ED(1)

(.y.)ta

CB—UNIX 2.3 ED(1)

An ampersand (&) appearing in the replacement is replaced by the string matching the
RE on the current line. The special meaning of & in this context may be suppressed by
preceding it by \. As a more general feature, the characters \n, where n is a digit, are
replaced by the text matched by the n-th regular subexpression of the specified RE
enclosed between \(and \). When nested parenthesized subexpressions are present, n
1s determined by counting occurrences of \(starting from the left. When the character

is the only character in the replacement, the replacement used in the most recent sub-
stitute command is used as the replacement in the current substitute command. The ~
loses its special meaning when it is in a replacement string of more than one character
or is preceded by a \.

A line may be split by substituting a new-line character into it. The new-line in the
replacement must be escaped by preceding it by \. Such substitution cannot be done as
part of a g or v command list.

This command acts just like the m command, except that a copy of the addressed lines
is placed after address a (which may be 0); . is left at the last line of the copy.

The undo command reverses the effect of the last s command. The u command affects
only the last line changed by the most recent s command. Some commands will cause
the last substitution to be forgotten and the undo command will not work.

(1,8)v/RE /command list

This command is the same as the global command g except that the command list is
executed with . initially set to every line that does not match the RE.

(1,%)V/RE/

This command is the same as the interactive global command G except that the lines
that are marked during the first step are those that do not match the RE.

(1,8)w name

(3)=

The write command writes the addressed lines into the named file. If the file does not
exist, it is created with mode 666 (readable and writable by everyone), unless your
umask setting (see sh(1)) dictates otherwise. The currently-remembered file name is
not changed unless name is the very first file name mentioned since ed was invoked. If
no file name is given, the currently-remembered file name, if any, is used (see e and f
commands); . is unchanged. If the command is successful, the number of characters
written is typed. If the name used in a w command begins with !, the rest of the line is
taken to be a shell (sA(1)) command to be written to. Such a command is not remem-
bered as the current file name.

A key string is demanded from the standard input. Later e, 7, and w commands will
encrypt and decrypt the text with this key by the algorithm of crypt(1). An explicitly
empty key turns off encryption.

The line number of the addressed line is typed; . is unchanged by this command.

'shell command

January 9, 1981

The remainder of the line after the ! is sent to the UNIX shell (sh(1)) to be interpreted
as a command. Within the text of the command, the character % is replaced with the
current filename and ! is replaced with the text of the previous command. Thus, !! will
repeat the last shell command. If any expansion is performed, the expanded line is
echoed; . is unchanged.

Page 6 January 9, 1981

ED(1)

FILES

CB—UNIX 2.3 ED(1)

(.+1)<new-line>]
An address alone on a line causes the addressed line to be printed. A new-line alone is
equivalent to .+1p; it is useful for stepping forward through the buffer.

The editor has a limited macro capability. Macros are defined at the beginning of any line,
even in the append mode. The following is a correct macro definition:

\WC=anystring

Macro definitions are intercepted at the getchar() level of the editor and are recognized by the
following sequence: <newline><backslash><backslash><uppercase_letter><=>. The
““anystring” is any string, including one with escaped newlines. Thus, it could be a series of
commands to the editor, including multiple append sequences. A macro is invoked whenever a
string of the form <backslash> <uppercase_letter> is seen. If the preceding sequence is pre-
ceded by a backslash, translation is turned off. Thus to get the sequence *\C™" in to the editor
when the ‘“\C”’ macro is defined, type ‘“\\C’’. Legal macro names are all upper case letters.

If an interrupt signal (ASCIl DEL or BREAK) is sent, ed prints a ? and returns to its command
level.

Some size limitations: 512 characters per line, 256 characters per global command list, 64 char-
acters per file name, and 128K characters in the buffer. The limit on the number of lines
depends on the amount of user memory: each line takes 1 word.

When reading a file, ed discards ASCH NUL characters and all characters after the last new-line.
Files (e.g., a.out) that contain characters not in the ASCII set (bit 8 on) cannot be edited by ed.

/tmp/e# temporary; # is the process number.
ed.hup work is saved here if the terminal is hung up.

DIAGNOSTICS
? for command errors.
? name for an inaccessibie file.

?TMP for overflow of temporary file.
(use the kelp and Help commands for more detailed explanations).

If changes have been made in the buffer since the last w command that wrote the entire buffer
into the remembered name, ed warns the user if an attempt is made to destroy ed’s buffer via
the g or e commands: it prints ? and allows one to continue editing. A second g or e com-
mand at this point will take effect. The — command-line option inhibits this feature.

SEE ALSO

BUGS

crypt(1), grep(1), sed(1), sh(1).
A Tutorial Introduction to the UNIX Text Editor by B. W. Kernighan.
Advanced Editing on UNLX by B. W. Kernighan.

Escaped new-lines do not work in the replacement string of a s command that is part of the
command list of a g or a v command.

A ! command cannot be subject to a g or a v command.

The sequence \n in a RE does not match any character.

The / command mishandles DEL.

Files encrypted directly with the crypt(1) command with the null key cannot be edited.

January 9, 1981 Page 7 January 9, 1981

ENY (1) CB—UNIX 2.1 ENV (D)

NAME

env — set environment for command execution
SYNQPSIS

env [=] [name=value] ... [command args]
DESCRIPTION

Env obtains the current environmeni, modifies it according to its arguments, then executes the
command with the modified environment. Arguments of the form name=value are merged
into the inherited environment before the command is executed. The ‘=’ flag causes the
inherited environment to be ignored completely, so that the command is executed with exactly
the environment specified by the arguments.

If no command is specified, the resulting environment is printed, one name-value pair per line.

SEE ALSO
sh(l), exec(2), environ(7)

Page 1 November 1979

EPOCH (1M) CB—-UNIX 2.1 EPOCH (1MD)

NAME

epoch — print and set system backup date
SYNOPSIS

epoch [—] [mmddhhmm /yy]]
DESCRIPTION

Epoch with no arguments prints the most recent system backup date. With the optional ‘—’,
epocli saves the current date in the epoch file. An argument of the type mmddhhmmliyy], will
be used to set the epoch date (see darwe(l)).

The epoch file, -,
fetclepoch, contains 4 bytes (long int) which is the epoch date measured in seconds from 0000

GMT Jan 1 1970.

FILES
/etc/epoch epoch file

SEE ALSO
date(1), time(2)

Page 1 November 1979

EQN(1) CB-UNIX 2.1 EQN(1)

NAME
eqn, neqn, checkeq — typeset mathematical text

SYNOPSIS
eqn [—dxy] [=pn][=sn]{—fm][file]...
neqn [—dxy] [=pn] [~sn] [=fn] [file] ...
checkeq [file] ...

DESCRIPTION
Egn is a troff(1) preprocessor for typesetting mathematical text on a Wang-Graphic Systems,
Inc. phototypesetter, while negn is used for the same purpose with nroff(1) on typewriter-like
terminals. Usage is almost always:

eqn file ... | troff
neqgn file ... | nroff

If no files are specified, these programs read from the standard input. A line beginning with
.EQ marks the start of an equation; the end of an equation is marked by a line beginning with
.EN. Neither of these lines is altered, so they may be defined in macro packages to get center-
ing, numbering, etc. It is also possible to designate two characters as delimiters; subsequent text
between delimiters is then treated as egn input. Delimiters may be set to characters x and y
with the command-line argument —dxy or (more commonly) with delim xy between .EQ and
.EN. The left and right delimiters may be the same character; the dollar sign is often used as
such a delimiter. Delimiters are turned off by delim off. All text that is neither between del-
imiters nor between .EQ and .EN is passed through untouched.

The program checkeq reports missing or unbalanced delimiters and .EQ/.EN pairs.

Tokens within egn are separated by spaces, tabs, new-lines, braces, double quotes, tildes, or
circumflexes. Braces {) are used for grouping; generally speaking, anywhere a single character
such as x could appear, a complicated construction enclosed in braces may be used instead.
Tilde = represents a full space in the output, circumflex * half as much.

Subscripts and superscripts are produced with the keywords sub and sup. Thus x sub j makes
x;, a sub k sup 2 produces a/, and e sup {x sup 2 + y sup 2} gives ex

Fractions are made with over: a over b yields —Z—.

1

Vax +bx+c

n
The keywords from and te introduce lower and upper limits on arbitrary things: lim ZX,- is
n-=—ca 0

sqrt makes square roots: I over sqrt {ax sup 2+bx+c} results in

made with lim from {n—> inf} sum from 0 to n x sub i.

Left and right brackets, braces, etc., of the right height are made with left and right:
2

left [x sup 2 + y sup 2 over alpha right] ~== 1 produces x4+<-| = 1. The right clause
43

is optional. Legal characters after left and right are braces, brackets, bars, ¢ and f for ceiling
and floor, and "" for nothing at all (useful for a right-side-only bracket).

Vertical piles of things are made with pile, Ipile, cpile, and rpile: pile {a above b above c} pro-
a

duces 4. There can be an arbitrary number of elements in a pile; lpile left-justifies, pile and
(5

cpile center (but with different vertical spacing), and rpile right justifies.

- November 1979 Page | November 1979

EQN(1) CB-UNIX 2.1 EQN (1)

Matrices are made with matrix: matrix { lcol { x sub i above y sub 2} ccol { 1 above 2} }
x; 1
produces yy 2 In addition, there is reol for a right-justified column.

Diacritical marks are made with dot, dotdot, hat, tilde, bar, vec, dyad, and under: x dot = f(1)
baris x=f(t), y dotdot bar ~== n underis y = n,and x vec ~ ="~ y dyadis X = J.
Point sizes and fonts can be changed with size n or size +#, roman, italic, bold, and font n.

Point sizes and fonts can be changed globally in a document by gsize » and gfont s, or by the
command-line arguments —sn and —fn.

Normally, subscripts and superscripts are reduced by 3 points from the previous size; this may
be changed by the command-line argument —pn.

Successive display arguments can be lined up. Place mark before the desired lineup point in
the first equation; place lineup at the place that is to line up vertically in subsequent equations.

Shorthands may be defined or existing keywords redefined with define:
define thing % replacement %

defines a new token called thing that will be replaced by replacement whenever it appears
thereafter. The % may be any character that does not occur in replacement.

Keywords such as sum (3), int (f), inf (o), and shorthands such as > = (=), != (&), and
—> (—) are recognized. Greek letters are spelled out in the desired case, as in alpha or
GAMMA. Mathematical words such as sin, cos, and log are made Roman automatically.
Troff(1) four-character escapes such as \(dd (3) and \(bs (@) may be used anywhere. Strings
enclosed in double quotes " ... " are passed through untouched; this permits keywords to be
entered as text, and can be used to communicate with troff{1) when all else fails. Full details
are given in the manual cited below.

SEE ALSO
Typesetting Mathematics — User’s Guide by B. W. Kernighan and L. L. Cherry
mm (1), mmt(1), tbi(1), troff(1), eqnchar(7), mm(7), mv(7).

BUGS
To embolden digits, parens, etc., it is necessary to quote them, as in bold "12.3".

November 1979 Page 2 ' November 1979

ERRDEAD (1M) CB—UNIX 2.1 ERRDEAD (1M)

NAME

errdead — extract error records from dump

SYNOPSIS

/etc/errdead [dumpfile] [namelist]

DESCRIPTION

FILES

When hardware errors are detected by the system, an error record that contains information
pertinent to the error is generated. If the error-logging daemon errdemon(1M) is not active or
if the system crashes before the record can be placed in the error file, the error information is
held by the system in a local buffer. Errdead examines a system dump (or memory),. extracts
such error records, and passes them to errpr(1M) for analysis.

The dumpfile specifies the file (or memory) that is to be examined. The system namelist is
specified by namelist; if not given, /unix is used. If the dumpfile is missing, /dev/mem is used.

/unix system namelist
/dev/mem current core image
/usr/bin/errpt analysis program

/usr/tmp/errXXXXXX temporary file

DIAGNOSTICS

Diagnostics may come from either errdead or errpr. In either case, they are intended to be self-
explanatory.

SEE ALSO

Page 1

errpt(1M), errdemon (1M)

November 1979

ERRDEMON (1M) CB—UNIX 2.1 ERRDEMON (1M)

NAME

errdemon — error-logging daemon

SYNOPSIS

/etc/errdemon [filename]

DESCRIPTION

The error logging daemon errdemon collects error records from the operating system by reading
the special file /dev/error and places them in the file filename. If filename is not specified when
the daemon is activated, the file /errlog/errfile is used. Note that filename is created if it does
not exist; otherwise, error records are appended to it, so that no previous error data is lost. No
analysis of the error records is done by errdemon; that responsibility is left to errpr(1M). The
error-logging daemon is terminated by sending it a software kill signal (signal 15). Only the
super-user may start the daemon, and only one daemon may be active at any time. Normally
the daemon is started from an entry in the lines file.

FILES

/dev/error source of error records

/errlog/errfile repository for error records

/dev/systty repository for error messages generated by the daemon.
DIAGNOSTICS

The diagnostics produced by errdemon are intended to be seif-explanatory.

SEE ALSO

Page 1

errpt (1M), kill(1), err(4), errdead(1), errfile(5)

November 1979

ERRPT (1M) CB—-UNIX 2.1 ERRPT (1M)

NAME
errpt — process a report of logged errors

SYNOPSIS

errpt [—a] [—~dev] .. [—int] [—mem] [—power] [—ovfl] [—prdev] - [=5
date | [—e date 1 [=pn] [—f1 [file ...]

DESCRIPTION
Errpt processes data collected by the error logging mechanism (errdemon(1M)) and generates a
report of that data. The default report is a summary of all errors posted in the files named.
Options apply to all files and are described below. If no files are specified, errpr attempts to use
/errlog/errfile as file.

A summary report notes the options that may limit its completeness, records the time stamped
on the earliest and latest errors encountered, and gives the total number of errors of one or
more types. Each device summary contains the total number of unrecovered errors, recovered
errors, errors unabled to be logged, I/O operations on the device, and miscellaneous activities
that occurred on the device. The number of times that errpr has difficulty reading input data is
included as read errors.

Any detailed report contains, in addition to specific error information, all instances of the error
logging process being started and stopped and any time changes (via dare(1)) or configuration
changes (for MERT environment only) that took place during the interval being processed. A
summary of each error type included in the report is appended to a detailed report.

A report may be limited to certain records in the following ways:

~s date Ignore all records posted earlier than dare, where dare has the form
mmddhhmmyy, consistent in meaning with the dare(1) command.

—e date Ignore all records posted later than date, whose form is as described above.

-2 Produce a detailed report that includes all error types.

—dev A detailed report is limited to dev, a block device identifier. Errpris familiar

with the common form of identifiers (e.g., rs03, RS04, hs; see Section 4 of
this volume). Currently, the block devices for which errors are logged are
RPO3, RP04, RP0S, RP06, RS03, RS04 TU10, TU16, RK05, RF11.

—int Include in a detailed report errors of the stray-interrupt type.

—mem Include in a detailed report errors of the memory-parity type.

—power Include in a detailed report any power-fail restarts.

—ovfl Include in a detailed report certain operating system table overflows. In par-

ticular report overflows of the file, process, inode and text tables.

— prdev Include in a detailed report filesystem errors. In particular report bad block,
bad count, no space, and out of inode messages.

-pn Limit the size of a detailed report to » pages.

~=if In a detailed report, limit the reporting of block device errors to unrecovered

errors. For the —ovff and —prdev options, the operating system will produce
at most one message every 2 minutes if the same error is being encountered
repetitively. Repetitions of the same message will be recorded as "unlogged”
errors in a subsequent report. This technique is used to avoid excess operat-
ing system overhead when a resource becomes congested, unavailable, or full.

FILES
/errlog/errfile - default error file

Page 1) : November 1979

ERRPT (1M) CB—UNIX 2.1

SEE ALSO
errfile (5), errdemon (1M), errdead (I1M)

November 1979

ERRPT (1M)

Page 2

EXPR(1) CB—~UNIX 2.3 EXPR(1)

NAME

expr — evaluate arguments as an expression

SYNOPSIS

expr arg

DESCRIPTION

The arguments are taken as an expression. After evaluation, the result is written on the stan-
dard output. Terms of the expression must be separated by blanks. Characters special to the
shell must be escaped. Note that 0 is returned to indicate a zero value, rather than the null
string. Strings containing blanks or other special characters should be quoted. Integer-valued
arguments may be preceded by a unary minus sign. Internally, integers are treated as 32-bit,
2’s complement numbers. '

The operators and keywords are listed below. Characters that need to be escaped are preceded
by \. The list is in order of increasing precedence, with equal precedence operators grouped
within {} symbols.

expr \| expr

returns the first expr if it is neither null nor 0, otherwise returns the second expr.
expr \& expr

returns the first expr if neither expr is null or 0, otherwise returns 0.

expr { =,\>,\>=,\<,\<=, =} expr
returns the result of an integer comparison if both arguments are integers, otherwise
returns the result of a lexical comparison.

expr { +, — } expr
addition or subtraction of integer-valued arguments.

expr {\=, /, % } expr
multiplication, division, or remainder of the integer-valued arguments.

expr : expr
The matching operator : compares the first argument with the second argument which
must be a regular expression; regular expression syntax is the same as that of ed(1),
except that all patterns are ‘anchored’ (i.e., begin with ") and, therefore, ~ is not a spe-
cial character, in that context. Normally, the matching operator returns the number of
characters matched (0 on failure). Alternatively, the \(...\) pattern symbols can be
used to return a portion of the first argument.

ARCHAIC FORMS

The following operators are supported by the current version of expr, but have been made
obsolete by the : operator. These should not be used in new applications.

substr expra exprb exprc
returns on standard output that portion of expra (possibily null) which is defined by the
numerical offset (exprb, starting at 1) and the numerical span (exprc). A large span
value may be given to obtain the remainder of the string.
substr abed 2 2 is equivalent to abed : >..\(..\)’

length expr
returns the length in characters of the expression that follows.
length expr is equivalent to expr : °.%’

index expra exprb
searches the first expression for the first character that matches a character from the
second expression. It returns the character position number if is succeds, or 0 if it fails.
index abed d is equivalent to abed : d

January 12, 1981 Page 1 January 12, 1981

EXPR(1) CB—UNIX 2.3 EXPR(1)

EXAMPLES . .
e a=expr $a + 1

adds 1 to the shell variable a.

3 : "For $a equal to either "/usr/abc/file” or just "file"
expr $a : *A\(.X\) \| $a

returns the last segment of a path name (i.e., file). Watch out for / alone as an
argument: expr will take it as the division operator (see BUGS below).

3. : A better representation of example 2.
expr //Sa : #/\(#\)
The addition of the // characters eliminates any ambiguity about the division
operator and simplifies the whole expression.

4. expr SVAR : . ¢

returns the number of characters in SVAR.

SEE ALSO
ed(1), sh(l).
EXIT CODE
As a side effect of expression evaluation, expr returns the following exit values:
0 if the expression is neither null nor 0
1 if the expression is null or 0
2 for invalid expressions.
DIAGNOSTICS
syntax error — for operator/operand errors

non-numeric argument — if arithmetic is attempted on such a string

BUGS
After argument processing by the shell, expr cannot tell the difference between an operator and
an operand except by the value. If $a is an =, the command:

expr $a = "=
looks like:
expr = = =

as the arguments are passed to expr (and they will all be taken as the = operator). The follow-
ing works:

expr X%a = X=

January 12, 1981 Page 2 January 12, 1981

F77(1)

CB—UNIX 2.3 F77(1)

NAME

f77 — FORTRAN 77 compiler
SYNOPSIS

£77 [option] ... file ...
DESCRIPTION

FILES

F77 is the UNIX Fortran 77 compiler. It accepts several types of arguments:

Arguments whose names end with ‘.f* are taken to be Fortran 77 source programs; they are
compiled, and each object program is left on the file in the current directory whose name is that
of the source with ‘.0” substituted for ’.f".

Arguments whose names end with “.r’ or ‘.e’ are taken to be Ratfor or EFL source programs,
respectively; these are first transformed by the appropriate preprocessor, then compiled by f77.

In the same way, arguments whose names end with ‘.c’ or ‘s’ are taken to be C or assembly
source programs and are compiled or assembled, producing a ‘.0’ file.

The following options have the same meaning as in cc(1). See /d(1) for load-time options.

—c Suppress loading and produce ‘.0’ files for each source file.

—p Prepare object files for profiling, see prof(1).

-0 Invoke an object-code optimizer.

-S Compile the named programs, and leave the assembler-language output on

corresponding files suffixed ‘.s’. (No ‘.0’ is created.).

—o output
Name the final output file output instead of a.out.

—f Load programs with the floating point interpreter.
The following options are peculiar to f77.

—onetrip Compile DO loops that are performed at least once if reached. (Fortran 77 DO loops
are not performed at all if the upper limit is smaller than the lower limit.)

—u Make the default type of a variable ‘undefined’ rather than using the default Fortran
rules.
—w Suppress all warning messages. If the option is ‘—w66°, only Fortran 66 compatibil-

ity warnings are suppressed.

—F Apply EFL and Ratfor preprocessor to relevant files, put the result in the file with
the suffix changed to ‘.of", but do not compile.

—m Apply the M4 preprocessor to each EFL or Ratfor source file before transforming
with the ratfor or efl processor.

—-E The remaining characters in the argument are used as an EFL flag argument when-
ever processing a ‘.e’ file.

—R The remaining characters in the argument are used as a Ratfor flag argument when-
ever processing a “.r’ file.

Other arguments are taken to be either loader option arguments, or F77-compatible object pro-
grams, typically produced by an earlier run, or perhaps libraries of F77-compatible routines.
These programs, together with the results of any compilations specified, are loaded (in the
order given) to produce an executable program with name a.out.

le.[fresc] input file
file.o object file

January 9, 1981 Page 1 January 9, 1981

F77(1)

a.out
./fort[pid].?
Jusr/lib/f77passl
/lib/cl

Jlib/e2
Jusr/lib/libF77.a
Jusr/lib/libl77.2
/lib/libc.a

_SEE ALSO

CB—UNIX 2.3 F77(1)

loaded output

temporary

compiler

pass 2

optional optimizer

intrinsic function library

Fortran 1/O library

C library; see Section 3 of this volume.

S. I. Feldman, P. J. Weinberger, 4 Portable Fortran 77 Compiler (TM-78-1273-1 = TM-78-

3444-1)

prof(1), cc(1), 1d(1)

DIAGNOSTICS

The diagnostics produced by f77 itself are intended to be self-explanatory. Occasional messages
may be produced by the loader.

BUGS

This program is too big to run on processors with no Floating Point hardware.

January 9, 1981

Page 2 January 9, 1981

FACTOR (1) CB—-UNIX 2.1 FACTOR (1)

NAME
factor, primes — factor a number, generate large primes
SYNOPSIS
- factor [number]
primes
DESCRIPTION

When facror is invoked without an argument, it waits for a number to be typed in. If you type
in a positive number less than 2°® (about 7.2x10'®) it will factor the number and print its prime
factors; each one is printed the proper number of times. Then it waits for another number. It
exits if it encounters a zero or any non-numeric character.

If factor is invoked with an argument, it factors the number as above and then exits.

Maximum time to factor is proportional to \/# and occurs when # is prime or the square of a
prime. It takes 1 minute to factor a prime near 10'* on a PDPI1.

When primes is invoked, it waits for a number to be typed in. If you type in a positive number
less than 2°% it will print all primes greater than or equal to this number.

DIAGNOSTICS

Page |

*Ouch.’ for input out of range or for garbage input.

November 1979

FED (1) CB—UNIX 2.1 FED (1)
NAME
fed — edit associative memory for form letter
SYNOPSIS
fed
DESCRIPTION

Fed is used to edit a form letter associative memory file, form.m, which consists of named
strings. Commands consist of single letters followed by a list of string names separated by a
single space and ending with a new line. The conventions of the Shell with respect to “** and
‘2’ hold for all commands but m. The commands are:

e name ...
Fed writes the string whose name is name onto a temporary file and executes ed. On exit
from the ed the temporary file is copied back into the associative memory. Each argu-
ment is operated on separately. Be sure to give an ed w command (without a filename) to
rewrite fed'’s temporary file before quitting out of ed.

d { name ...]
deletes a string and its name from the memory. When called with no arguments d
operates in a verbose mode typing each string name and deleting only if a y is typed. A q
response returns to fed’s command level. Any other response does nothing.

m namel name2 ...
(move) changes the name of namel to name2 and removes previous string nameZ if one
exists. Several pairs of arguments may be given. Literal strings are expected for the
names.

n [name ...]
(names) lists the string names in the memory. If called with the optional arguments, it
just lists those requested.

p name ...
prints the contents of the strings with names given by the arguments.

q
returns to the system.

clpllf]
checks the associative memory file for consistency and reports the number of free headers
and blocks. The optional arguments do the following:

p causes any unaccounted-for string to be printed.

f fixes broken memories by adding unaccounted-for headers to free storage and remov-
ing references to released headers from associative memory.

FILES

/tmp/ftmp? temporary

form.m associative memory
SEE ALSO

form(1), ed(1), sh(1)

WARNING

Page 1

It is legal but unwise to have string names with blanks, ‘> or ‘2" in them.

November 1979

g A“ [Svyew

FESTOON(1) CB—UNIX 2.3 FESTOON(1)

NAME

festoon — turgid memorandum composition

SYNOPSIS

/usr/games/festoon number-of-sentences [percent-invented-nouns]

DESCRIPTION

BUGS

May 11,

Because the abilities are being anniated by the conclusions, an undue number of requirements
analysises that quadrimittated significantnesses were being ridized by a couple potential
usefulnesses. Being as motities which are malpathating some reasonable compromises are
gynening a necessaryness by confirmations, the implementation had been being associatively
licitesced by necessary revisions. There is a redefinition that totally needfully trarogatesces this
mention.

It is interesting to note that that criterion being caused by these realities may have instantly
quadhydroened the conception. As is often the case, there is a strong feeling which had
multcepened a clean interfacing to a good relationship. These prioritized total effects are peri-
testated by the well defined interfacing.

In the light of the fact that impediments liveren many design issues, a number of negative
impacts were fectesced at a viewpoint. The methodological comprehensive plans are being
euesced by that motivation. Inasmuch as the unprecedented terminology differently ennealu-
cesced a transacence, a signification had been strikingly offgraphfied by a misostress in conflict
with an interfacing.

With this in mind, those inclusions are antezoesced by a reification exhibiting a tendency
towards a transitioning. Being as a capability in back of a policy in the field of effectations was
misoated by a measurement in conjunction with a shortage, a standardized clear characteristic-
ness may be fidfied by the tight schedule pressure. An agreement of these exemptions had
been being antefactized by functional overviews. This replacement impacting a requirements
definition could be being verized by a team responsibility.

Seen in the above light, the experience levels pelesced a very promptly modularized activation
in conjunction with not unsufficient experience levels. A progress fundamentally steadily
motened a cross attendance. If well defined interfacings were very lastly novemjurfying an
essential essence, an evolving organization was pelably archating the complete revision. Need-
less to say, a study activity should principally eferate the expectations.

As regards the fact that the fact that the primary purpose was being continuously postmotfied
by a very invaluably not unorganizing matter had been dependably jurfied by the order of mag-
nitude, that discussion officially multiphobefied a functional overview. In light of these facts,
this proposed enhancement needfully cidesced a quantitative result.

The full utilization can unliveresce some successes.

An output that prepopizes this advent was misesced by the construction, yet a current proposal
had been hectofacened by this underlying purpose. A few impediments have been viviened by
this multiscripant. Those mechanizations will be sequfied by differences.

1980 Page 1 May 11, 1980

FILE (1) CB—UNIX 2.1 FILE(D)

NAME
file — determine file type

SYNOPSIS
file [—f] file ...

DESCRIPTION
File performs a series of tests on each argument in an attempt to classify it. If an argument
appears to be ASCII, file examines the first 512 bytes and tries to guess its language.

If the —f option is given, the next argument is taken to be a file containing the names of the
files to be examined.

Page | November 1979

FILE_LOG (18) CB—UNIX 2.1 FILE_LOG (18)

NAME

file_log — log an input string in a logfile.
SYNOPSIS

file_log input_string
DESCRIPTION

File_log will maintain an already existing file named by the environment variable SDELTALOG.
When invoked with a string, it will lock the delta_log file (prevent other file_log invocations
from accessing it) and append the string along with some identifying information. It then
unlocks the file and exits. If an error occurs the entire log entry is mail(1)’ed to an administra-
tor defined in the file_log shell file.

File_log uses a shell variable SDELTALOG to identify the log file. If it is not defineed or null it
is assumed to be delta_log. The SDELTALOG environment variable is a refative path name of
a file used for recording changes to the SCCS data base (i.e. source files). It searches each
component of the environment variable SSCCSOURCE for a readable file named by SDELTA-
LOG. Thus, each different $SSCCSOURCE can have a different delta log file. File_log is written
in Bourne shell-ese and thus runs only on systems supporting the Bourne shell.

File_log is used by gdeita(1S) and gadd(1S) to record all changes made to particular subsystems.
If the file named by SDELTALOG does not exist, file_log just exits without logging anything.

As an example assume the SCCSOURCE and DELTALOG variables are set to:

SCCSOURCE =/usr/src
DELTALOG =admin/sys_dellog

Then,
gdelta -y’ Added dall driver’ conf.c

causes the following information to be appended to the file /usr/src/admin/sys_dellog:

egb May 3 13:42:57
/usr/source/src/ucb/os/s.conf.c 2.13
-yAdded dall driver

Note the "-y" is left in the comment. This is a simple way to distinguish between delta’s and
admin’s (changes to the SCCS files as opposed to additions). File_log can be also be called
directly.

SEE ALSO
gdelta(1S), gadd(1S)

DIAGNOSTICS
All diagnostics are printed on file descriptor 2.

Page 1 November 1979

FIND(1) CB—UNIX 2.3 FIND(1)

NAME
find — find files

SYNOPSIS
find pathname expression

DESCRIPTION
Find recursively descends the directory hierarchy from pathname seeking files that match a
boolean expression written in the primaries given below. In the descriptions, the argument n is
used as a decimal integer where +n means more than n, —n means less than n and n means
exactly n.

—ignore pathname True unless file is hierarchically below the given pathname. For maximum
efficiency all ignore primaries should appear first in the boolean expression.
In this case the files below the pathname will not be accessed.

—name filename True if the filename argument matches the current file name. Normal
Shell argument syntax may be used if escaped (watch out for [, ?, and *.

—perm onum True if the file permission flags exactly match the octal number onum (see
chmod(1)). If onum is prefixed by a minus sign, more flag bits (017777,
see stat(2)) become significant and the flags will be compared:

(flags&onum) == onum.

—in True if the file has inode n.

—type ¢ True if the file is ¢, where cis b, ¢, d, or f for block special file, character
special file, directory or ;lain file.

—links n True if the file has n links.

— user uname True if the file belongs to the user uname. An integer may be supplied
instead of wuname.

—group gname True if the file belongs to the group gname. An integer may be supplied
instead of gname.

—size n True if the file is n blocks long (512 bytes per block).

—atime n True if the file has been accessed in n days.

—mtime n True if the file has been modified in n days.

—exec command True if the executed command returns exit status zero (most commands

do). The end of the command is punctuated by an escaped semicolon. A
command argument ‘f}’ is replaced by the current pathname.

—ok command Like —exec except that the generated command line is printed with a
question mark first, and is executed only if the user responds y.

— print Always true; causes the current pathname to be printed.

The primaries may be combined with the operators (ordered by precedence):

! prefix not

—a infix and second operand evaluated only if first is true
—o infix or, second operand evaluated only if first is false
(expression) parentheses for grouping. (Must be escaped.)

To remove files named ‘a.out’ and ‘*.0° not accessed for a week:

find / °("’ —name a.out —0 —name "*.0’’)’ —a —atime +7 —a —execrm {}’;’

January 12, 1981 Page 1 January 12, 1981

FIND(1) CB—UNIX 2.3 FIND(1)

FILES

/etc/group
/etc/passwd

SEE ALSO
sh(1), fs(5)

BUGS
There is no way to check device type.

January 12, 1981 Page 2 January 12, 1981

FLOG (1) CB—UNIX 2.3 FLOG (1)

NAME

flog — speed up a process

SYNOPSIS

flog [—In] [—am] [—u] process-id

DESCRIPTION

FILES

Flog is used to stimulate an improvement in the performance of a process that has already been
scheduled for execution by spool(1) or wp(1) commands. The process-id is the process number
that is to be disiplined. The value n of the | keyletter argument is the flagellation constant, i.e.
the number of lashes to be administered per minute. If this argument is omitted, the default is
17, which is the most random random number. The value m of the a keyletter argument is the
number of times the inducement to speed up is to be administered. 1If this argument is ommit-
ted, the default is one, which is based on the possibility that after that the process will rectify its
behavior of its own volition. The presence of the u keyletter argument indicates that flog is to
be unmerciful in its actions. This nullifies the effects of the other keyletter arguments. It is
recommended that this option be used only on extremely stubborn processes, as its over-use
may have detrimental effects.

Flog will read the file /have/mercy for any entry containing the process-id of the process being
speeded-up. The file can contain whatever supplications are deemed necessary, but, of course,
these will be totally ignored if the u keyletter argument is supplied.

SEE ALSO

On Improving Process Performance by the Administration of Corrective Stimulation, CACM,
vol. 4, 1657, pp. 356-654.
can(1), last(1), wp(1), spool(1), ops(1), backlog(1)

DIAGNOSTICS

BUGS

May 22,

If a named process does not exist, flog replies ‘‘flog you™ on standard output. If flog kill(2)s
the process, which usually happens when the u keyletter argument is supplied, it writes “‘rip,”
followed by the process-id of the deceased, on standard output.

Spurious supplications for mercy by the process being flogged sometimes wind up on the stan-
dard output, rather that in /shut/up.

WARNING — using flog more than once on any given job may cause the job to never be pro-
cessd at all. The use of flog should be kept to a minimum!

3

If a job is flogged there is no way to ‘“‘un-flog’ it. Perhaps there is a need for an *‘apoligize™

command?

NOTE:
This page was copied from PWB/UNIX Release 2.0 (IH) and brought to you for your amusement.

1981 Page 1 May 22, 1981

FORM (1) CB—UNIX 2.1 FORM (1)

NAME

form — form letter generator

SYNOPSIS

-

form proto arg ...

DESCRIPTION

FILES

Form generates a form letter from a prototype letter, an associative memory, arguments and in
a special case, the current date.

If form is invoked with the proso argument x, the associative memory is searched for an entry
with name x and the contents filed under that name are used as the prototype. If the search
fails, the message ‘[x:’ is typed on the console and whatever text is typed in from the console,
terminated by two new lines, is used as the prototype. If the prototype argument is missing,
“{letter}’ is assumed.

Basically, form is a copy process from the prototype to the output file. If an element of the
form [x (where nis a digit from 1 to 9) is encountered, the »~th argument is inserted in its
place, and that argument is then rescanned. If {0] is encountered, the current date is inserted.
If the desired argument has not been given, a message of the form ‘la: is typed. The
response typed in then is used for that argument.

If an element of the form lnamel or {name} is encountered, the name is looked up in the asso-
ciative memory. If it is found, the contents of the memory under this name replaces the origi-
nal element (again rescanned). If the name is not found, a message of the form ‘{namel:’ is
typed. The response typed in is used for that element. The response is entered in the memory
under the name if the name is enclosed in []. The response is not entered in the memory but
is remembered for the duration of the letter if the name is enclosed in {}.

In both of the above cases, the response is typed in by entering arbitrary text terminated by two
new lines. Only the first of the two new lines is passed with the text.

If one of the special characters [{]}\ is preceded by a \, it loses its special meaning.

If a file named forma already exists in the user’s directory, formb is used as the output file and
so forth to formaz.

The file form.m is created if none exists. Because form.m is operated on by the disc allocator,
it should only be changed by using fed, the form letter editor, or form.

form.m associative memory
form? output file (read only)

SEE ALSO

BUGS

Page 1

fed(1), type(1), nroff(1)

An unbalanced | or } acts as an end of file but may add a few strange entries to the associative
memory.

November 1979

G_FIND (18) CB—UNIX 2.1 G_FIND(18)

NAME
g_find — locate and identify a source file

SYNOPSIS
g_find file

DESCRIPTION

The g_find command will locate a file within a directory structure defined by two global shell
variables: $SCCSOURCE and $SUBSYSTEMS. G _findis written in Bourne shell-ese and thus
runs only on systems supporting the Bourne shell. G_find requires two shell variables to be set
and either made global or expored. The first is SCCSOURCE. 1t is set to be the directory
which subtends all SCCS directories of current interest. Thus for the unix source software,
SCCSOURCE is set to "/usr/src/ucbh”. The second variable is SUBSYSTEMS. It is set to the
subdirectories of interest in SSCCSOURCE. Thus someone working on the operating system
might set the following:

SCCSOURCE ==/usr/src/ucb
SUBSYSTEMS ="0s io sys"

G_find will report back one of the following on the standard output:
a. file_name FILE
b. directory_name DIRECTORY
c. ERROR \

The file_name output is the full pathname of the file starting with "/" and "s." prepended to the
last component of the filename.

The directory_name output is a readable directory full path name.

The ERROR output indicates the appropriate SCCS file cannot be found in the $SSCCSOURCE,
SSUBSYSTEMS directory structure.

As an example assume the shell variables are set as above.
g_find os
causes the following output:

/usr/src/ucb/os DIRECTORY

G _find is used by gget(1S), gdelta(1S), gdiff(1S), gis(1S) and gprt(1S).

SEE ALSO
gget(1S), gdelta(1S), gprt(1S), gis(1S), gdiff (1S)

DIAGNOSTICS
All diagnostics are printed on file descriptor 2.

November 1979 Page | November 1979

GADD(1S) CB-UNIX 2.1 GADD (15)

NAME

gadd — add a file to SCCS

SYNOPSIS

gadd [=K] [opts] subdir file [files]

DESCRIPTION

Gadd creates new SCCS files in the directory ““SSCCSOURCE/subdir’’. It automatically inserts
SCCS keywords identification strings unless the ‘—K’ option is specified. All other options are
assumed to be admin(1S) options and are passed accordingly. If successful, gadd leaves the
named file in mode 0444. Gadd is written in Bourne shell-ese and thus runs only on systems
supporting the Bourne shell. Gadd requires one shell variable to be set and either made global
or exported. $SCCSOURCE is set to be the directory which subtends all SCCS directories of
current interest. Thus for the unix source software, SCCSOURCE is set to ‘/usr/src/uch’.
Thus someone working on the operating system might set the following:

SCCSOURCE=/usr/src/uch

The remaining command line arguments are files. As an example assume the shell variable is
set as above. Then

gadd os space.c

causes the file ‘/usr/src/ucb/os/s.space.c’ to be created (as a read only file) whose inital con-
tents are the file ‘space.c’.

OPTIONS

—~K suppress automatic addition of SCCS keywords.

SEE ALSO

admin(1S)

DIAGNOSTICS

All diagnostics are printed on file descriptor 2.

November 1979 Page | November 1979

GADMIN (18) CB—-UNIX 2.1 GADMIN (18)

NAME

gadmin — admin a file in SCCS
SYNOPSIS

gadmin [options] { files]
DESCRIPTION

The gadmin command will do the admin(1S) command on the files named. All input flags are
passed directly to the admin (1S) command. The files are accessed through the g _find(1S) com-
mand.

The command line arguments are files or any valid option to the admin(1S) command. If a file
is specified, all SSUBSYSTEMS in SSCCSOURCE are searched in the order of SSUBSYSTEMS
for a file named s.file. When found, gdelta executes admin(1S) on the file with the appropriate
directories and s. prepended to the file name.

FILES
/usr/bin/admin
/usr/scesbin/g_find

SEE ALSO
admin(1S), g_find(1S)

DIAGNOSTICS
All diagnostics are printed on file descriptor 2, and are hopefully self explanatory.

November 1979 Page | November 1979

GCAT(1C) CB—-UNIX 2.1 GCAT (1C)

NAME

gcat — send phototypesetter output to the HONEYWELL 6000

SYNOPSIS

geat [option ...] [filename ...]

DESCRIPTION

Gcar arranges to have off(1) output sent to the phototypesetter or debugging devices (STARE
or line printer) attached to the HONEYWELL system. GCOS identification must appear in the
UNIX password file (see passwd(5)). If no filename appears, the standard input is sent; thus
gear may be used as an output pipe for roff(1).

On many systems gcat is implemented as a shell file using wux(1). In this case the user must
supply the normally optional —i option and the —m option will have no effect, though the user
will receive remote mail when gcaris executed on the remote system.

The option —g (for GCOS) must be used with the /roff(1) command to make things work prop-
erly. This command string sends output to the GCOS phototypesetter:

troff —g file | gceat

The following options, each as a separate argument, and in any combination (multiple outputs
are permitted), may be given after gcat:

-ph Send output to the phototypesetter.

—st Send output to STARE for fast turn-around.

—tx Send output as text to the line printer (useful for checking spelling, hyphenation, pagi-
nation, etc.).

—du Send output to the line printer, dummied up to make the format correct. Because
many characters are dropped, the output is unreadable, but useful for seeing the shape
(margins, etc.) of the document.

—sn Submit job to GCOS with service grade n (n=1, 2, 3). Default is —sl.

—i Supply the GCOS *‘ident card’’ image as the parameter —iMxxxx,Myyy where Mxxxx
is the GCOS job number and Myyy the GCOS bin number.

- Make a copy of the file to be sent before returning to the user.

—-r Remove the file after sending it.

—m When transmission is complete, report by mai/(1) the so-called smumb of the receiving
GCOS job. The mail is sent by the UNIX daemon; there is no guarantee that the GCOS
job ran successfully. This is the default option.

-n Do not report the completion of transmission by mai/(1).

- Use the next argument as a dummy file name to report back in the mail. (This is use-
ful for distinguishing multiple runs, especially when gcar is being used as a filter).

-0 Print the on-line GCOS accounting output.

-t Toss out the on-line GCOS accounting output. This is the default option.

If none of the output options are specified, phototypesetter output (—ph) is assumed by
default.

EXAMPLE

FILES

Page |

The command:
troff —g myfile | gcat —st —im1234,m567,myname —f myfile

will send the output of off(1) to STARE, with the GCOS ‘‘ident card’’ specifying
“M1234,M567T,MYNAME"", and will report back that myfile has been sent.

/usr/spool/dpd/* spool area.
/etc/passwd user’s identification and accounting data.
/usr/lib/dpd daemon.

November 1979

GCAT(1C) CB—UNIX 2.1 GCAT (1C)

SEE ALSO
uucp(1C), uux(1C)

November 1979 p)
age

GCON(1G) CB—UNIX 2.1 GCON(1G)

NAME
' gcon — convert GEX file to HIS format
SYNOPSIS
geon [—clxsN 1 [file ... |
DESCRIPTION

Gceon converts gex(1G) files into the format required by the HIS plotting routines. Output is to
a file with the same name as the input file but suffixed with . his’.

Options:
—c¢ Concatenate files. For example, filel —cc file2 file3, will concatenate file2 and file3.
=1 Print graphic limits (extent). Turns off all other options.
—s/N Set scale for plot.
=~z Adjust all points so that low x and low y are 0,0.

SEE ALSO
gex(1G)

AUTHOR
D. J. Jackowski

BUGS
Probably !
This program is under development and subject to change.

Page | November 1979

GDELTA(18) CB—UNIX 2.1 GDELTA (1S)

NAME

gdelta — deita a file from SCCS
SYNOPSIS

gdelta [options] [files]
DESCRIPTION

The gdelta command will delta(1S) the named source files into a file system dedicated to Source
Code Control System (SCCS) files. Gdelta is written in Bourne shell-ese and thus runs only on
systems supporting the Bourne shell. Gdelra requires two shell variables to be set and either
made global or exported. The first is SCCSOURCE. 1t is set to be the directory which subtends
all SCCS directories of interest. Thus for the unix source software, SCCSOURCE is set to

Jusr/src/uch . (On the Columbus system currently Unix source is under /usr/src/uch in the
directories os, io, and sys.) The second variable is SUBSYSTEMS. It is set to the subdirec-
tories of interest in $SSCCSOURCE. Thus someone working on the operating system might set
the following:

SCCSOURCE =/usr/src/ucb
SUBSYSTEMS="0s io sys”

The command line arguments are files or any valid option to the delta(1S) command. If a file
is specified, all SSUBSYSTEMS in $SCCSOURCE are searched in the order of SSUBSYSTEMS
for a file named s.file. When found, gdelta executes defta(1S) on the file with the appropriate
directories and ‘s.’ prepended to the file name.

As an example assume the shell variables are set as above.
gdelta main.c

causes the following commands to be executed:
/usr/bin/delta Sopts "SCMT" /usr/src/ucb/os/s.main.c

Here, Sopts is a collection of all the input options except for the =y option to delta(1S).
SCMT is the —y option if it exists. If the user does not use the —y option, gdelta prompts for
the comment and allows multiline input. The input to the comment is terminated by an empty
input line.

Gdelta also supports a logging mechanism. The file_log(1S) program is called to log the user,
date, history, and the output from the delta(1S) command in the file determined to be the defta
logging file. See file_log(18S).

FILES
/usr/bin/delta
/usr/sccsbin/dellog
/usr/sccsbin/file_log

SEE ALSO
dellog(1S), delta(1S), file_log(1S), gget(1S)

DIAGNOSTICS
All diagnostics are printed on file descriptor 2, and are hopefully self explanatory.

November 1979 "Page 1 November 1979

GDIFF (18) CB—-UNIX 2.1 GDIFF (18)

NAME

gdiff — diff an SCCS file with named file
SYNOPSIS

gdiff [=rNN] file [[=rN] file ...] .
DESCRIPTION

The gdiff command will gger(1S) a file from SCCS directories and 4iff{1) the gget’ed file with
the named file. See gger(1S) for which files are gget’ed. Gdiffis written in Bourne shell-ese
and thus runs only on systems supporting the Bourne shell. Gdiff requires two shell variables to
be set and either made globalorexporred. The first is SCCSOURCE. It is set to be the directory
which heads all SCCS directories of current interest. Thus for the unix source software,
SCCSOURCE is set to /usr/src/ucb . The second variable is SUBSYSTEMS. 1t is set to the
subdirectories of interest in SSCCSOURCE. Thus someone working on the operating system
might set the following:

SCCSOURCE =/usr/src/uch
SUBSYSTEMS="0s io sys"

Gdiff will report back the differences between each named file and its corresponding SCCS file.
As an example assume the shell variables are set as above.

gdiff tty.c
causes the following output:

/usr/src/uch/s.tty.c -> tty.c
(diff(1) output)

Gdiff is essentially the following shell script:
gget -p tty.c | diff - tty.c

OPTIONS
—r Request a particular SID from the SCCS file. It is passed unscathed to the gger(1S)
command.
SEE ALSO
gget(1S)
DIAGNOSTICS

All diagnostics are printed on file descriptor 2. Also occasional mysterious jackpots!

November 1979 Page 1 November 1979

GDUMP (1G) CB—-UNIX 2.1 GDUMP (1G)

NAME

gdump — prints a gex graphic file
SYNOPSIS

gdump [file ...]
DESCRIPTION

Gdump prints a gex(1G) file in the format:
X, v, type, line style, [rotation/radius], [size], [symbol number], [text string]
Where rype may be:

J - jump

Y - vector

T - text

R -arc

C - circle

S - symbol

Example:

Wed Aug 24 13:51:40 1977 tx.g

15800 17600 J LS=0,0

17000 17600 V LS=0, 0

17000 18100 V LS=0,0

15800 18100 V LS=0,0

15800 17600 V LS=0,0

16100 16700 T LS=0, 0 ROT=0 SZ=200 A TEXT STRING
16100 16000 =1,1

18000 16000
16800 15300
15900 13300
17100 13300
18200 12700
17100 12000
15960 12000
19700 12900

.

(=
S C oo " -

ROT=0 SZ =200 SYM =100

wwnmwn
]
S

-

-

-

Q<P <N <
ol ol sl ol ol T S P
i nn

SoDdDDD

-

nunwmunn

SEE ALSO
gex(1G)

AUTHOR
D. J. Jackowski

Page | November 1979

GET(1S) CB—UNIX 2.3 GET(1S)

NAME
get — get a version of an SCCS file

SYNOPSIS
get [—rSID] [—ccutoff] [—e] [—b] [—ilist] [—xlist] [—k] [—1p]] [—p] [=s] [=m] [—n]
[—g] [—t] [—aseq-no.] [—RSID] [—Mfilename] [—T] [—D] [—G] files

DESCRIPTION

Get generates an ASCII text file from each named SCCS file according to the specifications given
by its keyletter arguments, which begin with —. The arguments may be specified in any order,
but all keyletter arguments apply to all named SCCS files. If a directory is named, get behaves
as though each file in the directory were specified as a named file, except that non-SCCS files
(last component of the path name does not begin with s.) and unreadable files are silently
ignored. If a name of — is given, the standard input is read; each line of the standard input is
taken to be the name of an SCCS file to be processed. Again, non-SCCS files and unreadable
files are silently ignored.

The generated text is normally written into a file called the g-file whose name is derived from
the SCCS file name by simply removing the leading s.; (see also FILES, below).

Each of the keyletter arguments is explained below as though only one SCCS file is to be pro-
cessed, but the effects of any keyletter argument applies independently to each named file.

—rSID The SCCS IDentification string (SID) of the version (delta) of an SCCS file to be
retrieved. Table 1 below shows, for the most useful cases, what version of an SCCS
file is retrieved (as well as the SID of the version to be eventually created by
delta(1) if the —e keyletter is also used), as a function of the SID specified.

—ccutoff Cutoff date-time, in the form:
YY[MM[DD[HH[MM/[SS]]1]]

No changes (deltas) to the SCCS file which were created after the specified cutoff
date-time are included in the generated ASCII text file. Units omitted from the
date-time default to their maximum possible values; that is, —c7502 is equivalent
to —c750228235959. Any number of non-numeric characters may separate the
various 2 digit pieces of the cutoff date-time. This feature allows one to specify a
cutoff’ date in the form: "—¢77/2/2 9:22:25". Note that this implies that one may
use the %E% and %U% identification keywords (see below) for nested gets within,
say the input to a send(1C) command:

“lget "—cBE% %U%" s.file

—e Indicates that the get is for the purpose of editing or making a change (delta) to the
SCCS file via a subsequent use of delfa(1). The —e keyletter used in a get for a par-
ticular version (SID) of the SCCS file prevents further gers for editing on the same
SID until delta is executed or the j (joint edit) flag is set in the SCCS file (see
admin(1)). Concurrent use of get —e for different SIDs is always allowed.

If the g-file generated by get with an —e keyletter is accidentally ruined in the pro-
cess of editing it, it may be regenerated by re-executing the get command with the
—k keyletter in place of the —e keyletter.

SCCS file protection specified via the ceiling, floor, and authorized user list stored in
the SCCS file (see admin(1)) are enforced when the —e keyletter is used.

—b Used with the —e keyletter to indicate that the new delta should have an SID in a
new branch as shown in Table 1. This keyletter is ignored if the b flag is not
present in the file (see admin(1)) or if the retrieved delta is not a leaf delta. (A leaf
delta is one that has no successors on the SCCS file tree.)

Note: A branch delta may always be created from a non-leaf delta.

November 13, 1980 Page 1 November 13, 1980

GET(1S) CB—UNIX 2.3 GET(1S)

—ilist A list of deltas to be included (forced to be applied) in the creation of the generated
file. The list has the following syntax:
<list> 1= <range> | <list> , <range>
<range> ::= SID | SID — SID
SID, the SCCS Identification of a delta, may be in any form shown in the *‘SID
Specified”” column of Table 1. Partial SIDs are interpreted as shown in the *‘SID -
Retrieved’ column of Table 1.

—xlist A list of deltas to be excluded (forced not to be applied) in the creation of the gen-
erated file. See the —i keyletter for the list format.

—k Suppresses replacement of identification keywords (see below) in the retrieved text
by their value. The —k keyletter is implied by the —e keyletter.
—1lp] Causes a delta summary to be written into an /-file. If —Ip is used then an [-file is

not created; the delta summary is written on the standard output instead. See FILES
for the format of the /-file.

—-p Causes the text retrieved from the SCCS file to be written on the standard output.
No g-file is created. All output which normally goes to the standard output goes to
file descriptor 2 instead, unless the —s keyletter is used, in which case it disappears.

—s Suppresses all output normally written on the standard output. However, fatal error
messages (which always go to file descriptor 2) remain unaffected.

—m Causes each text line retrieved from the SCCS file to be preceded by the SID of the
delta that inserted the text line in the SCCS file. The format is: SID, followed by a
horizontal tab, followed by the text line.

—n Causes each generated text line to be preceded with the %M% identification key-
word value (see below). The format is: %9M% value, followed by a horizontal tab,
followed by the text line. When both the —m and —n keyletters are used, the for-
mat is: %M% value, followed by a horizontal tab, followed by the —m keyletter
generated format.

—g Suppresses the actual retrieval of text from the SCCS file. It is primarily used to
generate an /-file, or to verify the existence of a particular SID.

—t Used to access the most recently created (‘‘top’”) delta in a given release (e.g.,
—rl), or release and level (e.g., —rl.2).

—aseq-no. The delta sequence number of the SCCS file delta (version) to be retrieved (see
scesfile(5)). This keyletter is used by the comb(l) command; it is not a generally
useful keyletter, and users should not use it. If both the —r and —a keyletters are
specified, the —a keyletter is used. Care should be taken when using the —a
keyletter in conjunction with the —e keyletter, as the SID of the delta to be created
may not be what one expects. The —r keyletter can be used with the —a and —e
keyletters to control the naming of the SID of the delta to be created.

—RSID The SID-filename pairs in a file called markfile are retrieved. The markfile has the
format of

< white_space> filename<<white_space>SID
The effect of using the —R is
get —rSID s.markfile | get —

If no SID is specified, the highest level of the highest release of the markfile is
used.

—Mfilename

November 13, 1980 Page 2 November 13, 1980

GET(1S)

CB—UNIX 2.3 GET(18S)

Use filename instead of markfile when processing arguments to the —R option. If
the —R flag is not specified, this option has no effect.

Causes the most recently created "top” delta of the markfile to be used when pro-
cessing under the —R mode. The option has the same effect on the argument of
—R as the —t has on the —r option. If the —R flag is not specified, this option has
no effect.

Causes any directory structure under file (the filename arguments to get) to be
recursively descended; the corresponding directories to be made, starting at the "."
directory; and the files under each of the subdirectories under file to be retrieved.
Thus, if

get —D /Jusr/src/lib
is typed and the user is in /usr/tmp, the entire directory structure and all clear text
source files under /usr/src/lib would be reproduced under the /usr/tmp directory.

Causes each markfile to be read and printed. If the —D option is specified, a
configuration listing will be produced. (I'm not sure about how well this works, I
have not tested it fully {egb}.) If the —R flag is not specified, this option has no
effect.

For each file processed, get responds (on the standard output) with the SID being accessed and
with the number of lines retrieved from the SCCS file.

If the —e keyletter is used, the SID of the delta to be made appears after the SID accessed and
before the number of lines generated. If there is more than one named file or if a directory or
standard input is named, each file name is printed (preceded by a new-line) before it is pro-
cessed. If the —i keyletter is used included deltas are listed following the notation “‘Included”;
if the —x keyletter is used, excluded deltas are listed following the notation ‘‘Excluded”.

TABLE 1. Determination of SCCS Identification String

SID* —b Keyletter Other SID SID of Delta
Specified Usedt Conditions Retrieved to be Created
nonef no R defaults to mR mR.mL mR.(mL +1)
nonef yes R defaults to mR mR.mL mR.mL.(mB+1).1
R no R > mR mR.mL R.1***

R no R = mR mR.mL mR.(mL+1)

R yes R > mR mR.mL mR.mL.(mB+1).1
R yes R = mR mR.mL mR.mL.(mB+1).1
R = RIS mRane hR.mL** hR.mL.(mB+1).1

R does not exist

Trunk succ. #

R = in release > R R.mL R.mL.(mB+1).1
and R exists

R.L no No trunk succ. R.L R.(L+1)

R.L ves No trunk succ. R.L R.L.(mB+1).1

R.L - ;“;;i:s‘;"; N RL R.L.(mB+1).1

R.L.B no No branch suce. R.L.B.mS RL.B.(mS+1)

R.L.B yes No branch succ. R.L.B.mS R.L.(mB+1).1

R.L.B.S no No branch succ. R.L.B.S R.L.B.(S+1)

R.L.BS yes No branch suce. R.L.BS R.L.(mB+1).1

November 13, 1980 Page 3 November 13, 1980

GET(1S)

CB—UNIX 2.3 GET(1S)

R.L.BS

= Branch succ. R.L.BS RL.(mB+1):1

.
%%

_+=*=

“R”, “L”, “B”, and *‘S” are the ‘‘release’, “‘level”, “*branch™, and ‘‘sequence’’ com-
ponents of the SID, respectively; ““m” means ‘“‘“maximum’. Thus, for example, “R.mL"
means “‘the maximum level number within release R’’; ““R.L.(mB+1).1”> means *‘the
first sequence number on the new branch (i.e., maximum branch number plus one) of
level L within release R’. Note that if the SID specified is of the form “R.L”’, “R.L.B”,
or “R.L.B.S”, each of the specified components must exist.

“hR’* is the highest existing release that is lower than the specified, nonexistent, release R.
This is used to force creation of the first delta in a new release.

Successor.

The —b keyletter is effective only if the b flag (see admin(1)) is present in the file. An
entry of — means ‘“‘irrelevant”.

This case applies if the d (default SID) flag is not present in the file. If the d flag is present
in the file, then the SID obtained from the d flag is interpreted as if it had been specified
on the command line. Thus, one of the other cases in this table applies.

IDENTIFICATION KEYWORDS

Identifying information is inserted into the text retrieved from the SCCS file by replacing
identification keywords with their value wherever they occur. The following keywords may be
used in the text stored in an SCCS file:

Keyword Value

%M%

%1%

%R%
%L%
%B%
%S%

%D%
%H%
%T%
%E%
%G%
%U%
%Y%
%F%

%P%
%Q%
%C%

% L%
%W %

% A%

FILES

Module name: either the value of the m flag in the file (see admin(1)), or if absent,
the name of the SCCS file with the leading s. removed.

SCCS identification (SID) (%R%.%L%.%B%.%S%) of the retrieved text.

Release.

Level.

Branch.

Sequence.

Current date (YY/MM/DD).

Current date (MM/DD/YY).

Current time (HH:MM:SS).

Date newest applied delta was created (YY/MM/DD).

Date newest applied delta was created (MM/DD/YY).

Time newest applied delta was created (HH:MM:SS).

Module type: value of the t flag in the SCCS file (see admin(1)).

SCCS file name.

Fully qualified SCCS file name.

The value of the q flag in the file (see admin(1)).

Current line number. This keyword is intended for identifying messages output by
the program such as ‘“‘this shouldn’t have happened” type errors. It is not intended
to be used on every line to provide sequence numbers.

The 4-character string @(#) recognizable by what(1).

A shorthand notation for constructing what(1) strings for UNIX program files.
%W% = %L%%M%<horizontal-tab>%1%

Another shorthand notation for constructing what(1) strings for non-UNIX program
files. A% = %Z%%Y% %M% %1%%Z%

Several auxiliary files may be created by ger, These files are known generically as the g-file, /-
file, p-file, and z-file. The letter before the hyphen is called the tag. An auxiliary file name is
formed from the SCCS file name: the last component of all SCCS file names must be of the
form s.module-name, the auxiliary files are named by replacing the leading s with the tag. The
gfile is an exception to this scheme: the g-file is named by removing the s. prefix. For

November 13, 1980

Page 4 November 13, 1980

GET(1S) CB—UNIX 2.3 GET(1S)

example, s.xyz.c, the auxiliary file names would be xyz.c, l.xyz.c, p.xyz.c, and z.xyz.c, respec-
tively.

The g-file, which contains the generated text, is created in the current directory (unless the —p
keyletter is used). A g-file is created in all cases, whether or not any lines of text were gen-
erated by the get. It is owned by the real user. If the —k keyletter is used or implied its mode
is 644; otherwise its mode is 444. Only the real user need have write permission in the current
directory.

The Ifile contains a table showing which deltas were applied in generating the retrieved text.
The I-file is created in the current directory if the —1 keyletter is used; its mode is 444 and it is
owned by the real user. Only the real user need have write permission in the current directory.

Lines in the /-file have the following format:

a. A blank character if the delta was applied;
= otherwise.
b. A blank character if the delta was applied or wasn’t applied and ignored;
= if the delta wasn’t applied and wasn’t ignored.
c. A code indicating a ‘‘special’’ reason why the delta was or was not applied:

“I’: Included.
“X*’: Excluded.
“C’’: Cut off (by a —c keyletter).
Blank.
SCCS identification (SID).
Tab character.
Date and time (in the form YY/MM/DD HH:MM:SS) of creation.
Blank.
Login name of person who created delta.

Mg o

The comments and MR data follow on subsequent lines, indented one horizontal tab
character. A blank line terminates each entry.

The p-file is used to pass information resulting from a get with an —e keyletter along to delta.
Its contents are also used to prevent a subsequent execution of get with an —e keyletter for the
same SID until delta is executed or the joint edit flag, j, (see admin(1)) is set in the SCCS file.
The p-file is created in the directory containing the SCCS file and the effective user must have
write permission in that directory. Its mode is 644 and it is owned by the effective user. The
format of the p-file is: the gotten SID, followed by a blank, followed by the SID that the new
delta will have when it is made, followed by a blank, followed by the login name of the real
user, followed by a blank, followed by the date-time the ger was executed, followed by a blank
and the —i keyletter argument if it was present, followed by a blank and the —x keyletter argu-
ment if it was present, followed by a new-line. There can be an arbitrary number of lines in
the p-file at any time; no two lines can have the same new delta SID.

The z-file serves as a lock-out mechanism against simultaneous updates. Its contents are the
binary (2 bytes) process ID of the command (i.e., get) that created it. The z-file is created in
the directory containing the SCCS file for the duration of get. The same protection restrictions
as those for the p-file apply for the z-file. The z-file is created mode 444.

SEE ALSO

admin(1), delta(1), help(1), prs(1), what(1), sccsfile(5).
Source Code Control System User’s Guide by L. E. Bonanni and C. A. Salemi.

DIAGNOSTICS

BUGS

Use help(1) for explanations.

If the effective user has write permission (either explicitly' or implicitly) in the directory

November 13, 1980 Page 5 November 13, 1980

GET(1S) CB—UNIX 2.3 GET(1S)

containing the SCCS files, but the real user doesn’t, then only one file may be named when the
—e keyletter is used.

November 13, 1980 Page 6 November 13, 1980

GETPC(1) CB—UNIX 2.3 GETPC(1)

NAME

getpc — get Program Counter data on running processes

SYNOPSIS

getpe [[—k J [—u pid ..] [—g pgrpl | [—a 11 [—t secs]

DESCRIPTION

Getpe reads the special character device 'pes’ to retrieve Program Counter (pc) data for analysis
by the pestat command. The output from gefpc is binary and put on its standard output. Gelpc
starts by producing the starting time and an entry identifying the type of profiling. At the end
of profiling, the stop time is added to the output. Getpc also collects a summary of unasked-for
data, which is produced by the system every 100 clock cycles. This extra data gives a summary
of %mkerneli, %idle, etc. in the final report. At least one option must be specified, indicating
the type of profiling desired. The options to gefpc have the following meanings:

—k collect pcs from the UNIX kernel.

—u collect pes from a list of user processes. The list is a list of process ids (maximum
of § ids). Data is collected for each pid from both kernel and user mode. This
option cannot be used in conjunction with the —g option!

—g collect pcs from the process group whose process group number is the operand of
—g. Kernel data for the group is automatically gathered. This option cannot be
used in conjunction with the —u option!

—a collect pes from all user-level processes and the kernel. Specifying either the —k,
—u, or —g option with —a is redundant and produces an error.

—t sets a time limit for pc collection (in seconds). If this option is not specified, getpc
will run until killed.

Without any of —k, —u, —g or —a options, gefpc gives a usage message. gelpc writes the col-
lected data to the standard output.

DIAGNOSTICS

getpc complains if it cannot open /dev/pcs.

SEE ALSO

pestat(1), pes(4)

April 16, 1981 Page 1 April 16, 1981

GETTY (1M) CB—UNIX 2.3 GETTY(IM)

NAME
getty — set terminal type, modes, speed, and line discipline

SYNOPSIS
Jetc/getty [—h] line [speed [type [linedisc]] 1]
Jetc/getty —t gettydefs-like-file

DESCRIPTION

Getty is a program that is invoked by inir(1). It is the second process in the series, init-getty-
login-shell, that ultimately connects a terminal user with UNIX. Initially getty generates a system
identification message from the values returned by the uname(2) system call. Then, if
/etc/issue exists, it outputs this to the user terminal, followed finally by the login message field
for the entry it is using from /etc/gettydefs. Getty reads the user’s login name and invokes the
login(1) command with the user’s name as argument. While reading the name, gerty attempts
to adapt the system to the speed and type of terminal being used.

Line is the name of a tty line in ‘/dev’ to which gerty is to attach itself. Gerty uses this string as
the name of a file in the ‘/dev’ directory to open for reading and writing. Unless getty is
invoked with the —h flag, gerty will force a hangup on the line by setting the speed to zero
before setting the speed to the default or specified speed. The optional second argument, speed,
is a label to a speed and tty definition in the file /etc/gettydefs(5). This definition tells getty
what speed to initially run at, what the login message should look like, what the inital tty set-
tings are, and what speed to try next should the user indicate that the speed is inappropriate.
(By typing a <break> character.) The default speed is 300 baud. The optional third argument,
type, is a character string describing to getty what type of terminal is connected to the line in
question. Getty understands the following types:

none default

tec TEC scope

vt6l DEC vt61

vt100 DEC vt100

tektonix Tektronix

tek Tektronix

ds40-1 Teletype DS40-1

hp45 Hewlett-Packard HP45
ds40-2b Teletype DS40-2b

The default terminal is ‘““none’’; i.e., any crt or normal terminal unknown to the system. The
optional fourth argument, linedisc, is a character string describing which line discipline to use in
communicating with the terminal. gerty understands the following line disciplines:

full_duplex default

full default =
transparent transparent (see ioctl(2))

trans transparent

half_duplex half duplex

half half duplex

votrax votrax

The default is “‘full_duplex’’; i.e., line discipline zero.

When given no optional arguments, getry sets the speed of the interface to 300 baud, specifies
that raw mode is to be used (awaken on every character), that echo is to be suppressed, either
parity allowed, newline characters will be converted to carriage return-line feed, and tab expan-
sion performed on the standard output. It types the login message before reading the user's
name a character at a time. If a null character (or framing error) is received, it is assumed to
be the result of the user pushing the “*break” key. This will cause gemry to attempt the next

March 13, 1981 Page 1 March 13, 1981

GETTY (IM) CB—UNIX 2.3 GETTY(IM)

speed in the series. The series that gerty tries is determined by what it finds in /etc/gettydefs.

The user’s name is terminated by a new-line or carriage-return character. The latter results in
the system being set to treat carriage returns appropriately (see ioct/(2)).

The user’s name is scanned to see if it contains any lower-case alphabetic characters; if not, and
if the name is non-empty, the system is told to map any future upper-case characters into the
corrcsponding lower-case characters.

In addition to the standard UNIX erase and kill characters, ‘#° and ‘@’, getty also understands
“\b’. If the user uses a ‘\b’ as a rubout, getty sets the standard erase character to backspace and
the standard kill character to ‘@’ instead of ‘#’ and ‘@’.

Gerty also understands the "standard” ESS protocols for erasing, killing and aborting a line, and
terminating a line. If getty sees the ESS erase character, ‘_’, or kill character, ‘$’, or abort char-
acter, ‘&’, or the ESS line terminators, ‘/> or ‘U, it attempts to set up the terminal into
STDTTY mode (see ioctl(2)), which has those characters as the erase, kill, and line terminator
characters. If it doesn’t succeed, the standard erase and kill characters will be used.

Finally, login is called with the user’s name as an argument. Additional arguments may be
typed after the login name. These are passed to login, which will place them in the environ-
ment. (see login(1))

A test option is provided. When gerty is invoked with the —1 switch and a file, it scans the file
as if it were scanning /etc/gettydefs and prints out the results to the standard output. If there
are any unrecognized modes or improperly constructed entries, it reports these. If the entries
are correct, it prints out the values of the various flags. See ioctl/(2) to interpret the values.
Note that some values are added to the flags automaticaily.

FILES

/etc/gettydefs, [etc/issue
SEE ALSO

ct(1), init(1M), login(1), iocti(2), tty(4), gettydefs(S), inittab(5)
BUGS

While gerty does understand simple single character quoting conventions, it is not possible to
quote the special control characters that getty uses to determine when the end of the line has
been reached, which protocol is being used, and what the erase character is. Therefore it is not
possible to login via gerry and type a ‘#°, ‘@’, ‘/’, V", *_’, backspace, “D’, or ‘& in your
response.

March 13, 1981 Page 2 March 13, 1981

GEX(1G) CB—-UNIX 2.1 - GEX(1G)

NAME

gex — Graphic EXerciser for Tektronix 4014
SYNOPSIS

gex [—]

DESCRIPT ON

Gex (formerly /Ix) is an interactive graphics program which allows a user to initialize and edit
graphical data consisting of lines, arcs, circles, text and library symbols, in two line widths and
five line styles.

The graphical data buffer is serial and ranges 0-32K data base units.
The optional * = argument causes a time delay, required by some terminals after erase.

The last file reference is remembered and used as the output file when a null output file name
is given. If file name ends with .tk 4014 scope code is output, otherwise the graphic data buffer
is output. Any .tk file can be displayed with the car command.

Long displays and listings can be interrupted with the standard UNIX interrupt key.

Commands are single stroke key depressions which send the current cursor position and the
command. When additional typed input is required a prompt message is displayed. When the
typed input is multi character it must be terminated with return and the standard UNIX charac-
ter erase (#) and line erase (@) can be used to correct typing errors.

The first DEFINE (digitize) produces a butterfly on the point, the second produces a dotted box
around the area defined, and the third is taken as a first. With all DEFINE area sub-commands
gex knows only points, not lines; therefore DELETE, MOVE, EDIT, COPY, etc., affect only the
points on or within the defined area. For TEXT the point is the center of the first character.
For CIRCLE the point is the center point. For SYMBOL the point is the reference point of the
symbol.

Inactivity for two minutes will cause gex to Time out!, this is to relax the scope, return brings
it back to life again.

Gex Commands:

] JUMP to here. Start a new series of vectors.

v VECTOR Draw a line to here.

t TEXT Place a character string with height SIZE and angle ROTATE here.
CIRCLE Draw a circle with radius S/ZE here.

SELECT SYMBOL Set library symbol mode.

PLACE SYMBOL Draw the currently selected symbol at scale S/ZF and angle ROTATE
here.

ERASE SCOPE Clean off scope, does not affect data.

GRID Set Grid snap increment.

AVAILABLE BUFF Print buffer space usage.

SIZE Set mode for TEXT, CIRCLE, SYMBOL and SCALE.

ROTATE Set mode for TEXT, ROTAREA and SYMBOL.

LINE STYLE Set line width and style for VECTOR, ARC, CIRCLE and EDIT.
KILL TEXT DISP Do not display TEXT. See ‘C’ command.

NEW DISPLAY Erase scope and redraw picture.

QUERY Print current status (modes). See ‘C’ command.

b~ I]

w @ .« o

(=R

November 1979 Page | November 1979

GEX(1G)

» e O

[-%

November 1979

CB-UNIX 2.1 GEX (1G)

REF GRID Draw tick marks , at current GRID points, on edges of scope.
INPUT FILE Append data from file to graphic buffer.
OUTPUT TO FILE Write graphic data buffer to file. Output file names should end with

3 b

.2
OQUTPUT REPORT Print number of graphic bytes sent to scope.

BIG X Draw scope diagonals.

LAST DEFINE Restore last (dd) area.

DEFINE (digitize) Define a point or area. (Space bar can be used here)

RADIUS aRc (dr) Draw an arc or circle.

w WINDOW (dw ddw) Relocate viewing port.

X MINI GRID (dx) Rotated, ROTATE degrees, ruler. (ddx) Point matrix.
c

COPY (ddc) Make carbon copy, with respect to second (d) point, of
graphic data in area.

"y

m MOVE (ddm) Relocate, with respect to second (d) point, graphic data in
area. Stacked points (identical X and Y) can be unstacked with two
DEFINES on the point.

a ANGLE (dda) Print angle and distance between points. Distance is given
in data base units and scope units.

f FLASH (ddf) Redraw the graphic data in area.

D DELETE (ddD) Remove graphic data from buffer.

E EDIT (ddE) Change to current SIZE, ROTATE, LINE STYLE and SYM-
BOL number. See ‘C’ command.

Q QUERY (ddQ) Print the buffer values for graphic data in area. See
8dump(1G) for format description.

B ROTAREA (ddR) Rotate, ROTATE degrees about second (d) point, all
graphic data in area.

G GRID SNAP (ddG) Snap graphic data in area to current GRID. Use with
care, can cause coincident points!

S SCALE (ddS) Scale graphic data in area by SIZE / 100, leaving low left
point fixed.

M MIRROR Reflect area about midline. TEXT and some SYMBOLs do not

mirror correctly.
WINDOW Alter viewing port.
e,w,n,s EAST, WEST, NORTH, SOUTH
u,d UP, DOWN Make the picture smailer or larger.

k KEEP Save current window for HOME.

h HOME Restore saved window.

a ALL Display zero to 32K across scope.

r RATIO TRUNCATE Change display W/NDOW ratio to integer value.
z LIB SYMB ZONE Zoom to given zone. For editing symbol library files.

MENU Print this list of commands.

Page 2 November 1979

GEX(1G)

L - I o . -1

T -

~

November 1979

CB—-UNIX 2.1 GEX (1G)

HOLD AUTO DISP Do not automatically redisplay.

CHANGE Edit, query or kill modes. See CHANGE discussion below.
PLOT Write a plot file. (not implemented)

UNIX Temporary escape to UNIX.

BACKUP Start a

clean sheet of paper.

RESTORE Recovery from inadvertant BACKUP or COPY. Should be issued immedi-

ately after the bad

BACKUP or COPY.

DONE Terminate program.

CHANGE modes for EDIT, QUERY and KILL
The gex initial default for the ‘q” command prints only lines | and 2, (default values are
shown below), but can be set with the ‘C’ command to print any, all or none of the fol-

lowing lines:

L1:
L2:
L3:
L4:
L5:
Lé:
L7:

Line 1

Line 2

Line 3

Line 4

Line 5

Line 6

Line 7

SIZE=70 ROT=0 LS= 0,0 SYM=0 KTX=F HOLD=F
GRID=10,10 X=17600 Y= 12500 OF = tx.g

EMODES: TR=TTS=T SR=TSS=T SN=TCR=TLS=T
QMODES: L1=T L2=T L3=F L4=F L5=F L6=F L7=F
KMODES: TX=F SY=F SX=F AX=FAC=F
Low=11300,11300 High= 21530,18970 WR=10.000
GXY=100,100 WINC= 400

shows the current SIZE, ROTATE, LINE STYLE (width, style),
selected SYMBOL number, KILL TEXT and HOLD flags (True, False).

shows the current GRID snap increments (x, y), the cursor position
(x, y) mapped to 32K, and the remembered output file name.

shows the current EDI/T modes: Text Rotate, Text Size, Symbol
Rotate, Symbol Size, Symbol Number, Circle Radius, and Line Style.
The ‘KEYS’ TR, TS, ... are used by the ‘C’ command to change the
True False state. Only ‘KEYS’ in the True state are edited, thus setting
all seven ‘KEYS’ to Faise completely disables the EDIT command.
The ‘KEY’ AT sets all ‘KEYS’ to True and the ‘KEY’ AF sets all
‘KEYS’ to Faise.

shows the current ‘query’ modes for lines 1 thru 7. The ‘KEYS’ idea
is similar to the £DIT mode ‘KEYS’ above.

shows the current ‘kill’ modes: TeXt, SYmbols, Symbol reference
point X, Arc reference point X and Arc Center point. The ‘KEYS’
idea is similar to the ED/T mode ‘KEYS’ above.

shows the Low and High points (x, y) of the current WINDOW in
data base (0 - 32K) units and the WINDOW ratio which is computed
= (xhigh -xlow) / 1023.

shows the internal GR/D increments (X, Y) and the WINDOW incre-
ment used for WINDOW moves which is computed =

(internalGX + internalGY) * 2.
and attempts to guess and print the current symbol zone.

Page 3 November {979

GEX(1G) CB-UNIX 2.1 GEX (1G)

GRAPHIC DATA FILE FORMAT
The first word of every gex graphic data file contains the value 040154 octal, 16492
decimal. The graphic data is in records consisting of the following fields:

RECORD DATA FIELDS

TYPE
I I I l
Vector X Y cntl,0
Jump X Y cntl1
Text X Y ocntl,2 rotate size text
Circle X Y ocntl,3 radius
arc X Y ocntl, 4
Symbol X Y cnt,§ rotate size symbol

Xand Yare 15 bit integers, range 0 thru 32767.

The low byte of cntl is shown, the high byte contains the line style which is divided into
two sub fields, the low 5 bits are the line style and the high 3 bits are the line width.
Valid line styles are 0 solid, 1 dotted, 2 dotdashed, 3 shortdashed, 4 longdashed. Valid
line widths are 0 normal, 1 bold.

Rotate, size, radius and symbol are full word integers.
Text is a null terminated byte string.

LIBRARY FILES
When gex starts it attempts to open ./lib.g, if it exists it is used as the source for symbols. If
./lib.g is not found an attempt is made to open /usr/lib/gexlib.g, if this fails gex runs without
a symbol library. When no library exists or a selected symbol does not exist, a dot is displayed
at symbol references. It is recommended that user libraries be kept in a directory unique to
each library along with the subordinate graphic files.

Each symbol in a gex symbol library is selected via a number in the range 0 thru 4095. This
number identifies a particular symbol zone within the 0 thru 32K range of gex. The range of
each symbol zone is 512 X 512. Since the low left corner of each WINDOW is snapped to the
current GRID the perimeter of the symbol zone, as it appears on the scope, may be part of the
adjacent symbol zone. The reference point for each symbol is the first data point of that sym-
bol.

If a picture is worth 1000 words, try this:
(You do what’s in quotes)

1. "chdir™ to a clean (empty) directory
2. "gex" start gex
3. "w" window, "z" zone, "1000"
4. draw some stuff (this will be symbol 1000)
S. "w" window, "z zone, "2000
6. draw some more stuff (this will be symbol 2000)
7. "w" window, "a all
8. notice the tiny versions of the two new symbols!
9. "O" output, "lib.g
10. """ quit
1. "gex" restart gex
12. "[" select symbol, "1000
13. "position cursor, p" place symbol
14. repeat 13 a couple times
15. "[" select symbol, "2000
16. "pesition cursor, p" place symboi
November 1979 Page 4 November 1979

GEX (1G) CB~UNIX 2.1

FILES

17. repeat 16 a couple times
18. got the picture ? if not call for help!

tx.g Default output file
/usr/bin/gexmenu The ? command
lib.g Symbol library
/usr/lib/gexlib.g Default library

SEE ALSO

atgex(1G), geon(1G), gdump(1G), gsplit (1G), hatch (1G), tkdump(1G)

DIAGNOSTICS

Buffer full EXPECT blowup soon
Graphic buffer about to overflow.

Can’t create
Write permission in directory or file system.

Cannot OPEN
Probably name was mistyped or file does not exist.

DATA is on file -- tx.g
Buffer not empty on exit.

DEFINE two points first
This command requires two points.

DELTA ZERO
Cursor was not moved to establish a deita for COPY or MOVE.

File Format ERROR
Not a gex type file.

GRID TOO SMALL
The current GRID is too small to display.

INVALID data CH=NNN
Bad data transfer to cpu.

LIMIT
Can’t move WINDOW any more.

NO CHANGE
Nothing has been added to buffer (y RESTORE).

NOTHING FOUND / CHANGED
Nothing was found or what was found did not change.

Not ENOUGH SPACE IN BUFFER
Not enough space to do the file INPUT or COPY.

POINT OUT OF BOUNDS
SCALE command aborted because a point would go out.

AUTHOR

BUGS

D. J. Jackowski

Buffer size restriction should be eliminated.

November 1979 Page 5

GEX(1G)

November 1979

GEX (1G)
i =
v =
t =
c =
[=
p =
e =
g =
a =
s =
r =
1 =
k =
n =
q =
x =
i =
QO =
0o =
X =
d =
dr =
dw =
dx =
de =
dm =
da =

November 1979

GEX Menu

JUMP

VECTOR

TEXT

CIRCLE

SELECT SYMBOL

PLACE SYMBOL

ERASE SCOPE

GRID SET

AVAILABLE BUFF

SIZE

ROTATE

LINE STYLE

KILL TEXT DISP

NEW DISPLAY

QUERY

REF GRID

INPUT FILE

OUTPUT TO FILE

OUTPUT REPORT

BIG X

LAST DEFINE

DEFINE (digitize)
RADIUS aRc (dr)
WINDOW (dw ddw)
MINI GRID (dx ddx)
COPY (ddc)
MOVE (ddm)
ANGLE (dda)

CB-UNIX 2.1

Page 6

df
dD
dE
dQ
dR
dG
ds
dM

we
WW
wn
ws
wu
wd
wk
wh

wa

GEX (1G)

FLASH (ddf)
DELETE (ddD)
EDIT (ddE)
QUERY (ddQ)
ROTAREA (ddR)
GRID SNAP (ddG)
SCALE (ddS)
MIRROR (ddM)
WINDOW
EAST
WEST
NORTH
SOUTH
upP
DOWN
KEEP
HOME
ALL
RATIO TRUNCATE
SYMBOL ZONE
MENU
HOLD AUTO DISP
CHANGE E, q or k modes
UNIX
BACKUP
RESTORE
DONE

November 1979

GGET (18) CB—-UNIX 2.1 GGET (18)

NAME

gget — get a file from SCCS

SYNOPSIS

gget [options | [files] [directories]

DESCRIPTION

The gget command will retrieve the given source files or directories from a file system dedicated
to Source Code Control System (SCCS) files. Gger is written in Bourne shell-ese and thus runs
only on systems supporting the Bourne shell. Geer requires two shell variables to be set and
either made global or exported. The first is SCCSOURCE. It is set to be the directory which
subtends all SCCS directories of current interest. Thus for the unix source software,
SCCSOURCE is set to /usr/src/ucb . The second variable is SUBSYSTEMS. It is set to the
subdirectories of interest in SSCCSOURCE. Thus someone working on the operating system
might set the following:

SCCSOURCE=/usr/src/uch
SUBSYSTEMS="0s io sys”

The command line arguments are files, directories or any valid option to the gger(1S) com-
mand. If a file is specified, all SSUBSYSTEMS in SSCCSOURCE are searched in the order of
SSUBSYSTEMS for a file named s.file. When found, gget executes get(1S) on the file with the
appropriate directories and ‘s.” prepended to the file name.

If a directory is specified, the user has two options. If —D is not an input argument gger
retrieves the named file into the current directory. If the —D option is specified gger makes
the appropriate directory(s), then does a cd to the appropriate directory before executing each
get(18).

As an example assume the shell variables are set as above.
gget os
causes the following command to be executed:
/usr/bin/get /usr/src/uch/os
If the —D option is specified then mkdir os and cd os occur before the /usr/bin/get .

OPTIONS

FILES

—D Make directories and change to them as required

/usr/bin/get

SEE ALSO

get(1S)

DIAGNOSTICS

All diagnostics are printed on file descriptor 2.

November 1979 Page |) November 1979

GLS(1S) CB—UNIX 2.1 GLS (1S)

NAME
gls — list the directory SSCCSOURCE with input args appended

SYNOPSIS
gls [1s_opts | [dirs]

DESCRIPTION

The gls command uses g_find(1S) to locate each named input file. It passes all ‘-’ type argu-
ments to the /s(1) command with the resulting full pathname from g find. GIis is written in
Bourne shell-ese and thus runs only on systems supporting the Bourne shell. GIs requires two
shell variables to be set and either made globalorexported. The first is SCCSOURCE. 1t is set
to be the directory which subtends all SCCS directories of current interest. Thus for the unix
source software, SCCSOURCE is set to /usr/src/ucb . The second variable is SUBSYSTEMS.
It is set to the subdirectories of interest in $SCCSOURCE. Thus someone working on the
operating system might set the following:

SCCSOURCE=/usr/src/uch
SUBSYSTEMS="o0s io sys”

Gls will report back the differences between each named file and its corresponding SCCS file.
As an example assume the shell variables are set as above.

gls param.h

causes the following output:
/usr/src/uch/sys/s.param.h

Gls is essentially the following shell script:
set ‘g_find $1°; Is 81

OPTIONS
Any options valid to the /s(1) command.

SEE ALSO
g_find(1S)

DIAGNOSTICS

November (979 Page 1| November 1979

GMARK(1S) CB—-UNIX 2.1 GMARK((1S)

NA E
gmark — mark a subsystem of SCCS files.
SYNOPSIS
gmark [options] [subsystems]
DESCRIPTION

The gmark command will mark a subsystem consisting of SCCS files. Mark means take a
snapshot of all source file SCCS sid numbers of the files which make up the subsystem. Gmark
is written in Bourne shell-ese and thus runs only on systems supporting the Bourne shell.
Gmark requires one shell variable to be set and either made global or exporred, SCCSOURCE.
It is set to be the directory which heads all SCCS directories of interest. Thus for the unix
source software, SCCSOURCE is set to ‘/usr/src/uch’. (On the Columbus system currently
Unix source is under /usr/src/uch in the directories os, io, and sys.) The command line argu-
ments are any of the valid gmark options and any valid directory path relative to
$SCCSOURCE. The options tell gmark what to do on this invocation.

As an example assume the shell variable SSCCSOURCE is set as above. Then the following
command:

gmark —M .
causes the following to happen: (here ‘remembers’ means stores in a temporary file.)
1 gmark does a cd to ‘/usr/src/uch/.’.

2 gmark reads a file called ‘s.markfile’ to find all other directories and files which
must be marked along with the current directory. If none exists gmark goes to step
5;

3 for each directory found, gmark does a cd to that directory and does a gmark on that
directory. It then remembers the new SCCS sid of the markfile in the directory;

4 for each file in markfile gmark remembers the most recent SCCS sid;
for each file in ‘.” gmark remembers the most recent SCCS sid;

6 if ‘=HL’ or ‘=LL’ type options were specified gmark stream edits the temporary
file and writes the requested information on the standard output;

7 if the ‘=M’ type option was specified gmark uses the temporary file to defta the
s.markfile in the directory °.”. If no s.markfile exists, gmark creates one with the
admin(1S) command.

The following options are supported:

-M update the s.markfile with the current SID’s of the named subsystems. The
‘—~C’ option may also be specified. If ‘—C’ is not specified, gmark prompts for
a comment. This option conflicts with any of the —H or —L options.

—C’cmt’ This option can only be specified when the —M option is specified. The com-
ment is any string (imbedded blanks and newlines are allowed).

-L print the s.markfile in the named subsystem.

-LL traverse the markfile chain and print each markfile starting from named sub-
system. This effectively is the snapshot taken of the subsystem named. Any
descriptive information that does not refer to SCCS sid levels comes out on file
descriptor 2. The standard output can be sed’ed to actually retrieve a previous
version of a subsystem. (see gmger(1S), sed(1S)).

-H print (prt(1S)) the history of the markfile in the named subsystem.

November 1979 Page 1 November 1979

GMARK (18) CB-—-UNIX 2.1 GMARK (18)

—HL traverse the markfile chain and print the history of each markfile in the chain.

-RN do any of the above but start at release N of the markfile in the named subsys-
tem. In this mode the output of the gmark —L command is used to determine
the SCCS sid of the down chain markfiles to retrieve.

FILES
s.markfile

SEE ALSO
gmget (1S), gget(1S)
DIAGNOSTICS
All diagnostics are printed on file descriptor 2, and are hopefully self explanatory.

BUGS

This command and its associated undocumented command mark should be rewritten in C to
make it faster.

November 1979 Page 2 November 1979

GMGET(1S) CB—-UNIX 2.1 GMGET (18)

NAME

gmget — get a file in SCCS
SYNOPSIS

gmget [—rSID] subsystem subsystem ...
DESCRIPTION

The gmger command will gger(1S) a set of files listed in a markfile created by the gmark(1S)
command. Each file retrieved will have the SID named in the specified release of the markfile.
If no release is specified (by the ‘—r’ option) then the named release refers to the most recent
SID of the markfile for the named subsystem.

SEE ALSO
gget(1S), gmark(1S)

DIAGNOSTICS
All diagnostics are printed on file descriptor 2, and are hopefully self explanatory.

November 1979 Page | November 1979

GPRT(18) CB—UNIX 2.1 GPRT(1S)

NAME
gprt — prt a file in SCCS

SYNOPSIS
gprt [options 1 [files]

DESCRIPTION

The gprt command will do the prz(1S) command on the files named. All input flags are passed
directly to the prt(1S) command. The files are accessed through the g_find(1S) command.

The command line arguments are files or any valid option to the prt(1S) command. If a file is
specified, all SSUBSYSTEMS in SSCCSOURCE are searched in the order of SSUBSYSTEMS
for a file named s.file. When found, gdelta executes prt(1S) on the file with the appropriate
directories and "s."” prepended to the file name.

SEE ALSO
prt(1S), g_find(1S)

DIAGNOSTICS
All diagnostics are printed on file descriptor 2, and are hopefully self explanatory.

November 1979 Page | November 1979

GRAPH(1G) CB—UNIX 2.1 GRAPH (1G)

NAME

graph — draw a graph

SYNOPSIS

graph [option] ...

DESCRIPTION

Graph with no options takes pairs of numbers from the standard input as abscissas and ordi-
nates of a graph. Successive points are connected by straight lines. The graph is encoded on
the standard output for display by the plot(1G) filters.

If the coordinates of a point are followed by a non-numeric string, that string is printed as a
label beginning on the point. Labels may be surrounded with quotes ", in which case they may
be empty or contain blanks and numbers; labels never contain new-lines.

The following options are recognized, each as a separate argument:

—a Supply abscissas automatically (they are missing from the input); spacing is given by
the next argument (default 1). A second optional argument is the starting point for
automatic abscissas (default 0 or lower limit given by —x).

-b Break (disconnect) the graph after each label in the input.

-c Character string given by next argument is default label for each point.

-g Next argument is grid style, 0 no grid, 1 frame with ticks, 2 full grid (default).

-1 Next argument is label for graph.

-m Next argument is mode (style) of connecting lines: 0 disconnected, 1 connected

(default). Some devices give distinguishable line styles for other small integers
(e.g., the Tektronix 4014: 2=dotted, 3=dash-dot, 4=short-dash, 5=long-dash).

-s Save screen, don’t erase before plotting.

-x|l] If 1is present, x axis is logarithmic. Next 1 (or 2) arguments are lower (and upper)
x limits. Third argument, if present, is grid spacing on x axis. Normally these
quantities are determined automatically.

-y(il Similarly for y.

—h Next argument is fraction of space for height.

-w Similarly for width.

-r Next argument is fraction of space to move right before plotting.

-u Similarly to move up before plotting.

-t Transpose horizontal and vertical axes. (Option —x now applies to the vertical
axis.)

A legend indicating grid range is produced with a grid unless the —s option is present. If a
specified lower limit exceeds the upper limit, the axis is reversed.

SEE ALSO

BUGS

Page 1

plot(1G), spline(1G), plot(5)

Graph stores all points internally and drops those for which there isn’t room.
Segments that run out of bounds are dropped, not windowed.

Logarithmic axes may not be reversed.

The special line types do not work with the versatek, although they do for plot(1G).

November 1979

GREP (1) CB—UNIX 2.1 GREP(1)

NAME
grep, egrep, fgrep — search a file for a pattern

SYNOPSIS
grep [option] ... expression [file] ...

egrep [option] ... [expression] [file | ...
fgrep [option 1 ... [strings] [file]

DESCRIPTION
Commands of the grep family search the input files (standard input default) for lines matching
a pattern. Normally, each line found is copied to the standard output. Grep patterns are lim-
ited regular expressions in the style of ed(1); it uses a compact non-deterministic algorithm.
Egrep patterns are full regular expressions; it uses a fast deterministic algorithm that sometimes
needs exponential space. Fgrep patterns are fixed strings; it is fast and compact. The following
options are recognized:

—-v All lines but those matching are printed.
-x (Exact) only lines matched in their entirety are printed (fgrep only).
- Only a count of matching lines is printed.
-1 Only the names of files with matching lines are listed (once), separated by new-lines.
-n Each line is preceded by its relative line number in the file.
-b Each line is preceded by the block number on which it was found. This is sometimes
useful in locating disk block numbers by context.
— @ expression
Same as a simple expression argument, but useful when the expression begins with a —.
—f file The regular expression (egrep) or string list (fgrep) is taken from the file.

In all cases, the file name is output if there is more than one input file. Care should be taken
when using the characters $, *, [, °, |, (), and \ in expression, because they are also meaning-
ful to the shell. It is safest to enclose the entire expression argument in single quotes "..."

Fgrep searches for lines that contain one of the strings separated by new-lines.
Egrep accepts regular expressions as in ed(1), except for \ (and \), with the addition of:

1. A regular expression followed by + matches one or more occurrences of the regular
expression.

2. A regular expression followed by ? matches 0 or 1 occurrences of the regular expres-
sion.

3. Two regular expressions separated by | or by a new-line match strings that are matched
by either.

4, A regular expression may be enclosed in parentheses () for grouping.

The order of precedence of operators is], then * ? +, then concatenation, then | and new-line.
SEE ALSO

ed(1), sed(1), sh(1).
DIAGNOSTICS

Exit status is O if any matches are found, 1 if none, 2 for syntax errors or inaccessible files.
BUGS

Ideally there should be only one grep, but we don’t know a single algorithm that spans a wide

enough range of space-time tradeoffs.

Lines are limited to 256 characters; longer lines are truncated.
Egrep does not recognize ranges, such as [a-zl, in character classes.

Page | . November 1979

GSPLIT (1G) CB—UNIX 2.1 GSPLIT (1G)

NAME

gsplit — filter to break gex files into pieces
SYNOPSIS

gsplit [—ctvxyalo]
DESCRIPTION

Gsplit allows division of gex(1G) files into logical sub files.
Options:
-c selects circles.
—crN selects circles of radius N.
-t selects text.
—trN selects text with rotation N.
—tsN selects text of size M.
—IwN selects line width N.
—1IsN selects line style N.
-y selects jumps, vectors and arcs.
—xN selects anything with x ordinate N.
~yN selects anything with y ordinate N.
-a select all.

-IN limit output to N points. Output will continue past the limit to complete a set
of vectors and arcs.

-0 output in reversed sense, normally the selected data types are output, i.e. —tc
selects text and circles, —tco selects all the rest.

In all options, except —IN, "N may be a single integer or a pair of comma separated integers to
designate a range, i.e. —ts50,125 selects text sizes 50 thru 125.

SEE ALSO
gex(1G)
DIAGNOSTICS
"Bad input file" Input file not in GEX format.
"Junk in file" Unexpected data in input file.
AUTHOR

D. J. Jackowski

BUGS
Probably !

Page 1 November 1979

GTTY (1) CB—-UNIX 2.1 GTTY (1)

NAME

gtty — get terminal line options
SYNOPSIS

gtty [line ...]
DESCRIPTION

Gty will get certain I/0 options on the lines specified. If no line is given the standard input is
used (file descriptor 0). See stty(1) for an explanation of the options reported by gtty.

SEE ALSO
gtty (2), sty (1)

BUGS
On devices which do not allow variable speeds, the input and output speed is meaningless.

Page 1 November 1979

HATCH (1G) CB—-UNIX 2.1 HATCH (1G)

NAME
hatch — fiiter to hatch gex files

SYNOPSIS
hattch [=sN] [=pN] [=aN] [=nN] [=cN] [—Ixiod] [—dd]

DESCRIPTION
Haich provides an easy way to add hatch lines to closed or semi-closed figures in gex(1G) files.
Figures consist of a jump and at least two vectors, or a jump and a series of vectors and arcs,
and are delimited by a jump, text or circle.

Options:
—sN sets hatch spacing to N, default is 100.
=pN sets hatch spacing to be N percent of figure size.
—aN sets hatch angle to N, default is 45.
=nN sets min number of points to ¥, default is 3.
—cN sets min chord length to N, default is 50.
=1 long, output ail graphic data, normally only hatch lines are output.
=X cross hatch.
—i ignore figure delimiters.
—o0 omit all open figures.
—d dump (print) hatch point buffer.
—dd dump and put points in output file.
SEE ALSO
gex(1G)
DIAGNOSTICS
"Space too small" | Space option less than 10.
"Bad input file" Input file not in GEX format.
"Junk in file" Unexpected data in input file.
"Too many input points” Too many points or arcs.
"STRIKE -- too many" Hatch line requires too many break points.
AUTHORS

V. A. Fasciano & D. J. Jackowski

BUGS
Probably !

Page 1 November 1979

HELP (1S) CB—-UNIX 2.1 HELP (1S)

NAME
help — ask for help

SYNOPSIS
help [arg] ...

DESCRIPTION
Help finds information to explain a message from a command or explain the use of a command.
Zero or more arguments may be supplied. If no arguments are given, hefp will prompt for one.

The arguments may be either message numbers (which normally appear in parentheses follow-
ing messages) or command names, of one of the following types:

type 1 Begins with non-numerics, ends in numerics. The non-numeric prefix is
usually an abbreviation for the program or set of routines which produced
the message (e.g., ‘‘ge6”, for message 6 from the ger command).

type 2 Does not contain numerics (as a command, such as ger)
type 3 Is all numeric (e.g., <“212")

The response of the program will be the explanatory information related to the argument, if
there is any.

When all else fails, try ‘*help stuck”.

FILES
The asclI file searched for the explanatory information for each type of argument is as follows:

type 1 /usr/lib/help/ prefix-of-argument
type 2 /usr/lib/help/cmds
type 3 /usr/lib/sccs.hf

If the file to be searched for either a type 1 or a type 2 argument does not exist, the search will
be attemnpted on the file for the type 3 argument. In no case, however, will more than one file
be searched per argument.

Anyone wishing to modify the files should list out portions of them — the format will be obvi-
ous.

DIAGNOSTICS
Use help for help.

November 1979 Page | ' November 1979

HEX (1) CB—-UNIX 2.1 HEX (1)

NAME

hex — translate binary file to ascii hexadecimal
SYNOPSIS

hex filel file2
DESCRIPTION

Hex will read filel outputting into file2 two characters for every byte read. Each byte is split up
into two "nibbles" and each nibble is mapped into one of the sixteen hexadecimal characters
(0-F). These characters are then written into file2 with a new line character (‘\n’) separating
every 64 characters. Upon completion, #ex will print out an integer checksum which is com-
puted by summing all of the bytes read.

SEE ALSO
unhex (1), ucat(1)

DIAGNOSTICS
argcount
Can’t open < filel >
Can’t open < file2 >
Read error

Page 1 November 1979

HOLD (1) CB—UNIX 2.1 HOLD (1)

NAME
hold — suspend printing of queued line printer jobs

SYNOPSIS
hold type item [item]

DESCRIPTION
Hold suspends the printing of a set of line printer requests. Type (either user, printer, or job)
indicates the type of items which follow. At least one irem is required.

In the case of gpe user, the items are login ids of users with queued jobs. For each specified
user, hold suspends the printing of all the user’s line printer jobs, regardless of the queue in
which the request resides. Suspension is immediate, and any currently printing job is inter-
rupted. If the type is printer, then each jtem is a printer name, and hold suspends the currently
printing job on each of the named printers, and disallows further printing by that printer until
the printer is either siarred or released. An active printer, when held, maintains control over
the job it was printing unless the job is separately starred or released before such action is taken
on the printer. For gype job, each of the specified jobs is inhibited from printing.

SEE ALSO
abort(1), init(1), Ipr(1), release(1), restrain(1), start(1)

Page 1 November 1979

HYPHEN (1) CB-UNIX 2.1 HYPHEN (1)

NAME

hyphen — find hyphenated words
SYNOPSIS

hyphen name ...
DESCRIPTION

It finds all of the words in a document which are hyphenated across lines and prints them back
at you in a convenient format.

If no name s given, the standard input is used. Thus hyphen may be used as a filter.

BUGS
Yes, it gets confused, but with no ill effects other than spurious extra output.

Page 1 November 1979

ID(1) CB—-UNIX 2.1 ID(1)

NAME
id — print user and group id
SYNOPSIS
id
DESCRIPTION
Id writes a message on the standard output device giving the user and group id of the invoking
process. If the effective and real id do not match, both are printed.
SEE ALSO
getuid(2), geteuid(2), getgid(2), getegid(2)
FILES

/etc/group
/etc/passwd

Page 1 November 1979

IDUMP (1M) CB—-UNIX 2.1 IDUMP (1M)

NAME

idump — dump an inode
SYNOPSIS

/ete/idump [—linumber [...] device [...] [[[=linumber [...]] device] ...
DESCRIPTION

Idump dumps all information about inode number inumber from the specified device(s). If the
‘=" is not specified, idump will print the inode structure information.

If the ‘=’ is specified, idump throws the actual contents of the file onto the standard output. If
the file is a directory, the output is formatted to look like an “‘Is -af*’.

SEE ALSO
1s(1), dir(5), fs(5)

November 1979 Page 1 November 1979

INFECT(1) CB—UNIX 2.3 INFECT(1)

NAME

infect — Give a virus to another UNIX system

SYNOPSIS

infect [—v] [—clev] [—slev] [—a] [—wdev] [—idays] tn

DESCRIPTION

Infect uses the cu(1C) command to dial the UNIX system with telephone number tn, and infects
that system with a virus program. The arguments allow you to specify the type of virus. You
can give anything from a mild cold, which will only cause occasional sneezes and sniffles, to a
virulent plague that will kill the system immediately. If tnis —, infect gives the virus to its own
UNIX system.

Once a UNIX system has been infected with a virus, the only proven way of curing that system
is to vaccinate it (see —v). There have been cases of spontaneous remission, but such things
are very rare. Attempts to flog(1) an infected system will be counter-productive.

Unfortunately, VAX 11/780 based UNIX systems seem to be naturally immune to all viruses that
infect can produce. It seems that such systems are self-VAXcinated.

—v Causes infect to create a vaccine to combat a virus with the indicated characteristics, and
to vaccinate the UNIX system. Only certain users may do vaccinations, and those users
must pay the author (and how!). Warning: The distinction between virus and vaccine is
marginal at best. Vaccinating a UNIX system that doesn’t have the virus may do more
harm than good (the dreaded Swine Flu Syndrome). Even if the UNIX system does have
the virus, the vaccine might stiill make things worse — — and heaven help you if the vac-
cine mutates.

—¢ Level of contageousness: this specifies how likely it will be for the infected system to
pass the virus onto another UNIX system. (Vaccines are never contagious.) Recognized
levels include:

n Not contagious (default); the virus cannot spread to other systems.

1 Low: the virus can only spread to other systems that share memery or disks with the
infected system.

m Mild: the virus can spread through DA links, PCL links, or CE’s (CE’s act as com-
mon carriers).

h High: the virus can spread through tapes.

] Virulent: the infected UNIX calls other UNIX systems, via cu(1C) or uucp(1C), and
infects them.

X Carrier: highly contagious, execpt that the infected UNIX system doesn’t suffer from
the virus itself, but just passes it on to other systems.

—i The incubation period, in days. The system will not suffer from the affects of the virus
until the incubation period is over. If 0, the virus takes affect immediately. A high incu-
bation period allows the virus to infect the system’s backup tapes. The system is conta-
gious during the incubation period.

—s Severity level: mild, severe (the default), or deadly. A mild virus is like a slight cold:
the infected system crashes (or loses files, or exhibits other noxious behavior) once or
twice a day. If the system was not in perfect health before, the users of the infected sys-
tem might not realize that it has been given a virus, execpt through statistical analysis. A
severe virus causes crashes (or whatever) at least every hour. While a system is obvi-
ously very sick, it is usuable (but just barely). A UNIX system with a deadly virus is
totally unusable.

—a If specified, the virus will be acute; otherwise, it will be chronic. A chronic virus stays at

May 22, 1981 Page 1 May 22, 1981

o

INFECT (1)

CAVEATS

CB—UNIX 2.3 INFECT(1)

the severity level specified by —s, and the symptoms come and go irregularly. An acute
virus starts at the severity level selected by —s, but slowly gets worse until it becomes
deadly. For example, a system can suffer from a mild, chronic virus for years before any-
one realizes that it has a virus.

This specifies what ‘‘device’ (hardware or software) the virus will attack. Recognized
codes are:

kern the UNIX systems’s kernal (can cause it to pop)

file the file system (can cause lost an/or scrambled files)
cc C compiler (causes it to crash and/or generate bad code)
doc documentation tools (can cause athlete’s footnote)

cmds any and all commands on the UNIX system

su super-user (root-rot — — the kryptonite disease)

unauth unauthorized users (usually a benevolent virus!!)
cpu the obvious

mem memory (perhaps causing parity errors)

disk disk drives (can cause disk-head dandruff)

back backplane and/or unibus (e.g. nagging back-ache)
air air conditioning system (a rare pneumonic virus)

any any or all of the above (a wide spectrum virus)

The viruses are stored in a special, sealed RVO01 disk pack, mounted on /dev/andromeda. If
this pack is broken, the viruses will spread like wildfire (the Pandora Syndrome).

DIAGNOSTICS
Many, but they’re always wrong.

BUGS {pardon the pur)
For some unknown reason, attempting to infect a system via a dataswitch connection does not
work. Dataswitches have a tendency to intercept viruses first and hog them for themselves.

NOTE:

This page was copied from PWB/UNIX release 2.0 (IH) and brought to you for your amusement.

May 22, 1981

Page 2 May 22, 1981

INIT (1) CB—-UNIX 2.1 INIT (1)

NAME
init — reinitialize line printer demon

SYNOPSIS
init printer name [name]

DESCRIPTION
Init generates a new line printer demon Killing any demon which currently exists for the
specified printer. At least one printer is required. The purpose of the command is to regen-
erate the line printer demon, after some printer hardware failure.

SEE ALSO
abort(1), hold(1), lpr(1), release(1), restrain(1), start(1)

November 1979 Page 1 November 1979

THEWS (1)

AL AT T

NaME

 SYNDFSIS
1YW

MY

LYHMIE

DESCRIPTION

N
i "t Yoot
R

Famdl ; v e sumd

HIAT

s

9t als b

B T VAR

i

FIL

VR Y

—~ s i nees S B L

-
Es

{1

o

TNEL

R

(4

LHEWE

1

INIT(1M) CB—UNIX 2.3 INIT(IM)

NAME

init — process control initialization

SYNOPSIS

/ete/init

DESCRIPTION

Init is a general process spawner. Its primary role is to create processes from a script stored in
the file /etc/inittab (see inittab(5)). This file usually has inif spawn gerty’s on each line that a
user may log in on. It also controls autonomous processes required by any particular system.

Init considers the system to be in a run level at any given time. A run level can be viewed as a
software configuration of the system where each configuration allows only a selected group of
processes to exist. The processes spawned by init for each of these run levels is defined in the
inittab file. Init can be in one of eight levels, 0-6 and S (s). The run level is changed by having
a privileged user run /etc/init (which is linked to /bin/telinit). This user spawned init sends
appropriate signals to the orginal init spawned by the operating system when the system was
rebooted, telling it which level to change to.

Init is invoked inside UNIX as the last step in the boot procedure. The first thing init does is to
look for /etc/inittab and see if there is an entry of the type initdefault (see inittab(S)). If there
is, init uses the level specified in that entry as the initial run level to enter. If this entry is not in
inittab or inittab is not found, init requests that the user enter a run level from the virtual sys-
tem console, /dev/syscon. If an S (s). is entered, init goes into the SINGLE USER level. This
is the only level that doesn’t require the existence of a properly formated inittab file. If
/etc/inittab doesn’t exist, then by default the only legal level that init can enter is the SINGLE
USER level. In the SINGLE USER level the virtual console terminal /dev/syscon is opened for
reading and writing and the command /bin/su is invoked immediately. To exit from the SIN-
GLE USER run level one of two options can be elected. First, if the shell is terminated (via an
end-of-file), init will reprompt for a new run level. Second, the init or telinit(1M) command can
signal init and force it to change the run level of the system.

When attempting to boot the system, failure of inir to prompt for a new run level may be due
to the fact that the device /dev/syscon is linked to a device other than the physical system tele-
type (/dev/systty). If this occurs, init can be forced to relink /dev/syscon by typing a delete
on the system teletype which is colocated with the processor.

When init prompts for the new run level the operator may only enter one of the digits 0
through 6 or the letters S or s. If S is entered init operates as previously described in SINGLE
USER mode with the additional result that /dev/syscon is linked to the user’s terminal line,
thus making it the virtual system console. A message is generated on the physical console,
/dev/systty, saying where the virtual terminal has been relocated. ’

If a 0 through 6 is entered init enters the corresponding run level. Any other input will be
rejected and the user will be reprompted. If this is the first time init has entered a run level
other than SINGLE USER, init first scans inittab for special entries of the type boot and bootwait.
These entries are performed, providing the level entered matches that of the entry before any
normal processing of inittab takes place. In this way any special initialization of the operating
system,such as mounting file systems, can take place before users are allowed onto the system.
The inittab file is scanned to find all entries that are to be processed for that run level.

Run level 0 is usually defined by the user to contain all of the terminal processes and daemons
that are spawned in the multi-user environment.

In a2 multi-user environment, the initzab file is usually set up so that init will create a process for
each terminal on the system.

For terminal processes, ultimately the shell will terminate because of an end-of-file either typed
explicitly or generated as the result of hanging up. When init receives a child death signal,

February 24, 1980 Page 1 February 24, 1980

INIT (1M) CB—UNIX 2.3 INIT(1M)

telling it that a process it spawned has died, it records the fact and the reason it died in
/etc/utmp (and /etc/wtmp if it exits) (see who(1)). A history of the processes spawned is
kept in /etc/wtmp if such a file exists.

To spawn each process in the inintab file, init reads each entry and for each entry which should
be respawned, it forks a child process. After it has spawned all of the processes specified by the
inittab file, init waits for one of its descendant processes to die, a powerfail signal, or until init is-
signaled by init or telinit(1M) to change the system’s run level. When one of the above three
conditions occurs, init re-examines the inittab file. New entries can be added to the initzab file at
any time; however init still waits for one of the above three conditions to occur. To provide for
an instantaneous response the "init (telinit) Q" command can wake init to reexamine the inittab
file. . '

If init receives a powerfail signal (SIGPWR (signal(2))) and is not in SINGLE USER mode, it
scans inittab for special powerfail entries. These entries are invoked (if the levels permit)
before any further processing takes place. In this way init can perform various cleanup and
recording functions whenever the operating system experiences a power failure.

When init is requested to change run levels (via telinit(1M)), init sends the warning signal (sig-
nal 15) to all processes that are undefined in the target run level. Init waits 20 seconds before
forcibly terminating these processes via the kill signal (signal 9).

FILES
/etc/inittab,
/etc/utmp,
/etc/wtmp,
/dev/syscon,
/dev/systty,
/bin/sh,
/bin/su

SEE ALSO
getty(1M), login(1), sh(1), telinit(1M), inittab(5), utmp(5)

DIAGNOSTICS
If init finds that it is continuously respawning an entry from /etc/inittab more than 10 times in
2 minutes, it will assume that there is an error in the command string, and generate an error
message on the system console, and refuse to respawn this entry until either 5 minutes has
elapsed or it receives a signal from a user init (telinit). This prevents init from eating up system
resources when someone makes a typographical error in the inittab file or a program is removed
that is referenced in the inittab. ‘

February 24, 1580 Page 2 February 24, 1980

INODE (1) CB—-UNIX 2.1 INODE (1)

NAME

inode — find inode on disk
SYNOPSIS

inode number [...]
DESCRIPTION

For each number in the argument list, inode will calculate and print the location of the inode as
a block number with respect to the start of the logical device, plus a byte index from the begin-
ning of the specified block.

The output format is:
[number] found in block x, index y
for each inode number listed. X o nd \(Are b;} N oc‘fa\ nu W\‘D%’ 2]

Page 1 November 1979

INSTALL (1M) CB—UNIX 2.1 INSTALL (1M)

NAME

instail — install commands

SYNOPSIS

Jete/install [—¢ dira] [=f dirb] [=i] [=n dirc] [=0] [=s] file [dirx ...
1

DESCRIPTION

November 1979 Page |

Install is a command most commonly used in “‘makefiles” to install a file (updated target file)
in a specific place within a file system. Each file is installed by copying it into the appropriate
directory, thereby retaining the mode and owner of the original command. The program prints
messages telling the user exactly what files it is replacing or creating and where they are going.

If no options or directories (dirx ...) are given, install will search (using find(1)) a set of defauit
directories (/bin, /usr/bin, /etc, /lib, and /usr/lib, in that order) for a file with the same
name as file. When the first occurrence is found, install issues a message saying that it is
overwriting that file with file, and proceeds to do so. If the file is not found, the program states
this and exits without further action.

If one or more directories (dirx ...) are specified after file, those directories wiil be searched
before the directories specified in the default list.

The meanings of the options are:

~¢ dira Installs a new command in the directory specified in dira. Looks for file
in dira and installs it there if it is not found. If it is found, install issues a
message saying that the file already exists, and exits without overwriting

it. May be used alone or with the —sption.

—-f dirb Forces file to be installed in given directory, whether or not one already
exists. If the file being installed does not already exist, the mode and
owner of the new file will be set to 755 and bin, respectively. If the file
already exists, the mode and owner will be that of the already existing
file. May be used alone or with the —o or —s options.

—-i Ignores default directory list, searching only through the given directories
(dirx ...). May be used alone or with any other options other than —¢
and —f.

—n dirc If file is not found in any of the searched directories, it it put in the

directory specified in dirc. The mode and owner of the new file will be
set to 755 and bin, respectively. May be used alone or with any other
options other than —c¢ and -—f.

-0 If file is found, this option saves the ‘found’ file by copying it to ofile in
the directory in which it was found. May be used alone or with any other
options other than —c.

—-s Suppresses printing of messages other than error messages. May be used
alone or with any other options.

November 1979

IOSTAT(IM) CB—UNIX 2.3 IOSTAT(1IM)

NAME

iostat — report I/O and system statistics
SYNOPSIS

jostat [—atpisbeocgqmzfdhl] [Irate] [interval [count]]
DESCRIPTION

Iostat reports statistics kept about various activities within the system.

For each disk, the system counts IO completions and the number of words transferred. Also,
cach sixtieth of a second, the state of each disk is examined and a tally is made if the disk is
active. This tally goes into one of four categories, depending on whether the system is execut-
ing in user mode, in ‘nice’ (background) user mode, in system mode, or idle. From all these
numbers and from the known transfer rates of the devices it is possible to determine informa-
tion such as the degree of IO overlap and average seek times for each device.

The optional interval argument causes iostat to report once each interval seconds. The first
report is for all time since a reboot and each subsequent report is for the last interval only.

The optional count argument restricts the number of reports.

The interval and count arguments may be repeated in pairs to provide varied lengths and
numbers of reporting intervals.

With no flag argument iostat reports the elapsed time since boot and gives the percentage of
time the system has spent in each of the four categories mentioned above.

There are zillions of options:

—a Turns on all options except for —p, —s, —z, —m, —f, —d, —h and —1I.
—~t For typewriters collectively, the input and output character rate is reported.
—-p Report the percentage’ of time spent in system mode, in nice (low priority) user

mode, in user mode, and in idle mode.

—i Report, in addition to the percentage of time spent in each of the four categories for
the —p option, the percentage of time each disk was active (seeking or transfer-
ring), the percentage of time any disk was active, the percentage of time spent in
‘IO wait’ (processor idle, but with a disk active,) and the percentage of time spent in
interrupt routines with a priority less than that of the system clock.

—s Report the raw timing information: 24 numbers indicating the percentage of time
spent in each of the possible configurations of 4 system states and 8 IO states (3
disks each active or not).

—b For each disk, the number of transfers per minute, the number of transfers per
second, the milliseconds per average seek, and the milliseconds per data transfer
exclusive of seek time is reported.

—e For this invocation of the program report the elapsed time in minutes since the last
report. For the first report, this is the time since boot.

—o Print out the number of times the process table, the text table, the inode table, and
the file table have overflowed.

—c Print out the rate and count of interrupts (excluding the system clock,) the average
number of milliseconds per interrupt, the rate and count of traps caused by kernel
switchable text, calls to the swap routine, the number of forks, the number of exe-
cutes, the number of disk reads, the number of disk writes, and the number of pro-
cess switches. The interrupt timing information is valid only if there is no hardware
interrupting at or above the priority of the system clock. If there is some other high
priority device which interrupts at a constant rate this.information can be supplied to

March 31, 1981 Page 1 March 31, 1981

IOSTAT(1IM)

FILES

CB—UNIX 2.3 I0STAT (IM)

jostat using the —1I option. ’
Report the percentage of time a buffer was needed and none was on the free list, the
percentage of time a block was requested and it was found to already be in core, the
rate per second of calls to get block (as well as the total number of calls), the per-
centage of time a physical 10 buffer header was needed and marked busy, and the
rate per second of successfull calls to the physio subroutine (as well as the total
number of calls). :

Report the average queue size and percent occupancy for each of three queue: the
queue of jobs on the swap device but marked runnable (the swap queue); the
queue of jobs in core and marked runnable (the run queue); and the quene of jobs
waiting for disk IO other than swap IO to complete (the disk queue). Note that the
average reported is an average of only those samples with a non-zero occupancy: to
compute the true average queue size the size given must be multiplied by the occu-
pancy.

From analyzing the memory map report the number of free 64 byte segments; the
average, maximum, and minimum size of the segments; and the total number of
segments. Notice that this is the one measurement which is not a time average, but
an instantaneous report.

Suppress the first report in a series so that the cumulative statistics since boot are
not given and only interval statistics are given.-

Provide a form feed between reports.

The —d and —h options are used to obtain disk drive cylinder usage and seek dis-
tance profiles. Counts are kept for a single drive (defined by variable dk_unit in
operating system) of the cylinder desired and the required seek distance in 8
cylinder increments. The —d option dumps the data in tabular form. The —h option
produces a histogram on the printer of the data.

Requires the user to supply the optional Jrate argument which specifies the number
of interrupts per second at a priority higher than or equal to the system clock. This
rate should not include the system clock.

/dev/mem, /unix

March 31, 1981

Page 2 March 31, 1981

JOIN(D) CB—-UNIX 2.1 JOIN(1)

NAME

join - relational database operator
SYNOPSIS

join [=n] [—tc] filel file2
DESCRIPTION

Join forms, on the standard output, a join of the two relations specified by the lines of file/ and
file2. If filel is ‘~’, the standard input is used.

Filel and file? must be sorted in increasing ASCII collating sequence on their first fields. There
is one line in the output for each pair of lines in file/ and file2 that have identical first fields.
The output line consists of the common first field, then the rest of the line from file/, then the
rest of the line from file2.

If the optional argument —n is used, fields are processed on the numeric value of their first
field (as a long). In this case, the files must be sorted in increasing numeric order.

Fields are normally terminated by blank, tab or newline. With option —tc, fields are ter-
minated by character ¢ or newline.

When first fields are null, join makes a cross-product file.

SEE ALSO
sort(1), comm{(1), sed(1)

November 1979 Page 1 November 1979

KAS(1A) CB—-UNIX 2.1 KAS(14)

NAME

kas — assembier for the KMC11 microprocessor

SYNOPSIS

kas [name] [—o0 namel] [—d name2 |

DESCRIPTION

FILES

Kas is an assembler/debugger/loader for the KMC11 microprocessor. The optional argument
name specifies the input file; default is standard input. The optional argument —o indicates that
the next argument namel will be the output of the assembler; default is a.out. The optional
argument —d indicates that the assembler is to be used in debug mode and that the next argu-
ment name2 is the device file name of the microprocessor. No output file is created in debug
mode.

Error diagnostics are written on the standard error output and contain the input file name and
line number and a brief description of the error. C Preprocessor control lines to change the file
name and line number are recognized. This allows the use of the preprocessor to expand the
input before assembly.

a.out output object
/dev/kmc? microprocessor device
/lib/cpp C Preprocessor

SEE ALSO

NOTES

Page 1

kun(1), kmc(4).
Assembler for the DEC KMC11 Microprocessor by L. A. Wehr

There is no kmc driver in release 2.0 of CB/UNIX.

November 1979

e G I

KASB(1A) CB—UNIX 2.3 KASB(1A)

NAME

kasb — assembler for the KMCI11 microprocessor
SYNOPSIS

kasb [name] [—o namel] [—d name2]
DESCRIPTION

Kasb is an assembler/debugger/loader for the KMC11 microprocessor. The optional argument
name specifies the input file; default is standard input. The optional argument —o indicates that
the next argument namel will be the output of the assembler; default is a.out. The optional
argument —d indicates that the assembler is to be used in debug mode and that the next argu- -
ment name?2 is the device file name of the microprocessor. No output file is created in debug
mode. :

Error diagnostics are written on the standard error output and contain the input file name and
line number and a brief description of the error. C Preprocessor control lines to change the file
name and line number are recognized. This allows the use of the preprocessor to expand the
input before assembly.

FILES
a.out output object

/dev/kmc? microprocessor device
/lib/cpp C Preprocessor

SEE ALSO
kunb(1), kmc(4).
Assembler for the DEC KMCI1 Microprocessor by L. A. Wehr

March 7, 1980 Page 1 March 7, 1980

KILL (1) CB—-UNIX 2.1 KILL (1)

NAME

kill — send a signal to a process or process group

SYNOPSIS

kill [+ sig] [y] processid ...
kill [-sig] [y] processgrp ...

DESCRIPTION

Kill sends the specified process(es) or group(s) the specified signal. The process number of
each asynchronous process started with ‘&’ is reported by the Shell. Process and group
numbers can also be found by using ps(1).

If no signal is specified, kill will send the catchable kill signal (number 15) to the specified
processes. If it is desired to send some signal other than 15, the signal number may be given,
as the first argument preceded by a + sign. If the first argument is preceded by a - sign, the
specified signal is sent to the specified process group(s). In the case of process groups,
verification will be requested unless the optional y argument is given.

If processid is 0, then all processes belonging to the current user and associated with the same
process group are killed. Note that this will result in the signal being sent to the kill command
itself as well. To avoid this, send the signal to process group 0 using - rather than a plus sign.

If a negative process number is specified then the signal will be sent to all processes which have
the same user id as the sender. If the sender is the super-user, the signal will be send to every-
one except process 0 and 1. In both cases verification will be required even in the presence of
the y argument.

The signaled process must belong to the current user unless he is the super-user.

SEE ALSO

Page |

ps(1), sh(1), kill(2), signal(2)

November 1979

KUN(D) CB—-UNIX 2.1 KUN (1)

NAME

kun — un-assembler for the KMC11/DMCI11 microprocessor
SYNOPSIS

kun [name] [—o namel]
DESCRIPTION

Kun is a un-assembler for the KMC11/DMC11 microprocessors. It produces an output listing,
acceptable to the assembler kas(1), from the input object.

The optional argument, name, specifies the input object, default is standard input. The format
of the input is either assembler output (first word magic 0410), or formatted dump (first word
magic 0440), or raw dump (anything else). In the first two cases, the header is ignored.

The optional argument —o indicates that the next argument, namel, is to contain the output
listing, default is standard output.

The input object is first scanned to determine branch destinations. Labels will be inserted at
these locations with format "Lins:", where int is the octal value of the location in words.
Immediate values of instructions are also printed in octal. Page breaks are noted by the labels

"PO:", ..., "P3:"
SEE ALSO
kas(1), kmc(4).

NOTES
There is no kmc driver in release 2.0 of CB/UNIX.

November 1979 Page | November 1979

KUNB(1) CB—UNIX 2.3 KUNB(1)

NAME

kunb — un-assembler for the KMC11/DMC11 microprocessor
SYNOPSIS

kunb [name] [—o namel]
DESCRIPTION

Kunb is a un-assembler for the KMC11/DMC11 microprocessors. It produces an output listing,
acceptable to the assembler kasb(1), from the input object.

The optional argument, name, specifies the input object, default is standard input. The format
of the input is either assembler output (first word magic 0410), or formatted dump (first word
magic 0440), or raw dump (anything else). In the first two cases, the header is ignored.

b

The optional argument —o indicates that the next argument, namel, is to contain the output
listing, default is standard output.

The input object is first scanned to determine branch destinations. Labels will be inserted at
these locations with format "Lint:", where int is the octal value of the location in words.
Immediate values of instructions are also printed in octal. Page breaks are noted by the labels
"PO:", ..., "P3:".

SEE ALSO
kasb(1), kmc(4).

B

U -~

' March 7, 1980 Page 1 March 7, 1980

LD(1) CB—UNIX 2.3 LD(1)

NAME
1d — link editor

SYNOPSIS
1d [—sulxrdnimX] [=K [p11[—o name] [=T symbol] [—V version] file ...

DESCRIPTION
Ld combines several object programs into one; resolves external references; and searches
libraries (as created by ar(1)). In the simplest case several object files are given, and /d com-
bines them, producing an object module which can be either executed or become the input for
a further /d run. (In the latter case, the —r option must be given to preserve the relocation
bits.) The output of /d is left on a.out. This file is made executable if no errors occurred during
the load and the —r flag was not specified.

The argument routines are concatenated in the order specified. The entry point of the output is
the beginning of the first routine.

If any argument is a library, it is searched exactly once at the point it is encountered in the
argument list. Only those routines defining an unresolved external reference are loaded. If a
routine from a library references another routine in the library, the referenced routine must
appear after the referencing routine in the library. Thus the order of programs within libraries
is important.

The symbols _etext, _etextl, _etext2, _etext3, _edata, _end, _com_mmr and mmtble (etext,
etextl, etext2, etext3, edata, end and com_mmr in C and mmtble in assembler) are reserved,
and should not be used. If any of the reserved symbols are referred to, the value is the first
location above the text, the size of the second switchable text area, the size of the third switch-
able text area, the size of the fourth switchable text area, the first location above initialized
data, the first location above all data, the number of common memory management registers,
and the location of the mmtble in data space respectively. It is erroneous to define these sym-
bols.

Ld understands several flag arguments which are written preceded by a —. Except for —1, they
should appear before the file names.

—s ‘Strip’ the output, that is, remove the symbol table and relocation bits to save space
(but impair the usefulness of the debugger). This information can also be removed by
strip(1). This option is turned off if there are any undefined symbols.

—u Take the following argument as a symbol and enter it as undefined in the symbol table.
This is useful for loading wholly from a library, since initially the symbol table is empty
and an unresolved reference is needed to force the loading of the first routine.

—1 This option is an abbreviation for a library name. The option —I alone stands for
/lib/libc.a, which is the standard system library for C and assembly language programs.
Option —Lx stands for /lib/libx.a, where x is a string. If that does not exist, /d tries
/usr/lib/libx.a A library is searched when its name is encountered, so the placement of
a —1is significant.

X Do not preserve local (non-.globl) symbols in the output symbol table; only enter
external symbols. This option saves some space in the output file.

~X Save local symbols except for those whose names begin with ‘L’. This option is used
by cc to discard internally generated labels while retaining symbols local to routines.

=T Generate relocation bits in the output file so that it can be the subject of another /d run.
This flag also prevents final definitions from being given to common symbols, and
suppresses the ‘undefined symbol’ diagnostics. Successful completion of Id with this
option is accompanied by an exit status of 1.

—d Force definition of common storage even if the —r flag is present.

November 4, 1980 Page 1 November 4, 1980

e

LD(1)

FILES

CB—UNIX 2.3 LD(1)

Arrange that when the output file is executed, the text portion will be read-only and
shared among all users executing the file. This involves moving the data areas up to
the first possible 4K word boundary following the end of the text.

When the output file is executed, the program text and data areas will live in separate
address spaces. The only difference between this option and —n is that here the data
starts at location 0. This option turns off the —n option.

option is used to build UNIX with a text size larger than 65536 bytes. The optional p
parameter is a number from 1 through 7 indicating how many memory management
registers are not changed when switching to an alternate text area. This option along
with the order of the object files in libl.a and lib2.a gives the programmer some control
of what routines are in which switchable text area. When building a UNIX with switch-
able text areas, the first object file name in each switchable text area is printed. The
default value of p is 7. This switch is good for building the operating system only!

The name argument after —o is used as the name of the /d output file, instead of a.out.

The names of all files and archive members used to create the output file are written to
the standard output.

The symbol argument after —T is flagged; up to sixteen symbol names may be specified.
Each reference to a flagged symbol is indicated by a printed line containing the type of
reference and the referencing module. The symbol name must match exactly, includ-
ing any initial *_". This option is useful in debugging unreferenced or multiply refer-
enced symbols encountered during the link edit process.

The octal number supplied as the version argument after —V is entered in the header of
the output file to indicate the operating system environment expected by the module on
execution. Cec(1) and occ(1) will automatically pass the correct version flag when
invoking the loader to specify CB/UNIX Release 2.0 and Release 1.0, respectively. The
version specified should be compatible with the libraries used to load the module. See
stamp(1) for further details.

/lib/lib?.a libraries

Jusr/lib/lib?.a more libraries

a.out
SEE ALSO

output file

as(1), ar(1), cc(1), nm(1), occ(1), stamp(1), a.out(5)

DIAGNOSTICS

The message "FINDSYM FAILED TO FIND SYMBOL" usually results from an object file in a
switchable text area that has a static routine name or a label that is not .globl if assembler code.

November 4, 1980 Page 2 November 4, 1980

LDRXBOOT (1) CB-UNIX 2.1 LDRXBOOT (1)

NAME

ldrxboot — load floppy disk second leve! boot
SYNOPSYS

/ete/ldrxboot [0][1] /etc/rxboot2
DESCRIPTION

This program is used to load the second level floppy bootstrap into floppy blocks 0 (minor
blocks 1 - 3) and 500 (minor blocks 0 - 1). The first level bootstrap is located in rxboot.s
(/etc/rxboot). The second level bootstrap is uboot.s with the rx flag set and is usually kept in
/etc/rxboot2.

FILES
/etc/rxboot
/etc/rxboot2

Page 1 $ November 1979

LEX(1)

NAME

CB-UNIX 2.1 LEX (1)

lex — generate programs for simple lexical tasks

SYNOPSIS

lex [—retvfn] [file] ..

DESCRIPTION

Lex generates programs to be used in simple lexical analysis of text.

The input files (standard input default) contain strings and expressions to be searched for, and
C text to be executed when strings are found.

A file lex.yy.c is generated which, when loaded with the library, copies the input to the output
except when a string specified in the file is found; then the corresponding program text is exe-
cuted. The actual string matched is left in yytext, an external character array. Matching is done
in order of the strings in the file. The strings may contain square brackets to indicate character
classes, as in labx —zl to indicate a, b, X, y, and z; and the operators *, +, and ? mean respec-
tively any non-negative number of, any positive number of, and either zero or one occurrences
of, the previous character or character class. The character . is the class of all ASCII characters
except new-line. Parentheses for grouping and vertical bar for alternation are also supported.
The notation r{d,e} in a rule indicates between d and e instances of regular expression r. It has
higher precedence than l, but lower than *, ?, +, and concatenation. The character ~ at the
beginning of an expression permits a successful match only immediately after a new-line, and
the character $ at the end of an expression requires a trailing new-line. The character / in an
expression indicates trailing context; only the part of the expression up to the slash is returned
in yytext, but the remainder of the expression must follow in the input stream. An operator
character may be used as an ordinary symbol if it is within " symbols or preceded by \. Thus
la—zA —Z1+ matches a string of letters.

Three subroutines defined as macros are expected: input() to read a character; unput(c) to
replace a character read; and output(c) to place an output character. They are defined in terms
of the standard streams, but you can override them. The program generated is named yylex(),
and the library contains a main() which calls it. The action REJECT on the right side of the
rule causes this match to be rejected and the next suitable match executed; the function
yymore() accumulates additional characters into the same yyfext; and the function yyless(p)
pushes back the portion of the string matched beginning at p, which should be between yytext
and yytext+yyleng, The macros input and output use files yyin and yyout to read from and write
to, defaulted to stdin and stdout, respectively.

Any line beginning with a blank is assumed to contain only C text and is copied; if it precedes
%% it is copied into the external definition area of the lex.yy.c file. All rules should follow a
%%, as in YACC. Lines preceding %% which begin with a non-blank character define the string
on the left to be the remainder of the line; it can be called out later by surrounding it with {}.
Note that curly brackets do not imply parentheses; oniy string substitution is done.

EXAMPLE
D [0-9i
%%
if printf ("TF statement\n");
[a—z] + printf("tag, value %s\n",yytext);
0{D}+ printf("octal number %s\n",yytext);
{D}+ printf("decimal number %s\n",yytext):
"++" printf("unary op\n");
" printf("binary op\n");
" { loop:
while (input() != "+);
switch (input())
Page | November 1979

LEX(1)

CB—UNIX 2.1 LEX(1)

{

case ’/’: break;
case ’+: unput(’+’);
default: go to loop;

J

The external names generated by /ex all begin with the prefix "yy" or "YY".

The flags must appear before any files. The flag —r indicates Ratfor actions, —c indicates C
actions and is the default, —t causes the lex.yy.c program to be written instead to standard out-
put, —v provides a one-line summary of statistics of the machine generated, —f indicates "fas-
ter" compilation, so no packing is done, but it can handle much smaller machines only, —n will
not print out the — summary. Multiple files are treated as a single file. If no files are
specified, standard input is used.

Certain table sizes for the resulting finite state machine can be set in the definitions section:
%p n number of positions is 7 (default 2000)
%n n number of states is 7 (500)
%t n number of parse tree nodes is n (1000)
%a n number of transitions is n (3000)

The use of one or more of the above automatically implies the —v option, unless the —n
option is used.

SEE ALSO

BUGS

yacc(1)
M. E. Lesk and E. Schmidt, LEX — Lexical Analyzer Generator

The Ratfor option is not yet fully operational.

November 1979 Page 2

LFCHECK(1) CB—UNIX 2.3 LFCHECK(1)

NAME

lfcheck — logical file system (LFS) consistency check and repair

SYNOPSIS

Ifcheck [—synH] [Ifs_name]

DESCRIPTION

May 15,

Lfcheck audits UNIX logical file systems for consistency and corrects any discrepancies. Since -
these corrections will, in general, result in a loss of data, the program will request user con-
currence for each such action. All questions should be answered by typing yes or no followed
by a <CR>. Entering yes will cause the action specified by the question to take place, while a
no response prevents the action from being taken. Entering —y or —n instead of yes or no has
the same effect as setting the —y or —n option on the command line. Entering ? when input
is required prints a description of acceptable responses. Entering ! allows the user to execute
shell commands, and entering quit allows the user to exit the program (except during critical
operations).

The options are entered as a dash (—) followed by the legal option characters in any order. If
mutually exclusive options are present, the last specified (rightmost appearance in the character
string) is the option taken.

Valid option characters are:
s perform a salvage (repair) of the LFS
y automatically answer all questions yes
n automatically answer all questions no
H print LFS header (configuration) information.
Note: y and n are mutually exclusive. /
The program consists of six separate phases, some of whicﬁh'arc skipped if they are not needed.

Phase one: [fcheck prompts for options and the LFS name if not specified on the command line,
opens the filesystem as a UNIX file, reads and verifies the LFS header block, and initializes its
tables.

Phase two: Ifcheck examines the range of blocks belonging to each (allocated) logical
file, checking for blocks which are outside the logical file system (BAD),
belong to more than one logical file (DUP), belong to a file and overlap
the overhead area of the logical file system (ALLOC & OVHD), or
belong to a file but are not marked as allocated in the free-space bitmap
on disk (ALLOC & FREE).

Phase three: is executed only if DUP blocks were found in phase two. This phase
locates the first owner (logical file) of each DUP and adds the file to the
faulty file list. The identity of the first file to own a block is not saved in
phase two and must be determined by an additional pass over the file
definition entries. A list of all duplicated blocks and all known owners is
then printed.

Phase four: is executed only if the salvage option, —s, has not been specified
(check-only) and compares the disk versions of the freelist and free-
space bitmap to locate blocks included in the freelist but not marked free
in the bitmap and vice-versa. A summary of the discrepancies is printed
along with the number of entries that are used in the freelist.

Phase five: is executed only if the salvage option, —s , has been specified and loops
through the faulty file list, printing the errors associated with each faulty
file and prompting for corrective action. Correction usually consists of

1981 Page 1 May 15, 1981

LFCHECK(1) CB—UNIX 2.3

LFCHECK(1)

deleting the logical file and freeing its blocks, though certain trivial errors
can be corrected by [fcheck and the user is so informed and asked

whether to keep the file instead of whether to delete it.

Phase six: is executed only when a salvage has been specified and builds a new
freelist and bitmap based on the internal model of the LFS after correc-
tions. During this phase, blocks that do not belong to any logical file and
were not included in the freelist or free-space bitmap (MISSING) are
automatically returned to the freelist. The new freelist and bitmap are
written out to disk, and a summary of the error, allocated file, and free

LF block counts is printed.

NOTE: All information on files and blocks is gathered before any alteration of the LFS is made.

EXAMPLES

In the following sample salvage run, the user’s input is in bold print.

Hfcheck

Options: ?
Valid options are any combination of:

y — yes to all questions

n — no to all questions

s — perform LFS salvage

¢ — perform LFS check (default)

. H — print LFS header
or <CR> — same as "—¢’
Options: s
LFS Name: ?
A valid LFS name is XXX...Xx
where /dev/xxx...xx is the name of the block device containing the LFS
LFS Name: Ifs2
/dev/ifs2
Phase 1: Verify Header and Initialize
Phase 2: Find Structural Errors
Phase 3: Locate First Owners
block = 130 owning lfn’s = 2 1
block = 131 owninglfn’s = 2 1
Phase 5: Delete Faulty Files
>>> Status: A=ALLOC, B=BAD, D=DUP, F=FREE, O=0OVHD

Ifn = 1 start = 128 size = 4 status = A.DF.
Delete file? ?
yes or no? yes
File deleted and blocks returned.

Ifn = 2 start = 130 size = 3 status = ..D..
Delete file? quit
>>> Critical point in program -- can’t quit now
Delete file? no
File kept.
Ifn = 3 start = 400 size = 22 status = A.F
TRIVIAL ERROR: Keep file? yes
File kept.
ifn = 5 start = 2290 size = 10 status = AB.F.

May 15, 1981 Page 2

May 15, 1981

LFCHECK(1) CB—UNIX 2.3 LFCHECK(1)

Delete file? yes
File deleted and blocks returned.
Ifn = 6 start = 100 size = 2 status = A..FO
Delete file? yes
File deleted and blocks returned.
Phase 6: Build New Freelist
>>> Freelist contains 3 entries (2.36% full)

#alloc files= 5 (0.04%) # faulty files= 5§ (100.00%)
#dup LF blocks= 2 (0.09%) #dup LF block occurrences= 4
#free LF blocks= 2167 (94.26%) # files retained= 2 (0.01%)

FILES
/dev/lfs_name logical filesystem to be checked
/etc/lmtab logical file mount table -
stdout DUP report; all reports, errors if redirected
stderr user prompts and error messages
SEE ALSO
Ifmount(1), Ifumount(1), mkifs(1)
DIAGNOSTICS

Most error messages are self explanatory. Some errors, such as trying to check 2 mounted LFS
or internal table overflow, require the user to decide whether to continue. In such cases, the
decision to continue may result in incomplete or inaccurate results.

Lfcheck returns the following exit code values:
0 = normal termination (no LFS errors)
1 = LFS errors
2 = Ifcheck internal error.

WARNINGS
Mounted logical file systems cannot be salvaged.

Checking a mounted logical file system may produce inaccurate reports.

Choosing to continue when [fcheck tables overflow during a salvage run prevents the addition of
new entries to the overflowed table but does not cause the loss of any current entries. This
may leave files on disk that have errors which cannot be detected in subsequent /fcheck runs
once corrections have been made by the current run. If Ifcheck were to simply exit on table
overflow, however, then a partial repair could not be made and the LFS would have to be
reloaded from a backup or rebuilt from scratch. A warning message regarding unrecorded
errors is printed on program completion after overflow has occurred.

Once the user has begun to delete files, the option to enter quit in reply to a correction prompt
is no longer allowed, and the <rubout> (interrupt) signal is disabled.

Should the user wish to run a check as a non-interactive process then a blanket reply (—y or
—n) must be specified on the command line along with the LFS name, and output should be
redirected.

BUGS
Currently, Ifcheck does not recover from 1/O errors and terminates abnormally when they are
encountered.

May 15, 1981 Page 3 May 15, 1981

LFMOUNT(1) CB—UNIX 2.3 LFMOUNT (1)

NAME

Ifmount — mount logical file system (LFS)

SYNOPSIS

Ifmount [char_dev block_dev [—rl]

DESCRIPTION

Lfimount mounts a Logical File System; that is, it associates a UNIX block device with the UNIX
character device corresponding to the Logical File System in question. Lfmount must be exe-
cuted before any program attempts to open a LFS. Since it is executed when no LFS is open,
access to the LFS software is via a "permanently mounted" pseudo character device called
/dev/Ifctl (minor character device number 255). This same device is used for lfumount(1),
Ifsync(1), and lfupdate(1). All access to a LFS from user-level programs is by the character
device. Thus, making the correspondence between the block device and character device tells
the LFS software where the physical storage resides. This character device is specified by a
character special file char_dev in /dev. The block device block_dev is also assumed to be in
/dev, and may refer to physical storage on moving head disks or floppy disks. If the —r option
is given, the block device is mounted read-only. That is, any LFS command involving file crea-
tion, deletion, writing, or switching is illegal.

If no arguments are given, the current mount table is printed. The printout is of the form:
LFS /dev/char_dev maps to /dev/block_dev
or:

LFS /DEV/char_dev maps to /dev/block_dev { Read-only)

The following example associates block device 1fs3 with character device IfhO:
Ifmount 1fh0 1fs3

The next example associates block device 1fs2 with character device databasel and makes the
mount read-only:

Ifmount databasel Ifs2 —r

FILES

/etc/Imtab Mount table

/dev /char_dev Character device, one per LFS

/dev /block_dev Block device, one per LFS

/dev /Ifctl LFS control device (minor device 255)
SEE ALSO

Ifumount(1)
DIAGNOSTICS

Diagnostics are given if UNIX returns errors on creating, reading, or writing /ete/lmtab, if
char_dev or block_dev are already present in the internal LFS mount table (and thus presum-
ably, in /etc/lmtab), if the LFS header stored on block_dev cannot be accessed, or if block_dev
is not a Logical File System. The use of /fimount is limited to those with root permission. A
diagnostic is given otherwise.

WARNINGS

The mount table /etc/Imtab can get out of step with the internal mount table kept by the

May 15, 1981 Page 1 May 15, 1981

LFMOUNT(1) CB—UNIX 2.3 LFMOUNT(1)

operating system. For example, if /etc/lmtab is removed, LFS operations may still proceed
without any problems, because the LFS software does not read it. However, typing lfmount
will imply that nothing is mounted. Similar problems exist with the UNIX mount(1) command.

No check is made to see if the character device given really refers to the proper device for the
LFS software. If an incorrect device is put in the mount table, succeeding LFS commands will

simply fail.
The order of the arguments (including the —r flag) cannot be varied.

May 15, 1981 Page 2 May 15, 1981

LFSYNC(1) CB—UNIX 2.3 LFSYNC(1)

NAME
Ifsync — update modified LFS data

SYNOPSIS
Ifsync

DESCRIPTION
Lfsync is used to write modified LFS file definition entries to disk. File definition entries are
used to store information such as the size and location of a logical file. Lfsync is normally used
just before halting the machine, i.e, at the same time sync(1) is executed. It should only be
executed when the system is quiescent; otherwise, data which is being modified by another pro-
cess will not be flushed to disk. For each mounted LFS, Ifsync writes the LFS header to disk as
well as all modified file definition entries. Typing Ifsync is identical to typing Ifupdate 0.

SEE ALSO
Ifmount(1), Ifupdate(1), 1fs(3C)

DIAGNOSTICS
Diagnostics are given for 1/O errors in flushing the LFS header and file definition entries to
disk.

May 15, 1981 Page 1 May 15, 1981

LFUMOUNT(1) CB—UNIX 2.3 LFUMOUNT(1)

NAME

lfumount — unmount the logical file system (LFS)
SYNOPSIS

Ifumount char_dev
DESCRIPTION

Lfumount unmounts a Logical File System (LFS); i.e., the block device containing the physical —
storage for the LFS is disassociated from the character device for the LFS in question (see
Ifmount(1)). The character special file char_dev is assumed to be in /dev. The entry for
/dev/char_dev is also removed from the mount table in /etc/lmtab.

FILES

/etc/lmtab LFS mount table

/dev /char_dev Character special file, one per LFS
SEE ALSO

Ifmount(1)
DIAGNOSTICS

Diagnostics are given if UNIX returns errors on opening, reading, or writing /etc/lmtab, or if
char_dev is not present in the internal mount table kept by the LFS software. The use of
Ifumount is limited to the super user. A diagnostic is given otherwise.

WARNINGS
Since /etc/Imtab is maintained separately from the internal mount table, they can become
inconsistent. Thus, it is possible for Ifumount to complain that char_dev is not in /etc/Imtab,
although it correctly removed it from the internal table.

May 15, 1981 Page 1 May 15, 1981

LFUPDATE(1) CB—UNIX 2.3 LFUPDATE(1)

NAME

Ifupdate — update modified LFS data repetitively
SYNOPSIS

Ifupdate time
DESCRIPTION

Lfupdate updates the Logical File System (LFS) header and modified file definition entries for
each mounted LFS. This update operation is done every fime seconds, with /fupdate sleeping in
the interim. If time is 0, the update is done just once, and [fupdate will exit immediately. This
latter mode of operation is identical to the [fsync(1) command.

SEE ALSO
Ifsync(1)

DIAGNOSTICS
Diagnostics are given for 1/O errors in flushing the LFS header and file definition entries to

disk.

May 15, 1981 Page 1 May 15, 1981

LINE (1) CB—-UNIX 2.1 LINE (1)

NAME
line — get line identification

SYNOPSIS
line
DESCRIPTION

Line gives the name of the user’s line in the form Inan for an in the range 00 to0 99. The actual
path name is then /dev/Inan.

DIAGNOSTICS
Inxx if the standard input file is not a typewriter.

Page 1 November 1979

