retrieves the configuration tables (conf.c) for character and block devices from the crash file.
All entries in the tables are printed in symbolic form so that the printout closely resembles
the contents of conf.c. The contents of the locations which specify the root and swap dev-
ices are also printed.

r prints the registers that were saved in low core by the crash dump routine when the dump
was taken. The contents of the K register (KISA6 or KDSA6) contains the address (in
memory blocks) of the last process that ran.

m prints a memory map and swap map with process names. Since reentrant text is managed
separately from the nonreentrant part of a process, there can be two entries for a reentrant
process. Reentrant text has a T appended to the address field. The following fields are
printed,

Heading Description
ADDR The address of an area in memory blocks (64 bytes).

SIZE The size of the area in memory blocks.
PID The process id.
NAME The name of the process occupying the area, or if the memory space is not

allocated, "Free" is printed.

The swap map is also printed with the m option in a similar manner, however, the address and
size fields are in disk blocks (512 bytes).

p prints a summary of all of the processes in the crash file, their names and attempts to con-
struct a symbolic name for the event on which a process is roadblocked.

Heading Description

NO The number (index) of the process table entry.
S A letter encoding the state of the process:

S Sleeping

W Waiting

R Ready

December 15, 1980 Page 1 December 15, 1980

DEAD(IM)

PID
PR1
UID
EVENT

NAME

CB—UNIX 2.3 DEAD(IM)

I Idling
Z Zombie - process exited, parent not yet notified.
T Traced
The location of the process. It may be any of the following:
D Swapped out
M In memory
L Locked in Memory
S Scheduler bit set
The unique process number.
The priority of the process; high numbers mean low priority
Four characters of the user’s id from the password file.

A symbolic representation of the address that the process is roadblocked on
(if any).
The file name of the process.

M prints the names of the mounted file systems and the pathnames of the i-nodes that they are

mounted on.

i prints the contents of the inode table including an unambiguous pathname. The following
fields are printed.

Heading

#
FLAGS

ACCESS

INO
uUID
DEVICE

Description
The number of the i-node table entry in decimal.
Any special flags in the i-node are printed as follows,
D a directory
C a character device
B a block device
L alarge file

The access control permissions for the file are printed in a manner similar to
the Is command. Permissions are printed in the same order as for Is, i.e.,
owner, group, others.

s set user-ID bit on
g set group-ID bit on
read permission
w write permission
X execute permission
The number of the i-node.
The name of the owner of the file, taken from the password file.

The pathname of the device on which the i-node resides.

PATHNAME

December 15, 1980

The pathname of the i-node if it can be found. Temporary files and pipes
disappear when a system is rebooted, so some file names can not be found.
Also, an i-node may be reallocated if a file is removed, so dead should be run
relatively soon after a system is rebooted to insure that the pathnames are

Page 2 December 15, 1980

DEAD(IM) CB—UNIX 2.3 DEAD(1IM)

correct.
f prints the file table.
Heading Description

i The number of the file table entry.
MD The mode used to open the file.
C The number of instances of the file being open with the given mode.

R read permission
W write permission
P a pipe
N a named pipe
DEVICE The pathname of the device on which the file resides.

PATHNAME
The pathname of the i-node which the file table references.

P prints a list of all of the processes in memory and the files that they have open. The id of
the process is printed with its name, followed by a list of file descriptors that the process
has open and the pathnames of the files that they reference.

Heading Description

The file descriptor number.

F The mode with which the file was opened (same as MD field for the f option).
IND The number of the file table entry which this descriptor references.

DEVICE The pathname of the device on which the i-node resides.

PATHNAME

The pathname of the i-node.

b prints a summary of the buffers in the I/O subsystem and the queues on which they reside.
There are five classes of queues. The Buffer Free List is a queue containing all of the buffers
that are available for allocation. The Null Device Queue is a queue of buffers that are allo-
cated by the system for some special purpose and are not associated with any device (e.g.,
holding superblocks, holding arguments for an exec system call, 1/O for special devices,
etc.). Each device analyzed by the b option has a number of queues but only those queues
that are nonempty are printed. The Device Queue links together all of the buffers that con-
tain data that have been retrieved or written onto the given device. The Device Queue may
actually be a number of mashed subqueues. In this case, every subqueue will be shown.
Buffers on this queue may also appear on the Buffer Free List . The Device I/O Queue con-
tains all of the buffers that are actually waiting to be read or written from the given device.
If a block device is active when a system crashes, the I/O queue is marked as ACTIVE. A
symbolic representation of the pointers associated with each queue and each buffer on a
queue is printed, however, familiarity with the I/O system is required to be able to check
them and space does not permit such an explanation here. The values printed are,

Heading Description

BUF The buffer number.
FLAGS Any of the following
R Read
W Write

December 15, 1980 Page 3 December 15, 1980

DEAD(IM) CB—UNIX 2.3 DEAD(1IM)

I/O complete (done)
Buffer busy

Error

Physical 1/O

Unibus map allocated
Wanted by other processes
Asynchronous write
Delayed write

Age

Physio Buffer Header
State

nwonoc »zZovmwo

[MAJ,MIN]
Major and minor device numbers

BLOCK Logical block number

FILES
Junix system namelist
unixcore core image of unix crash
/etc/passwd password file
Jusr/bin/ncheck

SEE ALSO

ncheck(1M), ps(1), sps(1)

BUGS
For the P, M, i and f options, dead runs ncheck to find the fully qualified pathname. This takes
a bit of time.

December 15, 1980 Page 4 December 15, 1980

DELLOG (18) CB—-UNIX 2.1 DELLOG (1S)

NAME
dellog — print delta_log files
. SYNOPSIS
dellog [opts] [directory ...]
DESCRIPTION

Dellog will print named delta_log files. The algorithm for finding the delta_log files is identical
to that described in file_log(1S).

OPTIONS
; all print all delta_log files under SSCCSOURCE
_ list print a list of all delta_log files under $SSCCSOURCE
FILES
delta_log
SEE ALSO
file_log(1S), gadd(1S), gdeita(1S)
DIAGNOSTICS

All diagnostics are printed on file descriptor 2.

November 1979 Page 1 November 1979

DELTA(1S)

NAME

CB—-UNIX 2.1 DELTA(18)

delta — make a delta (change) to an SCCS file

SYNOPSIS

delta (—rSID] [—s] [—n] [—glist] [~mlmrlist]] [—ylcomment]l] [—p] file ...

DESCRIPTION

Delta is used to permanently introduce into the named SCCS file changes that were made to the
file retrieved by ger(1S) (called the g-file, or generated file).

Delta makes a delta to each named SCCS file. If a directory is named, delta behaves as though
each file in the directory were specified as a named file, except that non-SCCS files (last com-
ponent of the pathname does not begin with s.) and unreadable files are silently ignored. If a
name of — is given, the standard input is read (see WARNINGS); each line of the standard

input is taken to be the name of an SCCS file to be processed.

Delta may issue prompts on the standard output depending upon certain keyletters specified and
flags (see admin (1S)) that may be present in the SCCS file (see —m and —y keyletters below).

Keyletter arguments apply independently to each named file.

—rSID

haad 1 |

—~glist

~mimriisd

Uniquely identifies which delta is to be made to the SCCS file. The use
of this keyletter is necessary only if two or more outstanding gets for
editing (get —e) on the same SCCS file were done by the same person
(login name). The SID value specified with the —r keyletter can be
either the SID specified on the get command line or the SID to be made
as reported by the get command (see get). A diagnostic results if the
specified SID is ambiguous, or, if necessary and omitted on the command
line.

Suppresses the issue, on the standard output, of the created delta’s SID,
as well as the number of lines inserted, deleted and unchanged in the
SCCS file.

Specifies retention of the edited g-file (normally removed at completion
of delta processing).

Specifies a list (see get(1S) for the definition of <list>) of deltas which
are to be ignored when the file is accessed at the change level (SID)
created by this delta.

If the SCCS file has the v flag set (see admin(1S)) then a Modification
Request (MR) number must be supplied as the reason for creating the
new delta. :

If —m is not used and the standard input is a terminal, the prompt
“MRs?” is issued on the standard output before the standard input is
read; if the standard input is not a terminal, no prompt is issued. The
“MRs?”” prompt always precedes the ‘‘comments?’’ prompt (see —y
keyletter).

MRs in a list are separated by blanks and/or tab characters. An unes-
caped new line character terminates the MR list.

Note that if the v flag has a value (see admin(1S)), it is taken to be the
name of a program (or shell procedure) which will validate the correct-
ness of the MR numbers. If a non-zero exit status is returned from MR
number validation program, deita terminates (it is assumed that the MR
numbers were not all valid).

November 1979

DELTA (1S)

CB—UNIX 2.1 DELTA (18)

—vylcomment] Arbitrary text used to describe the reason for making the delta. A null

—=P

FILES

string is considered a valid comment.

If —y is not specified and the standard input is a terminal, the prompt
“comments?’’ is issued on the standard output before the standard input
is read; if the standard input is not a terminal, no prompt is issued. An
unescaped new line character terminates the comment text.

Causes delta to print (on the standard output) the SCCS file differences
before and after the delta is applied in a diff(1S) format.

All files of the form ?-file are explained in the Source Code Control System User’s Guide. The
naming convention for these files is also described there.

g-file
p-file
g-file
x-file

z-file
d-file

Existed before the execution of delta; removed after completion of deita.
Existed before the execution of delta; may exist after completion of delta.
Created during the execution of defta; removed after completion of delta.

Created during the execution of delta; renamed to SCCS file after completion of
delta.

Created during the execution of delta; removed during the execution of delta.
Created during the execution of delta; removed after completion of delta.

/usr/bin/bdiff Program to compute differences between the “‘gotten’” file and the g-file.

WARNINGS

No lines beginning with an SOH ASCII character (binary 001) can be placed in the SCCS file
unless it is escaped. The character has special meaning to SCCS (see sccsfile(5)) and will cause

an error.

A get of many SCCS files, followed by a defta of those files, should be avoided when the get
generates a large amount of data. Instead, multiple get/delta sequences should be used.

If the standard input (=) is specified on the delta command line, the —m (if necessary) and
-y keyletters must also be present. Omission of these keyletters causes an error to occur.

SEE ALSO

get(1S), admin(1S), prs(1S), help(1S), scesfile(5), bdiff(1)
Source Code Control System User’s Guide by L. E. Bonanni and C. A. Salemi.

DIAGNOSTICS

Use heip(18) for explanations.

November 1979

Page 2

DEROFF (1) CB—~UNIX 2.1 DEROFF (1)

NAME

deroff — remove nroff, troff, tbl and egn constructs
SYNOPSIS

deroff [—w | file ...
DESCRIPTION

Deroff reads each file in sequence and removes all nroff and wroff command lines, backslash con-
structions, macro definitions, (between .EQ and .EN lines or between delimiters), and table
descriptions and writes the remainder on the standard output. Dergff follows chains of included
files (.so and .nx commands); if a file has already been included, a .so is ignored and a .nx ter-
minates execution. If no input file is given, dergff reads from the standard input file.

If the —w flag is given, the output is a word list, one ‘word’ (string of letters, digits, and apos-
trophes, beginning with a letter; apostrophes are removed) per line, and all other characters
ignored. Otherwise, the output follows the original, with the deletions mentioned above.

SEE ALSO
nroff(1), eqn(1), tbi(1)

Page 1 November 1979

DF (1) CB—UNIX 2.1 DF (1)

NAME
df — disk free

SYNOPSIS
df [filesystem |

DESCRIPTION
Df prints out the number of free blocks available on the file system filesysiem. If filesystem is
unspecified, dfuses a "built-in" list of file systems.

SEE ALSO
check (1), du(l)

BUGS
The "built-in" list of file systems is usually wrong so don’t pay too much attention to what it
tells you. Dfshould probably look at /etc/mutab to find out which file systems to examine.

Page 1 November 1979

DIFF (1) CB—-UNIX 2.1 DIFF (1)

NAME

diff — differential file comparator

SYNOPSIS

diff [—efbh] filel file2

DESCRIPTION

FILES

Diff tells what lines must be changed in two files to bring them into agreement. If file/ (file2)
is —, the standard input is used. If file/ (file2) is a directory, then a file in that directory whose
file-name is the same as the file-name of file2 (file!) is used. The normal output contains lines
of these forms:

nl a nl nd
nl,n2d nd
nl,n2 ¢ n3, nd

These lines resemble ed commands to convert filel into file2. The numbers after the letters
pertain to file2. In fact, by exchanging ‘a’ for ‘d’ and reading backward one may ascertain
equally how to convert file2 into filel. As in ed, identical pairs where n/ = n2 or n3 = 4 are
abbreviated as a single number.

Following each of these lines come all the lines that are affected in the first file flagged by <,
then all the lines that are affected in the second file flagged by >.

The —b option causes trailing blanks (spaces and tabs) to be ignored and other strings of
blanks to compare equal.

The —e option produces a script of @, ¢ and 4 commands for the editor ed, which will recreate

file2 from filel. The —f option produces a similar script, not useful with ed, in the opposite

order. In connection with —e, the following shell program may help maintain multiple versions
of a file. Only an ancestral file ($1) and a chain of version-to-version ed scripts ($2,33....)
made by diff need be on hand. A ‘latest version’ appears on the standard output.

(shift; cat $=; echo "1,3p") | ed — $1
Except in rare circumstances, Jjff finds a smallest sufficient set of file differences.

Option —h does a fast, half-hearted job. It works only when changed stretches are short and
well separated, but does work on files of unlimited length. Options —e and —f are unavailable
with —h.

/usr/lib/diffh for —h

SEE ALSO

cmp(1l), comm(1), ed(1), bdiff(1), diff3(1)

DIAGNOSTICS

BUGS

Page |

Exit status is 0 for no differences, 1 for some, 2 for trouble.

Editing scripts produced under the —e or —f option are naive about creating lines consisting of
a single . .

November 1979

DIFF3(1) CB—-UNIX 2.1 DIFF3(1)

NAME

diff3 — 3-way differential file comparison

SYNOPSIS

diff3 [—ex3] filel file2 file3

DESCRIPTION

FILES

Diff3 compares three versions of a file, and publishes disagreeing ranges of text flagged with
these codes:

== all three files differ
====] filel is different
====) file2 is different
=== file3 is different

The type of change suffered in converting a given range of a given file to some other is indi-
cated in one of these ways:

finla Text is to be appended after line number 2/ in file £ where f= 1, 2,
or 3.
finl,n2e¢ Text is to be changed in the range line n/ to line n2. If nl = n2, the

range may be abbreviated to nl.

The original contents of the range follows immediately after a ¢ indication. When the contents
of two files are identical, the contents of the lower-numbered file is suppressed.

Under the —e option, diff3 publishes a script for the editor ed that will incorporate into file! all
changes between file2 and file3, i.e. the changes that normally would be flagged ==== and
====3 QOption —x (—3) produces a script to incorporate only changes flagged = ===
(====3). The following command will apply the resulting script to filel.

(cat script; echo "1,3p") | ed — filel

/tmp/d3=
/usr/lib/diff3prog

SEE ALSO

BUGS

Page 1

diff (1)

Text lines that consist of a single . will defeat —e.
Files longer than 64K bytes won’t work.

November 1979

DIFFMK (1) CB—-UNIX 2.1 DIFFMK (1)

NAME

diffmk — mark differences between files
SYNOPSIS

difmk namel name2 name3
DESCRIPTION

Diffmk compares two versions of a file and creates a third file that includes ‘‘change mark”
commands for nroff(1) or wroff(1). Name!l and name?2 are the old and new versions of the file.
Diffmk generates nameJ, which contains the lines of name?2 plus inserted formatter ‘‘change
mark’ (.mc) requests. When nameJ is formatted, changed or inserted text is shown by | at the
right margin of each line. The position of deleted text is shown by a single =.

If anyone is so inclined, they can use djffink to produce listings of C (or other) programs with
changes marked. A typical command line is:

diffmk old.c new.c tmp; nroff macs tmp | pr
where the file macs contains:

pt 1
A1 77
.nf
.£0
.nc

The .11 request might specify a different line length, depending on the nature of the program
being printed. The .eo and .nc requests are probably needed only for C programs.

If the characters | and = are inappropriate, a copy of diffink can be edited to change them
(diffmk is a shell procedure).

SEE ALSO

BUGS

Page 1

diff(1), nroff(1).

Aesthetic considerations may dictate manual adjustment of some output. File differences
involving only formatting requests may produce undesirable output, i.e., replacing .sp by .sp 2
will produce a ‘‘change mark™ on the preceding or following line of output.

November 1979

DIRCMP (1) CB—-UNIX 2.1 DIRCMP (1)

NAME
dircmp — directory comparison

SYNOPSIS
dircmp dirl dir2

DESCRIPTION
Dircmp examines dirl and dir2 and generates various tabulated information about the contents
of the directories. Listings of files that are unique to each directory are generated in addition to
a list that indicates whether the files common to both directories have the same contents.

SEE ALSO
cmp(1), diff(1)

Page | November 1979

DMPLFS (1) CB—UNIX 2.3 DMPLFS(1)

NAME

dmplfs — dump logical file system to tape

SYNOPSIS

dmplfs ifs_name tape_unit#

DESCRIPTION

Dmpifs copies a logical file system (LFS) to tape. Unlike dd, which does a device-to-device
copy, dmplfs writes two tape files, the first containing the LFS overhead area (header, file
definition entries, freelist and bitmap), and the second the contents of all allocated logical files
in ascending order. Dmplfs can be used to save the contents of the LFS for later restoral by
rstlfs(1), or, because of the manner in which the files are dumped and restored, to compress an
LFS whose free space has become highly fragmented (freelist full of areas too small to be
used).

Lfs_name is the filename of the LFS in /dev and tape_unit# is the number of the tape drive on
which the dump tape is mounted. Both parameters are required, and the program assumes that
the tape is 2400 ft. long and will be written at 1600 bpi. For convenience, the user may specify
the tape unit as 0-3; the program will modify the unit number as necessary to get the correct
density. If the command is entered with no parameters, the program will print the expected
syntax.

Dmplfs assumes that the overhead file will fit on one tape reel and that the data file may require
more than one reel; the program will prompt the user when a new reel is to be mounted. An
80-character label file is written at the beginning of each reel (including the first) which con-
tains the lfs_name, reel number, date and time. The blocking factor for both the overhead and
data files is 5120 bytes (10 sectors) per tape block. In the overhead file, all tape blocks are full
size (5120) except possibly the last block in the file, which may be shorter. In the data file,
every logical file is written beginning on a tape block boundary, and if the file is less than 10
sectors long the tape block contains only the allocated file size in units of LF blocks. Similarly,
the last tape block of a logical file contains only the remainder of the file in units of LF blocks.

FILES
/dev/lfs_name LFS to be written to tape
/dev/mttape_unit # tape unit to be used
/etc/Imtab list of mounted logical file systems
SEE ALSO

Ifcheck(1), mkifs(1), rstifs(1)

DIAGNOSTICS

Dmplfs prints self-explanatory error messages on exit whenever a problem is detected.

WARNINGS

Dmplfs uses the start and size information in the file definition entries to read the logical files
from disk which can result in the "unfolding" of overlapped files (files containing duplicated
blocks) as well as attempts to read overhead or bad blocks which have been erroneously allo-
cated to files. These side effects can be prevented by making sure that the LFS checks (using
lfcheck(1)) before dumping to tape.

Do not attempt to dump a mounted logical filesystem; the LFS should be unmounted and
flushed to disk before dmplfs
is invoked.

The LFS should be re-made using mklfs(1) before restoring with rstlfs(1). As additional
insurance, it is wise to make a dd tape of the LFS block device before doing the mkifs so the
LFS can be restored to its prior state if necessary (i.e., if rszlfs has trouble reading the dmplfs
tape).

May 15, 1981 Page 1 May 15, 1981

DMPLFS(1) CB—UNIX 2.3 DMPLFS(1)

Dmplfs assumes that the 1600 bpi tape units have file names /dev/mt8 — /dev/mt1l (rewind)
and /dev/mt12 — /dev/mt15 (no rewind).

BUGS
In order to prevent the tape running off the end of the reel, there is an artificial limit of 6400
tape blocks per reel for the data file. This number was chosen to allow rocom for the drive to
skip over bad spots on the tape when writing. °

May 15, 1981 Page 2 May 15, 1981

1<y

N 2% — "

Frd

1L
< L7 tn
m =

<ok (T
[I B
bt pd s

brd
=
G

e

Frinted

Y

=3

o/
s

1 ; (= L . 1
UNIY Frogrammer s Menval Dsw (1)
delete f20om cwitchnes
. . s e A
nerter in console switclLes)

e
eads the console switckes to obtein s number p, #TILLS
ame of the n-ih file iu the currept directory, and
o leaving a core image tile named core. If trkis core
is execvted, the ti1le whose neme was last ;rirted 1is
zed (see unlipk(z)).
ormapd is useful for deletving flilles whost names are
cult to type.
unlink(2)
conrend was wiitten in 2 minutes to delete a perticuler
that mapaged to get en 2220 rit in its neme. It shouvld
by printing tihe name of each tile in a specified direc-
and reguesting & ¥ or "n” enswer, Petter, it skould
cption of rm(1).

m
-
Fand
=k
k)
m

ame is wnemapic, tut likely to cavee troutl

11721 PLP-7 leocel 1

DSW (1) CB-UNIX 2.1 DSW (1)

NAME

dsw — delete interactively
SYNOPSIS

dsw [directory]
DESCRIPTION

For each file in direcrory (*." if not specified) dsw types the file name. If y is typed, the file is
deleted; if x, dsw exits; if new-line, the file is not deleted; if anything else, dsw asks again.

SEE ALSO
rm(1)

BUGS
The name dsw is a carryover from the ancient past. Its etymology is amusing.

Page 1 L. T November 1979

DU (1) CB—UNIX 2.1 DU (1)
NAME
du — summarize disk usage
SYNOPSIS
du [—ars] [name ...]
DESCRIPTION
Du gives the number of blocks contained in all files and (recursively) directories within each
specified directory or file name. If name is missing, . is used.
The optional argument —s causes only the grand total (for each name) to be given. The
optional argument =—a causes an entry to be generated for each file. Absence of either causes
an entry to be generated for each directory only.
Du is normally silent about directories that cannot be read, files that cannot be opened, etc. The
—r option will cause dur to generate messages in such instances.
A file which has two links to it is only counted once.
BUGS
Non-directories given as arguments (not under —a option) are not listed.
If there are too many distinct linked files, du will count the excess files more than once. If
directories are linked back on self, du will get into a loop and multiply report usages from the
directories in the loop.
Page |

November 1979

ECHO(1) CB—-UNIX 2.1 ECHO (1)

NAME
echo, fecho — echo arguments

SYNOPSIS
echo [arg | ...

fecho [arg] ...

DESCRIPTION
Echo and fecho write their arguments separated by blanks and terminated by a new-line on the
standard output. Fecho is built into the shell, and is therefore much faster to execute than is
the separate module echo. However, its output cannot be redirected as easily as that of ec/o.

Both commands understand C-like escape conventions; beware of conflicts with the shell’s use

of \:
\b backspace
\¢ print line without new-line
\f form-feed
\n new-line
\r carriage return
\t tab
\\ backslash
\n the 8-bit character whose ASCII code is the 1-, 2- or 3-digit octal number x,

which must start with a zero.

In addition, a final argument which terminates in a blank will result in printing neither the
blank nor the terminating newline. This is equivalent to the \c¢ option, and is provided for
compatibility with previous versions.

These commands are useful for producing diagnostics in command files and for sending known
data into a pipe.

SEE ALSO
sh(l)

Page 1 November 1979

ED(1) CB—UNIX 2.3 ED(1)
NAME
ed — text editor
SYNOPSIS
ed[—][—x]1[name]
DESCRIPTION

Ed is the standard text editor. If the name argument is given, ed simulates an e command (see
below) on the named file; that is to say, the file is read into ed’s buffer so that it can be edited.
The optional — suppresses the printing of character counts by e, 7, and w commands. If —x is
present, an x command is simulated first to handle an encrypted file.

Ed operates on a copy of the file it is editing; changes made in the copy have no effect on the
file until 2 w (write) command is given. The copy of the text being edited resides in a tem-
porary file called the buffer. There is only one buffer for each invocation ofed..

Commands to ed have a simple and regular structure: zero, one, or two addresses followed by a
single-character command, possibly followed by parameters to that command. These addresses
specify one or more lines in the buffer. Every command that requires addresses has default
addresses, so that the addresses can very often be omitted.

In general, only one command may appear on a line. Certain commands allow the input of
text. This text is placed in the appropriate place in the buffer. While ed is accepting text, it is
said to be in input mode. In this mode, no commands are recognized; all input is merely col-
lected. Input mode is left by typing a period (.) alone at the beginning of a line.

Ed supports a limited form of regular expression notation; regular expressions are used in
addresses to specify lines and in some commands (e.g., 5) to specify portions of a line that are
to be substituted. A regular expression (RE) specifies a set of character strings. A member of
this set of strings is said to be matched by the RE. The REs allowed by ed are constructed as
follows:

The following one-character REs match a single character:

1.1 An ordinary character (not one of those discussed in 1.2 below) is a one-character RE
that matches itself.

1.2 A backslash (\) followed by any special character is a one-character RE that matches the
special character itself. The special characters are:

a. ., % [, and \ (period, asterisk, left square bracket, and backslash, respectively),
which are always special, except when they appear within square brackets [] (see 1.4
below).

b. " (caret or circumflex), which is special at the beginning of an entire RE (see 3.1 and
3.2 below), or when it immediately follows the left of a pair of square brackets ([])
(see 1.4 below).

$ (currency symbol), which is special at the end of an entire RE (see 3.2 below).

d. The character used to bound (i.e., delimit) an entire RE, which is special for that RE
(for example, see how slash (/) is used in the g command, below.)

1.3 - A period (.) is a one-character RE that matches any character except the new-line charac-
ter.

1.4 A non-empty string of characters enclosed in square brackets ([]) is a one-character RE
that matches any one character in that string. If, however, the first character of the string
is a circumflex (7)), the one-character RE matches any character excepr new-line and the
remaining characters in the string. The = has this special meaning only if it occurs first in
the string. The minus (—) may be used to indicate a range of consecutive ASCII charac-
ters; for example, [0—9] is equivalent to [0123456789]. The — loses this special meaning

January 9, 1981 Page 1 January 9, 1981

ED(1)

CB—UNIX 2.3 ED(1)

if it occurs first (after an initial =, if any) or last in the string. The right square bracket
(1) does not terminate such a string when it is the first character within it (after an initial
~, if any); e.g., [Ja—f] matches either a right square bracket (]) or one of the letters a
through f inclusive. The four characters listed in 1.2.a above stand for themselves within
such a string of characters.

The following rules may be used to construct REs from one-character REs:

2.1
2.2

2.3

2.4

2.5

2.6

A one-character RE is a RE that matches whatever the one-character RE matches.

A one-character RE followed by an asterisk (#) is a RE that matches zero or more
occurrences of the one-character RE. If there is any choice, the longest leftmost string
that permits a match is chosen.

A one-character RE followed by \{m\}, \{m,\}, or \{m,n\} is a RE that matches a range
of occurrences of the one-character RE. The values of m and n must be non-negative
integers less than 256; \{m\} matches exactly m occurrences; \{m,\} matches at least m
occurrences; \{m,n\} matches any number of occurrences between m and n inclusive.
Whenever a choice exists, the RE matches as many occurrences as possible.

The concatenation of REs is a RE that matches the concatenation of the strings matched
by each component of the RE.

A RE enclosed between the character sequences \(and \) is a RE that matches whatever
the unadorned RE matches.

The expression \»n matches the same string of characters as was matched by an expression
enclosed between \(and \) earlier in the same RE. Here n is a digit; the sub-expression
specified is that beginning with the n-th occurrence of \(counting from the left. For
example, the expression ~\(.#\)\1$ matches a line consisting of two repeated appearances
of the same string.

Finally, an entire RE may be constrained to match only an initial segment or final segment of a
line (or both):

3.1

3.2

A circumflex () at the beginning of an entire RE constrains that RE to match an initial
segment of a line.

A currency symbol ($) at the end of an entire RE constrains that RE to match a final
segment of a line. The construction “entire RES$ constrains the entire RE to match the
entire line.

The null RE standing alone (e.g., //) is equivalent to the last RE encountered.

To understand addressing in ed it is necessary to know that at any time there is a current line.
Generally speaking, the current line is the last line affected by a command; the exact effect on
the current line is discussed under the description of each command. Addresses are con-
structed as follows:

1.

2
35
4

The character . addresses the current line.
The character $ addresses the last line of the buffer.
A decimal number n addresses the n-th line of the buffer.

“x addresses the line marked with the mark name character x, which must be a lower-case
letter. Lines are marked with the k command described below.

A RE enclosed by slashes (/) addresses the first line found by searching forward from the
line following the current line toward the end of the buffer and stopping at the first line
containing a string matching the RE. If necessary, the search wraps around to the begin-
ning of the buffer and continues up to and including the current line, so that the entire
buffer is searched. =

January 9, 1981 Page 2 January 9, 1981

ED(1) CB—UNIX 2.3 ED(1)

6. A RE enclosed in question marks (?) addresses the first line found by searching back-
ward from the line preceding the current line toward the beginning of the buffer and stop-
ping at the first line containing a string matching the RE. If necessary, the search wraps
around to the end of the buffer and continues up to and including the current line.

7. An address followed by a plus sign (+) or a minus sign (—) followed by a decimal
number specifies that address plus (respectively minus) the indicated number of lines.
The plus sign may be omitted.

8. If an address begins with + or —, the addition or subtraction is taken with respect to the
current line; e.g, —$5 is understood to mean .—5.

9. If an address ends with + or —, then 1 is added to or subtracted from the address,
respectively. As a consequence of this rule and of rule 8 immediately above, the address
— refers to the line preceding the current line. (To maintain compatibility with earlier
versions of the editor, the character " in addresses is entirely equivalent to —.) More-
over, trailing + and — characters have a cumulative effect, so —— refers to the current
line less 2.

10. For convenience, a comma (,) stands for the address pair 1,8, while a semicolon (;)
stands for the pair .,8.

Commands may require zero, one, or two addresses. Commands that require no addresses
regard the presence of an address as an error. Commands that accept one or two addresses
assume default addresses when an insufficient number of addresses is given; if more addresses
are given than such a command requires, the last one(s) are used.

Typically, addresses are separated from each other by a comma (,). They may also be
separated by a semicolon (;). In the latter case, the current line (.) is set to the first address,
and only then is the second address calculated. This feature can be used to determine the start-
ing line for forward and backward searches (see rules 5. and 6. above). The second address of
any two-address sequence must correspond to a line that follows, in the buffer, the line
corresponding to the first address.

In the following list of ed commands, the default addresses are shown in parentheses. The
parentheses are not part of the address; they show that the given addresses are the default.

It is generally illegal for more than one command to appear on a line. However, any command
(except e, f, r, or w) may be suffixed by p or by 1, in which case the current line is either
printed or listed, respectively, as discussed below under the p and / commands.

(.)a

<text>
The append command reads the given text and appends it after the addressed line; . is
left at the last inserted line, or, if there were none, at the addressed line. Address O is
legal for this command: it causes the ‘“‘appended’ text to be placed at the beginning of
the buffer.

(.)e

<text>
The change command deletes the addressed lines, then accepts input text that replaces
these lines; . is left at the last line input, or, if there were none, at the first line that
was not deleted.

(.,.)d

The delete command deletes the addressed lines from the buffer. The line after the
last line deleted becomes the current line; if the lines deleted were originally at the end
of the buffer, the new last line becomes the current line.-

January 9, 1981 Page 3 January 9, 1981

ED(1)

January 9, 1981

€ name

E name

f name

CB—UNIX 2.3 ED(1)

The edit command causes the entire contents of the buffer to be deleted, and then the
named file to be read in; . is set to the last line of the buffer. If no file name is given,
the currently-remembered file name, if any, is used (see the f command). The number
of characters read is typed; name is remembered for possible use as a default file name
in subsequent e, r, and w commands. If the name used in an e command begins with
!, the rest of the line is taken to te a shell (sh(1)) command to be read from. Such a
command is not remembered as the current file name. See also DIAGNOSTICS below.

The Edit command is like e, except that the editor does not check to see if any changes
have been made to the buffer since the last w command.

If name is given, the filename command changes the currently-remembered file name
to name; otherwise, it prints the currently-remembered file name.

(1,8)g/RE/command list

In the global command, the first step is to mark every line that matches the given RE.
Then, for every such line, the given command list is executed with . initially set to that
line. A single command or the first of a list of commands appears on the same line as
the global command. All lines of a multi-line list except the last line must be ended
with a \; a, i, and ¢ commands and associated input are permitted; the . terminating
input mode may be omitted if it would be the last line of the command list. The (glo-
bal) commands (g, G, v, and V) are not permitted in the command list.

(1,8)G/RE/

In the interactive Global command, the first step is to mark every line that matches the
given RE. Then, for every such line, that line is printed, . is changed to that line, and
any one command (other than one of the global commands ¢, G, v, and V) may be
input and is executed. After the execution of that command, the next marked line is
printed, and so on; a new-line acts as a null command; an & causes the re-execution of
the most recent command executed within the current invocation of G. Note that the
commands input as part of the execution of the G command may address and affect
any lines in the buffer. The G command can be terminated by an interrupt signal
(ASCII DEL or BREAK).

h
The help command gives a short error message that explains the reason for the most
recent ? diagnostic.

H ;
The Help command causes ed to enter a mode in which error messages are printed for
all subsequent ? diagnostics. It will also explain the previous ? if there was one. The
H command alternately turns this mode on and off; it is initially off.

(.)i

<text>
The insert command inserts the given text before the addressed line; . is left at the last
inserted line, or, if there were none, at the addressed line. This command differs from
the a command only in the placement of the input text. Address 0 is not legal for this
command.

(.,.+1)j

The join command joins contiguous lines by removing the appropriate new-line charac-
ters. If only one address is given, this command does nothing.

Page 4 January 9, 1981

ED(1)

(.)kx

(sl

CB—UNIX 2.3 ED(1)

The mark command marks the addressed line with name x, which must be a lower-case
letter. The address “x then addresses this line; . is unchanged.

The list command prints the addressed lines in an unambiguous way: a few non-
printing characters (e.g., tab, backspace) are represented by (hopefully) mnemonic
overstrikes, all other non-printing characters are printed in octal, and long lines are
folded. An ! command may be appended to any other command other than e, f, r, or
Ww.

(.5.)ma

(+5-)P

The move command repositions the addressed line(s) after the line addressed by a.
Address 0 is legal for a and causes the addressed line(s) to be moved to the beginning
of the file; it is an error if address a falls within the range of moved lines; . is left at
the last line moved.

The print command prints the addressed lines; . is left at the last line printed. The p
command may be appended to any other command e, f, r, or w; for example, dp
deletes the current line and prints the new current line.

P
The editor will prompt with a = for all subsequent commands. The P command alter-
nately turns this mode on and off; it is initially off.

q
The quit command causes ed to exit. No automatic write of a file is done (but see
DIAGNOSTICS below).

Q
The editor exits without checking if changes have been made in the buffer since the
last w command.

($)r name
The read command reads in the given file after the addressed line. If no file name is
given, the currently-remembered file name, if any, is used (see e and f commands).
The currently-remembered file name is not changed unless name is the very first file
name mentioned since ed was invoked. Address O is legal for r and causes the file to
be read at the beginning of the buffer. If the read is successful, the number of charac-
ters read is typed; . is set to the last line read in. If the name used in an r command
begins with !, the rest of the line is taken to be a shell (s#(1)) command to be read
from. Such a command is not remembered as the current file name.

(.,.)s/RE [replacement | or

(.,.)s/RE /replacement /g

Januvary 9, 1981

The substitute command searches each addressed line for an cccurrence of the specified
regular expression. On each line in which a match is found, matched strings are
replaced under control of range. Range can appear in one of four ways. If it is empty
only the first occurence of the matched string is replaced. If range is “‘g”, all matches
are replaced. If a single number appears only the match that number from the left is
replaced. If a pair of numbers separated by a *“,”” appears, the first is a starting point
and the second is a count. No error occurs if the number of matches is less than the
second number. Instead of a number, a **$”’ may be used to refer to the last possible
match on a line. It is an error for the substitution to fail on all addressed lines. Any
character other than space or new-line may be used instead of **/”" to delimit the regu-
lar expression and the replacement. **." is left at the last line substituted.

Page S January 9, 1981

