LINT (1) CB—UNIX 2.3 LINT (1)

NAME

lint — a C program verifier
SYNOPSIS

lint [—abchmnpuvx] file ...
DESCRIPTION

Lint attempts to detect features of the C program files which are likely to be bugs, or non-
portable, or wasteful. It also checks the type usage of the program more strictly than the com-
pilers. Among the things which are currently found are unreachable statements, loops not
entered at the top, automatic variables declared and not used, and logical expressions whose
value is constant. Moreover, the usage of functions is checked to find functions which return
values in some places and not in others, functions called with varying numbers of arguments,
and functions whose values are not used.

By default, it is assumed that all the files are to be linked together; they are checked for mutual
compatibility. Function definitions for the standard C and UNIX system libraries are available
to lint by default. A subset of the standard C library is used when flint is invoked with the —p
option.

Any number of the options in the following list may be used. The —D, —U, and —I options of
cc(1) are also recognized as separate arguments.
-p Attempt to check portability to the IBM and GCOS dialects of C.

—h Apply a number of heuristic tests to attempt to intuit bugs, improve style, and reduce
waste.

—b Report break statements that cannot be reached. (This is not the default because,
unfortunately, most lex and many yacc outputs produce dozens of such comments.)

—v Suppress complaints about unused arguments in functions.

—X Report variables referred to by extern declarations, but never used.

—a Report assignments of long values to int variables.

~c Complain about casts which have questionable portability.

—u Do not complain about functions and variables used and not defined, or defined and

not used (this is suitable for running /int on a subset of files out of a larger program).
—n Do not check compatibility against the standard library.

—m Do not complain about user-defined functions that have the same name as functions in
a referenced library. (The difference between this and the previous option is that the
—m option will still allow cmpatibility of usage to be checked for library functions not
redefined by the user.)

Exit(2) and other functions which do not return are not understood; this causes various lies.
Certain conventional comments in the C source will change the behavior of /int:

/*NOTREACHED#*/
at appropriate points stops comments about unreachable code.

/*VARARGSn=*/
suppresses the usual checking for variable numbers of arguments in the follow-
ing function declaration. The data types of the first n arguments are checked; a
missing #z is taken to be 0.

/*NOSTRICT#/
shuts off strict type checking in the next expression.

/*ARGSUSED#/

February 22, 1980 Page 1 February 22, 1980

LINT (1) CB—UNIX 2.3 LINT(1)

turns on the —v option for the next function.

J*LINTLIBRARY#/
at the beginning of a file shuts off complaints about unused functions in this
file.

FILES
Jusr/lib/lint[12] programs
/usr/lib/llib-lc declarations for standard functions
Just/lib/llib-port declarations for portable functions

/usr/tmp/lint.* temporaries

SEE ALSO
cc(l).

February 22, 1980 Page 2 February 22, 1980

LOAD(1IM) CB—UNIX 2.3 LOAD(IM)

! NAME
E load — load UNIX object modules
SYNOPSIS
| load [—D] [—s] [—KIpll [version] [file [... 1]
DESCRIPTION
Load will build a specified version of UNIX by invoking the link editor /4(1) on the modules
Jusr/src/ucb/os/low.version .o,

‘ /usr/src/ucb/os/mch.version .o,
} Jusr/stc/ucb/os/conf.version .o,
! [usr/src/ucb/os/libl.version .a, and
! Jusr/src/ucb/io/lib2.version .a.
| The resulting module is a loadable UNIX and is placed in the file unix.version in the current
directory. A list of the sizes of the new module, the corresponding version in /util, and the
i current /unix is produced.

If any object modules are specified as file arguments, these are loaded in the appropriate order
in preference to the designated versions. This allows a test version of the system to be readily
built without having to place the tested modules in the system libraries.

If no version is specified, the default is 70. Thus, the command load by itself will produce a
UNIX.70 from the current source modules and libraries.

Optional flags consist of:

—D default; causes the default modules libx.70.2 or module.”70.0 to be used if no
corresponding module can be found for the specified version.

—s silent; do not echo commands being executed or produce the size comparisons.

—K build a UNIX that allows a text size greater than 65536 bytes. The optional p parameter
is the number of kernel memory management registers that do not change when switch-
ing text areas. P should be in the range from 1 through 7 with a default value of 7.

|
1
i
! November 4, 1980 Page 1 November 4, 1980
i
1

LOGIN(1) CB—UNIX 2.3 LOGIN(1)

NAME

login — sign on

SYNOPSIS

login [user environment—variables]

DESCRIPTION

FILES

The login command is used at the beginning of each terminal session and allows you to identify
yourself to the system. It may be invoked explicitly as a command, and is invoked by the sys-
tem when a connection is first established, or after the previous user has logged out by sending
an “end-of-file’” (control—D) to his or her initial shell. (See How to Get Started at the begin-
ning of this volume for instructions on how to dial up initially.)

Login asks for your user name (if not supplied as an argument), and, if appropriate, your pass-
word. Echoing is turned off (where possible) during the typing of your password, so it will not
appear on the written record of the session.

At some installations, an option may be invoked that will require you to enter a second
““dialup’ password. This will occur only for dial-up connections, and will be prompted by the
message ‘‘dialup password:”’. Both passwords are required for a successful login.

If you do not complete the login successfully within a certain period of time (e.g., one minute),
you are likely to be silently disconnected.

After a successful login, accounting files are updated, the message-of-the-day, ‘if any, is printed.
Login initializes the user and group IDs and the working directory, then executes a command
interpreter (usually sh(1)) according to specifications found in the /etc/passwd file. Argument
0 of the command interpreter is — followed by the last component of the interpreter’s path-
name.

The basic environment (see environ(7)) is initialized to:
HOME =your-login-directory
PATH=:/bin:/usr/bin
SHELL=last — field — of —password —entry
MAIL = /usr/mail/your —login—name
TZ=timezone specification

The environment may be expanded or modified by supplying additional arguments to login,
either at execution time or when login requests your login name. The arguments may take
either the form xxx or xxx=yyy. Arguments without an equal sign in them are placed in the
environment as

Ln=xxx
where n is a number starting at 0 and is incremented each time a new variable name is
required. Variables containing an *=" are placed into the environment without modification. If
they already appear in the environment, then they replace the older value. There are two
exceptions. The variables PATH and SHELL cannot be changed. This prevents people log-
ging into restricted shell environments from spawning secondary shells which aren’t restricted.
Both login and getty understand simple single character quoting conventions. Typing a backslash
in front of a character quotes it and allows the inclusion of such things as spaces and tabs.

/etc/utmp accounting
/usr/adm/wtmp accounting
/usr/mail/your-name mailbox for user name
/etc/motd message-of-the-day
Jetc/passwd password file

March 13, 1981 Page] March 13, 1981

LOGIN(1) CB—-UNIX 2.3 LOGIN(1)

SEE ALSO
getty(1M), mail(1), newgrp(1), passwd(1), sh(1), su(1), passwd(5), profile(5), environ(7)."
DIAGNOSTICS
“Login incorrect” if the user name or the password is incorrect.
“No shell”’, “‘cannot open password file’’, *“‘no directory””: consult a UNIX programming coun-
selor.

——— o <

March 13, 1981 Page 2 March 13, 1981

S

LORDER(1) CB-UNIX 2.1 LORDER(1)

NAME
lorder — find ordering relation for an object library

SYNOPSIS
lorder file ...

DESCRIPTION
The input is one or more object or library archive (see ar(1)) files. The standard output is a list
of pairs of object file names, meaning that the first file of the pair refers to external identifiers
defined in the second. The output may be processed by tsort(1) to find an ordering of a library
suitable for one-pass access by /d(1).

This brash one-liner intends to build a new library from existing ‘.0’ files.
ar cr library lorder *.0 | tsort’

FILES

=symref, *symdef temp files
SEE ALSO

ar(1), 1d(1), tsort(1)

BUGS
Object files whose name do not end with ‘.0’, even when contained in library archives, are
overlooked. Their global symbols and references are attributed to some other file.

Page 1 November 1979

LPR (1) CB—UNIX 2.1 LPR(1)

NAME

Ipr — line printer spooling program
SYNOPSIS

lpr [queue] [[+/—] [[+/—]file [section]]
DESCRIPTION

Lpr arranges to have the line printer demon print the specified files on one of the printers ser-
vicing queue. If queue is not specified, /pr will search for a default queue on which to place the
request.

Normally each file is printed in the state in which it is found by the demon. If a + option has
been set, or immediately precedes the file, then /pr makes a copy for the demon to print. In a
like manner, if the option — is set, then lpr will remove the source file. If a file is followed by
a section, in the form ’begin,end’ (no spaces), /pr arranges for only a section of the file to be
printed, beginning with the line numbered begin, and ending with the line numbered end.

If there are no file arguments, then Ipr reads its standard input. After all files have been
queued or EOF has been detected on standard input, /pr assigns a job id which may be used
with the various queue control commands. a .

FILES
/usr/lpd/* spooling area
/etc/passwd user ids
/usr/1pd/ .printers defines printers and printer options
/usr/lpd/.qmap defines queues and printer-to-queue maps
/etc/lpd printer demon

SEE ALSO

abort(1), hold(1), init(1), release(1), restrain(1), start(1)

November 1979 Page | November 1979

LS(1)

N NAME

DESCRIPTION

CB—UNIX 2.1 LS(1)

Is — list contents of directory

SYNOPSIS
Is [—Itasdrucif] name ...

For each directory argument, Is lists the contents of the directory; for each file argument, /s
repeats its name and any other information requested. The output is sorted alphabetically by
default. When no argument is given, the current directory is listed. When several arguments
are given, the arguments are first sorted appropriately, but file arguments appear before direc-
tories and their contents. There are several options:

-1

-t
-a

-S

=TI
—-u

il

List in long format, giving mode, number of links, owner, group, size in bytes, and
time of last modification for each file. (See below.) If the file is a special file the size
field will instead contain the major and minor device numbers.

Sort by time modified (latest first) instead of by name, as is normal.
List all entries; usually those beginning with . are suppressed.
Give size in blocks, including indirect blocks, for each entry.

If argument is a directory, list only its name, not its contents (mostly used with —1 to
get status on directory).

Reverse the order of sort to get reverse alphabetic or oldest first as appropriate.
Use time of last access instead of last modification for sorting (—t) or printing (—1).

Use time of last modification to inode (mode, etc.) instead of last modification to file
for sorting (—t) or printing (—1).

Print i-number in first column of the report for each file listed.

Force each argument to be interpreted as a directory and list the name found in each
slot. This option turns off -1, —t, —s, and -1, and turns on —a; the order is the
order in which entries appear in the directory.

The mode printed under the —1 option contains 11 characters which are interpreted as follows:

The first character is:

if the entry is a directory;

if the entry is a block-type special file;

if the entry is a character-type special file;
if the entry is a multiplexed character file;
if the entry is a multiplexed block file:

if the entry is a plain file.

'nan:rn-

The next 9 characters are interpreted as three sets of three bits each. The first set
refers to owner permissions; the next to permissions to others in the same user-group;
and the last to all others. Within each set the three characters indicate permission
respectively to read, to write, or to execute the file as a program. For a directory, ‘exe-
cute’ permission is interpreted to mean permission to search the directory for a
specified file. The permissions are indicated as follows:

if the file is readable;

if the file is writable;

if the file is executable;

if the indicated permission is not granted.

| % g

The group-execute permission character is given as s if the file has set-group-ID mode
and group-execute permission; likewise the user-execute permission character is given

November 1979

LS(1)

FILES

CB~-UNIX 2.1 LS(1)

as s if the file has set-user-ID mode and user-execute permission. If the set-user-ID bit
or set-group-ID bit is set but the file does not have the appropriate execute permission,
a ? will appear where the s normally would be seen.

Similarly, the other-execute permission character may be replaced by a t if the save-text
and other-execute bits are both set. If only the save-text bit is set a ? will appear
instead.

/etc/passwd and /etc/group to get user and group ID’s for Is —1

November 1979

Page 2

LSCLs 23] 3 LACLY

— SYNOPSIS

is 0

DESCRY

Trw iy

mudhi-oonluamn

o
arhr
P EE

vl

LE(12

RTERRIRR A

28 e B
£ aB O

e d
e

] 3¢

RO e el

_- ".\

LiYH

T

Fidpad,

Lhirin

LB{L}

Frinndd, Eidisl,

1

ot

b ad
Lok A B

S Loy o 3 . 1 & e e, ofe
Ling ba v bk ok pah

M4(1)

NAME

CB—-UNIX 2.1 M4(1)

m4 — macro processor

SYNOPSIS

md | files]

DESCRIPTION

Page 1

M4 is a macro processor intended as a front end for Ratfor, C, and other languages. Each of
the argument files is processed in order; if there are no arguments, or if an argument is —, the
standard input is read. The processed text is written on the standard output.

Macro calls have the form
namefargl,arg2, . . ., argn)

The (must immediately follow the name of the macro. If a defined macro name is not fol-
lowed by a (; it is deemed to have no arguments. Leading unquoted blanks, tabs, and newlines
are ignored while collecting arguments. Potential macro names consist of alphabetic letters,
digits, and underscore _, where the first character is not a digit.

Left and right single quotes are used to quote strings. The value of a quoted string is the string
stripped of the quotes.

When a macro name is recognized, its arguments are collected by searching for a matching right
parenthesis. Macro evaluation proceeds normally during the collection of the arguments, and
any commas or right parentheses which happen to turn up within the value of a nested call are
as effective as those in the original input text. After argument collection, the value of the
macro is pushed back onto the input stream and rescanned.

M4 makes available the following built-in macros. They may be redefined, but once this is
done the original meaning is lost. Their values are null unless otherwise stated.

define The second argument is installed as the value of the macro whose name is the
first argument. Each occurrence of $# in the replacement text, where # is a digit,
is replaced by the n-th argument. Argument 0 is the name of the macro; missing
arguments are replaced by the null string.

undefine removes the definition of the macro named in its argument.

ifdef If the first argument is defined, the value is the second argument, otherwise the
third. If there is no third argument, the value is null. The word unix is
predefined on UNIX versions of m4.

changequote Change quote characters to the first and second arguments. Changequote without
arguments restores the original values (i.e., *").

divert M4 maintains 10 output streams, numbered 0—9. The final output is the concate-
nation of the streams in numerical order; initially stream 0 is the current stream.
The divert macro changes the current output stream to its (digit-string) argument.
Output diverted to a stream other than 0 through 9 is discarded.

undivert causes immediate output of text from diversions named as arguments, or all
diversions if no argument. Text may be undiverted into another diversion.
Undiverting discards the diverted text.

divoum returns the value of the current output stream.
dnl reads and discards characters up to and including the next newline.
ifelse has three or more arguments. If the first argument is the same string as the

second, then the value is the third argument. If not, and if there are more than
four arguments, the process is repeated with arguments 4, 5, 6 and 7. Otherwise,
the value is either the fourth string, or, if it is not present, null.

November 1979

M4 (1)

incr
eval

len
index

substr

translit

include
sinclude
syscmd
maketemp
errprint
dumpdef

SEE ALSO

CB—UNIX 2.1 M4 (1)

returns the value of its argument incremented by 1. The value of the argument is
calculated by interpreting an initial digit-string as a decimal number.

evaluates its argument as an arithmetic expression, using 32-bit arithmetic.
Operators include +, —, *, /, %, ~ (exponentiation); relationals; parentheses.

returns the number of characters in its argument.

returns the position in its first argument where the second argument begins (zero
origin), or —1 if the second argument does not occur.

returns a substring of its first argument. The second argument is a zero origin
number selecting the first character; the third argument indicates the length of the
substring. A missing third argument is taken to be large enough to extend to the
end of the first string.

transliterates the characters in its first argument from the set given by the second
argument to the set given by the third. No abbreviations are permitted.

returns the contents of the file named in the argument.

is identical to include, except that it says nothing if the file is inaccessible.
executes the UNIX command given in the first argument. No value is returned.
fills in a string of XXXXX in its argument with the current process id.

prints its argument on the diagnostic output file.

prints current names and definitions, for the named items, or for all if no argu-
ments are given.

B. W. Kernighan and D. M. Ritchie, The M4 Macro Processor, Beil Laboratories CSTR #59,

1977.

November 1979

Page 2

N

U

Sl

MAIL(1) CB—UNIX 2.3 MAIL(1)

NAME
mail, rmail — send mail to users or read mail

SYNOPSIS
mail [—rpg 1 [—f file]
mail [—g group] persons
rmail persons
DESCRIPTION
Mail without arguments prints a user’s mail, message-by-message, in last-in, first-out order.

For each message, the user is prompted with a ?, and a line is read from the standard input to
determine the disposition of the message: '

<new-line> Go on to next message.

+ Same as <new-line>.

d Delete message and go on to next message.
p Print message again.

= _ Go back to previous message.

s [files] Save message in the named files (SHOME/mbox is default).

a . Answer a message and delete the current letter.

as [files] Answer a message, delete the current letter, and save the letter and answer in
files (SHOME/mbox default).

w [files] Save message, without a header, in the named files (SHOME/mbox is
default).

m [—g groups | [persons]
Mail the message to the named persons (yourself is default). A "Forwarded
by ..." message is inserted after the header.

q Put undeleted mail back in the mailfile and stop.
EOT (control-d) Same as q.

x Put all mail back in the mailfile unchanged and stop.
'command Escape to the shell to do command.

® Print a command summary.

The optional arguments alter the printing of the mail.
-r causes messages to be printed in first-in, first-out order.
-p causes all mail to be printed without prompting for disposition.

—q causes mail to terminate after interrupts. Normally an interrupt only causes the termi-
nation of the message being printed.

—f file causes mail to use file (e.g., mbox) instead of the default mailfile.

—g group
causes mail to be sent to members of group that are designated in the file /etc/group.

When persons or groups are named, mail takes the standard input up to an end-of-file (or up to
a line consisting of just a .”) and adds it to each person’s of member’s of the named group
mailfile. The message is preceded by the sender’s name and a postmark. Lines that look like
postmarks in the message, (i.e., “From ...”") are prepended with ‘>'. A person is usually a
user name recognized by login(1). If a person being sent mail is not recognized, or if mail is
interrupted during input, the dead.letter will be saved to allow editing and resending.

June 3, 1980 Page 1 June 3, 1980

MAIL(1) CB—UNIX 2.3 MAIL(1)

To denote a recipient on a remote system, prefix person by the system name and exclamation
mark (see uucp(1C)). Everything after the first exclamation mark in persons is interpreted by
the remote system. In particular, if persons contains additional exclamation marks, it can
denote a sequence of machines through which the message is to be sent on the way to its ulti-
mate destination. For example, specifying alblcde as a recipient’s name causes the message to
be sent to user blede on system a. System a will interpret that destination as a request to send
the message to user cde on system b. This might be useful, for instance, if the sending system
can access system a but not system b, and system a has access to system b.

The mailfile may be manipulated in two ways to alter the function of mail. The other permis-
sions of the file may be read-write, read-only, or neither read nor write to allow different levels
of privacy. If changed to other than the default, the file will be preserved even when empty to
perpetuate the desired permissions. The file may also contain the first line:

Forward to person

which will cause all mail sent to the owner of the mailfile to be forwarded to person. This is
especially useful to forward all of a person’s mail to one machine in a multiple machine
environment.

Rmail only permits the sending of mail. Uucp(1C) uses rmail as a security precaution.

When a user logs in he is informed of the presence of mail, if any.

FILES
/etc/passwd to identify sender and locate persons
/etc/group to identify members of groups
/usr/mail/# incoming mail for user *
SHOME/mbox saved mail
SMAIL mailfile
/tmp/ma= temp file
Jusr/mail/+.Jock lock for mail directory
dead.letter unmailable text

SEE ALSO
login(1), uvucp(1C), write(1).

BUGS

Race conditions sometimes result in a failure to remove a lock file.

After an interrupt, the next message may not be printed, printing may be forced by responding
p-

Mail does not handle mail items greater than 65535 characters long. The mailfile has a ten-
dency to go berserk.

June 3, 1980 Page 2 June 3, 1980

MAME

.y

L~ SYNOPETL
Mail

INTRODUCTION

sk

erint

relats

/]

ey
8%

Lk b
uncieleted O
Bies

¥ LT

prdint s alate

pan vy oo l" o
Y A b 1

b

MAIL (12

I i o S
SOEENER WE

3t
by

e Lo
%)

LS

L

.

MATL (1) HMAali (12

ST IR SA A

:
LYY B

Loyl

rielete

i

from

neaders

LibuByyl

PrESSHRTVE !

s s,

3

MALL(1)

BRZLI1Y

2

mail

vk

PrOssrve

rrint

¥
{ i

£

il s arrive

@it oo

reaplu

raspond

BV

i
i
e

sl l

-

iy

TR
torlines

1

pAR)

unalias

urialete

ursat

wisual

write {

For BAVE

pord

For axit

. £ j

g

PHEF VY

o]

Y b

“

MATL (1)

LT manem

o st

Trvend

o

ank

MATL(1)

autoprint

dala

ignore 5

maton

R T

S e

this onhil

o
R

HEVEe

4 v

LA

BHORPE

reasorsd

Loplines

FIL

MATL(1)

HAlL.C 3%

T ALTHOR

R

BLIGS

MAKE (1) CB-UNIX 2.1 MAKE(1)

NAME
make — maintain program groups

SYNOPSIS
make [=fmakefile] [=p] [=i] [=k][=s][=rl(=nl[=b][=e]]
“m}[=t][=q][=d][name] ..

DESCRIPTION
Make executes commands in makefile to update one or more target names. Name is typically a
program. If no —f option is present, makefile, Makefile, s.makefile, and s.Makefile are tried
in order. If makefileis —, the standard input is taken. More than one —f makefile argument
pair may appear.

Make updates a target only if it depends on files that are newer than the target. All prerequisite
files of a target are added recursively to the list of targets. Missing files are deemed to be out
of date.

Makefile contains a sequence of entries that specify dependencies. The first line of an entry is a
blank-separated, non-null list of targets, then a colon, then a (possibly null) list of prerequisite
files or dependencies. Text following a semicolon, and all following lines that begin with a tab,
are Shell commands to be executed to update the target. The first line that does not begin with
a tab or sharp begins a new dependency or macro definition. Shell commands may be continued
across lines with the <backslash> <newline> sequence. Sharp and new-line surround com-
ments.

The following makefile says that ‘pgm’ depends on two files ‘a.0’ and ‘b.0’, and that they in
turn depend on ‘.¢’ files and a common file ‘inct.h’.

pgm: a.0 b.o
cc a.0 b.o —o pgm
a.o: incl.h a.c

¢¢c —¢C a.c
b.o: incl.h b.c
€6’ —¢ bic

Command lines are executed one at a time, each by its own Shell. A line is printed when it is
executed unless the ~s option is present, or the entry .SILENT: is in makefile, or unless the
first character of the command is @. The —n option specifies printing without execution; how-
ever, if the command line has the string "S(MAKE)" in it the line is always executed (see dis-
cussion of MAKEFLAGS macro below under "Environment"). The —t (touch) option updates
the modified date of a file without executing any commands.

Commands returning nonzero status normally terminate make. If the —1i option is present, or
the entry .IGNORE: appears in makefile, or if the line specifying the command begins with
<tab> <hyphen>, the error is ignored. If the —k option is present, work is abandoned on
the current entry, but continues on other branches that do not depend on that entry.

The —b option allows old makefiles (those written for the old version of make) to run without
errors. The difference between the old version of make and this version is that the new version
requires all dependency lines to have a (possibly null) command associated with them. The
previous version of make assumed if no command was specified explicitly that the command
was null. This was contrary to the documentation.

Interrupt and quit cause the target to be deleted unless the target depends on the special name
.PRECIOUS.

The Environment
The environment is read by make. All variables are assumed to be macro definitions and

November 1979 Page 1 November 1979

MAKE (1) CB—UNIX 2.1 ' MAKE (1)

processed as such. The environment variables are processed before any makefile and after the
internal rules. Thus, macro assignments in a makefile override environment variables. The —e
option causes the environment to override the macro assignments in a makefile.

The MAKEFLAGS environment variable is processed by make as containing any legal input
option (except -f, -p, and .d) defined for the command line. Further, upon invocation, make
"nvents" the variable, if it is not in the environment, puts the current options into it, and
passes it on to invocations of commands. Thus, MAKEFLAGS always contains the current
input options. This proves very useful for "supermakes”. In fact, as noted above, when the -n
option is used, the command "$(MAKE)" is executed anyway; hence, one can perform a make
-n recursively on a whole software system to see what would have been executed. This is
because the -n is put in MAKEFLAGS and passed to further invocations of "S(MAKE)". This
is one way of debugging all of the makefiles for a software project without actually doing any-
thing.

Maéxos
Entries of the form

stringl = string2

are macro definitions. Subsequent appearances of 3(stringl[:substl =[subst2]]) are replaced by
string2. (The parentheses are optional if a single character macro name is used and there is no
substitute sequence.) The optional ":substl =subst2" is an substitute sequence. If it is specified,
all non-overlapping occurrences of "substl" in the named macro are replaced by "subst2".
"Strings" (for the purposes of this type of substitution) are delimited by blanks, tabs, newline
character and the beginning of a line. An example of the use of the substitute sequence is
given under the Libraries heading.

Internal Macros
There are five internally maintained macros which are useful for writing rules for building tar-
gets.

$+ The macro $+ stands for the file name part with the suffix deleted, of the current depen-
dent. It is evaluated only for inference rules.

$@ The $@ macro stands for the full target name of the current target. It is evaluated only
for explicitly named dependencies.

$< The $< macro is only evaluated for inference rules or the .DEFAULT rule. It is the
"thing" which is out of date with respect to the target (i.e. the "manufactured" dependent
file name). Thus, in the ".c.o" rule the $< macro would evaluate to the ".c" file.

$2 The $? macro is evaluated when explicit rules from the makefile are evaluated. It is the
list of prerequisites that are out of date with respect to the target. (Essentially, those
"things" which must be rebuilt.)

%% The $% macro is only evaluated when the target is an archive library member of the form

Mib(file.0)". In this case, $@ evaluates to "lib" and $% evaluates to the library member,
"file.o".

An example: a rule for making optimized ‘.0’ files from °.c’ files is:

.C.0:
cc —¢ —0 $+¢
or
.C.0:
cc —c =0 §<

Four of the five macros can have aiternative forms. When an upper case 'D’ or 'F’ is appended
to any of the four macros the meaning is changed to "directory part” for "D’ and "file part” for

November 1979 " Page 2. November 1979

