PRS (18) CB—UNIX 2.1 PRS (1S)

NAME
prs — print an SCCS file

SYNOPSIS
prs [—d[dataspec]] [~r[SID]] [—el [=1] [—a] file ...

DESCRIPTION
Prs prints, on the standard output, parts or all of an SCCS file (see scesfile(5)) in a user supplied
format. If a directory is named, prs behaves as though each file in the directory were specified
as a named file, except that non-SCCS files (last component of the pathname does not begin
with s.), and unreadable files are silently ignored. If a name of — is given, the standard input
is read; each line of the standard input is taken to be the name of an SCCS file or directory to
be processed. Again, non-SCCS files and unreadable files are silently ignored.

Arguments to prs, which may appear in any order, consist of keylerter arguments, and file
names.

All the described keylerter arguments apply independently to each named file:

—d[dataspec Used to specify the output data specification. The dataspec is a string
consisting of SCCS file data keywords (see DATA KEYWORDS) inter-
spersed with optional user supplied text.

~r[siD} Used to specify the SCCS [Dentification (SID) string of a delta for which
information is desired. If no SID is specified, the SID of the most
recently created delta is assumed.

-t Requests information for all deltas created earlier than and including the
delta designated via the —r keyletter.

-1 Regquests information for all deltas created /arer than and including the
delta designated via the —r keyletter.

—a Requests printing of information for both removed, i.e., delta type = R&,
(see rmdel(1S)) and existing, i.e., deita type = D, deltas. If the —a
keyletter is not specified, information for existing deltas only is provided.

DATA KEYWORDS
Data keywords specify which parts of an SCCS file are to be retrieved and output. All parts of
an SCCS file (see scesfile(5)) have an associated data keyword. There is no limit on the number
of times a data keyword may appear in a daraspec.

The information printed by prs consists of: (1) the user supplied text; and (2) appropriate
values (extracted from the SCCS file) substituted for the recognized data keywords in the
order of appearance in the daraspec. The format of a data keyword value is either Simple (S), in
which keyword substitution is direct, or Mulri-line (M), in which keyword substitution is fol-
lowed by a carriage return.

User supplied text is any text other than recognized data keywords. A tab is specified by \t and
carriage return/new line is specified by \n.

November 1979 Page |) November 1979

PRS(1S) CB—UNIX 2.1 PRS (18)
TABLE 1. SCCS FILES DATA KEYWORDS
Keyword Data Item File Section Value Format
:Dt: Delta information Delta Table see below* S
:DL: Delta line statistics " :Liz/:Ld:/:Lu: S
:Li: Lines inserted by Delta N nnnnn S
:Ld: Lines deleted by Deita » nnnnn S
:Lu: Lines unchanged by Delta " nnnnn S
:DT: Delta type " Dor R S
:I: SCCS ID string (SID) " :RicLl:iBelsS: S
:R: Release number o nnnn S
:L: Level number . nnnn S
:B: Branch number " nnnn S
:S: Sequence number " nnnn S
:D: Date Delta created ° :Dy:/:Dm:/:Dd: S
:Dy: Year Delta created " nn S
:Dm: Month Delta created * nn S
:Dd: Day Delta created " nn S
:T: Time Delta created " :ThitTm:::Ts: S
:Th: Hour Delta created " nn S
:Tm: Minutes Deita created Hd nn S
:Ts: Seconds Delta created , nn S
:P: Pgmmer who created Delta " logname S
:DS: Delta sequence number " nnnn S
:DP: Predecessor Delta seq no. " nnnn S
:DI: Seq no. of deitas included, excluded, ignored " :Dn:/:Dx:/:Dg: S
:Dn: Deltas included (seq #) . :DS: :DS: ... S
:Dx: Deltas excluded (seq #) " :DS: :BS: % S
:Dg: Deltas ignored (seq #) * :DS: :DS: ... S
:MR: MR numbers for delta b text M
:C: Comments for delta " text M
:UN: User names User Names text M

November 1979

Page 2

November 1979

PRT(1S)

NAME

CB-UNIX 2.1 PRT(1S)

prt — print SCCS file

SYNOPSIS

prt [—d] [—s] [—a] [—i] [<u] [=f] [=t] [=b] [—e] [—ylsID]]
[=clcutoffl] [—rlrev-cutoff]] file ...

DESCRIPTION

Prt prints part or all of an SCCS file in a useful format. If a directory is named, prr behaves as
though each file in the directory were specified as a named file, except that non-SCCS files (last
component of the pathname does not begin with s.) and unreadable files are silently ignored. If
a name of — is given, the standard input is read; each line of the standard input is taken to be
the name of an SCCS file to be processed. Again, non-SCCS files and unreadable files are
silently ignored.

The keyletter arguments are as follows. Each is explained as though only one named file is to
be processed, but the effects of any keyletter argument apply independently to each named file.

—d

—i

This keyletter normally causes the printing of delta table entries of the D
type.

Causes only the first line of the delta table entries to be printed; that is,
only up to the statistics. This keyletter is effective only if the d keyletter
is also specified (or assumed).

Causes those types of deltas normally not printed by the d keyletter to be
printed. These are types R (removed). This keyletter is effective only if
the d keyletter is also specified (or assumed).

Causes the printing of the serial numbers of those deltas included,
excluded, and ignored. This keyletter is effective only if the d keyletter
is also specified (or assumed).

The foliowing format is used to print those portions of the SCCS file as specified by the above
keyletters. The printing of each delta table entry is preceded by a newline character.

a)
b)
c)
d)
e)

f)
g)
h)
i)
j)
k)
9]
m)

n)
0)

p)

November 1979

Type of delta (D or R).

Space.

SCCS identification string (SID).
Tab.

Date and time of creation.
(in the form YY/MM/DD HH:MM:SS)

Tab.

Creator.

Tab.

Serial number.

Tab.

Predecessor delta’s serial number.
Tab.

Statistics.
(in the form inserted/deleted/unchanged)

Newiline.

““Included:rab”’, followed by SID’s of deitas included, followed by newline (only
if there were any such deltas and if i keyletter was supplied).

“Excluded:tab ", followed by SID’s of deltas exciuded, followed by newline (see
note above).

Page 1 November 1979

PRT(18)

CB—UNIX 2.1 PRT (1S)

q) ‘‘Ignored:tab”’, followed by SID’s of deltas ignored, followed by newline (see
note above).

r) ““MRs:tab”, followed by MR numbers related to the delta, followed by newline
(only if any MR numbers were supplied).

s) Lines of comments (delta commentary), followed by newline (if any were sup-

plied).

-—u

-ylsiD]

—c[curoffl

—r[rev-cutoffl

Causes the printing of the login-names and/or numerical group [Ds of
those users allowed to make deltas.

Causes the printing of the flags of the named file.
Causes the printing of the descriptive text contained in the file.
Causes the printing of the body of the SCCS file.

This keyletter implies the d, i, u, f, and t keyletters and is provided for
convenience.

This keyletter will cause the printing of the delta tabie entries to stop
when the delta just printed has the specified SID. If no delta in the table
has the specified SID, the entire table is printed. If no SID is specified,
the first deita in the delta table is printed. This keyletter will cause the
entire delta table entry for each delta to be printed as a single line (the
newlines in the normal multi-line format of the d keyletter are replaced
by blanks) preceded by the name of the SCCS file being processed. fol-
lowed by a :, followed by a tab. This keyletter is effective only if the d
keyletter is also specified (or assumed).

This keyletter will cause the printing of the delta table entries to stop if
the delta about to be printed is older than the specified cutoff date-time
(see ger(1S) for the format of date-time). If no date-time is supplied,
the epoch 0000 GMT Jan. 1, 1970 is used. As with the y keyletter, this
keyletter will cause the entire delta table entry to be printed as a single
line and to be preceded by the name of the SCCS file being processed,
followed by a :, followed by a tab. This keyletter is effective only if the d
keyletter is also specified (or assumed).

This keyletter will cause the printing of the delta table entries to begin
when the delta about to be printed is older than or equal to the specified
cutoff date-time (see ger (1S) for the format of date-time). If no date-
time is supplied, the epoch 0000 GMT Jan. 1, 1970 is used. (In this case,
nothing will be printed). As with the y keyletter, this keyletter will cause
the entire delta table entry to be printed as a single line and to be pre-
ceded by the name of the SCCS file being processed, followed by a :, fol-
lowed by a tab. This keyletter is effective only if the d keyletter is also
specified (or assumed).

If any keyletter but y, ¢, or r is supplied, the name of the file being processed (preceded by one
newline and followed by two newlines) is printed before its contents.

If none of the u, f, t, or b keyletters is supplied, the d keyletter is assumed.

Note that the s and i keyletters, and the ¢ and r keyletters are mutually exclusive; therefore,
they may not be specified together on the same prf command.

The form of the delta table as produced by the y, ¢, and r keyletters makes it gasy to sort mul-
tiple delta tables by time order. For example, the following will print the delta tables of all
SCCS files in directory sccs in reverse chronological order:

November 1979

Page 2 November 1979

PRT (18) CB—UNIX 2.1 PRT(1S)

prt —c sccs | grep . | sort ‘—rttab’ +2 =3
When both the y and ¢ or the y and r keyletters are supplied, prr will stop printing when the
first of the two conditions is met.
The reform (1S) command can be used to truncate long lines.

See admin (15), sccsfile (5), and Source Code Control System User’s Guide for more information
about the meaning of the output of prr.

SEE ALSO
admin (1S), delta(1S), get(1S), help(1S), what(1S), sccsfile(5)
Source Code Control System User's Guide by L. E. Bonanni and C. A. Salemi.

DIAGNOSTICS
_ Use help (1S) for explanations.

November 1979 Page 3 November 1979

PS(1)

NAME

CB—UNIX 2.1 PS(1)

pS — process status

SYNOPSIS

ps [—akix] [name]

DESCRIPTION

Ps prints certain indicia about active processes. The a flag asks for information about all
processes with process groups (ordinarily only one’s own processes are displayed); x asks even
about processes with no process group; | asks for a long listing. Ordinarily only the line
number (if not one’s own), the process number, its parent’s process number, its process group,
and an approximation to the command line are given. If the k flag is specified, the file unix-
core is used in place of /dev/mem. This is used for post-mortem system debugging. Name is
the name of a file containing the system namelist for the running system if it is not in /unix.

The long listing is columnar and contains
The line number (00 through 99) of the control terminal of the process.
A number encoding the flags associated with a process. Any combination of the follow-

ing,

November 1979

01 process swapped in.
02 The UNIX Scheduler
04 Locked in core

30 Tracing

100 Sleeping

A letter encoding the state of a process.

S — Sleeping

W — Waiting

R — Running

I — Idling (unused)

4 — Zombie — process exited, parent not yet notified.
9iF — Traced

A number related in some unknown way to the scheduling heuristic.
The priority of the process; high numbers mean low priority.
The nice of the process; high numbers mean low priority.

The process unique number (as in certain cults it is possible to kill a process if
you know its true name).

The process number of the parent of the process.
The process group of the process.

An entry that tells the core address in the system of the event which the pro-
cess is waiting for; if blank, the process is running.

The last column is the file name of the process, pius a few of the arguments, if
any, which were passed.

Ps makes an educated guess as to the file name and arguments given when the pro-
cess was created by examining core memory or the swap area. The method is
inherently somewhat unreliable and in any event a process in entitled to destroy this
information, so the names cannot be counted on too much. Ps also assumes a swap

Page | November 1979

PS (1) CB—-UNIX 2.1 PS (1)

device but is intelligent enough to figure it out for itself.

FILES
/unix system namelist

/dev/mem core memory

/dev/swapdev
swap device
unixcore optional mem file
SEE ALSO

kill (1), sps(1)

November 1979 Page 2 November 1979

PTX (1)

NAME

CB—UNIX 2.1 PTX (1)

ptx — permuted index

SYNOPSIS

ptx [option | ... [input [output]]

DESCRIPTION

FILES

BUGS

Page |

Prx generates a permuted index to file inpur on file ourpur (standard input and output default).
It has three phases: the first does the permutation, generating one line for each keyword in an
input line. The keyword is rotated to the front. The permuted file is then sorted. Finally, the
sorted lines are rotated so the keyword comes at the middle of the page. Pix produces output
in the form:

.xx "tail” "before keyword" "keyword and after" "head”

where .xx may be an nroff or troff{1) macro for user-defined formatting. The before keyword
and keyword and afier fields incorporate as much of the line as will fit around the keyword when
it is printed at the middle of the page. Tail/and /ead, at least one of which is always an empty
string "", are wrapped-around pieces small enough to fit in the unused space at the opposite end
of the line.

The following options can be applied:
=t Fold upper and lower case letters for sorting.
-t Prepare the output for the phototypesetter; the default line length is 100 characters.

—-W n Use the next argument, #, as the width of the output line. The default line length
is 72 characters.

-gn Use the next argument, 7, as the number of characters to allow for each gap among
the four parts of the line as finally printed. The default gap is 3 characters.

=90 only Use as keywords only the words given in the on file.

—iignore Do not use as keywords any words given in the jgnore file. If the —i and —o
options are missing, use /usr/lib/eign as the ignore file.

—b break Use the characters in the break file to separate words. In any case, tab, new-line,
and space characters are always used as break characters.

-r Take any leading nonblank characters of each input line to be a reference identifier
(as to a page or chapter) separate from the text of the line. Attach that identifier
as a Sth field on each output line.

The index for this manual was generated using prx.

/bin/sort
/usr/lib/eign

Line length counts do not account for overstriking or proportional spacing.
Lines that contain tilde (7) are botched, as prx uses that character internally.

November 1979

PWD (1) CB—UNIX 2.1 PWD (1)

NAME
pwd — working directory name

SYNOPSIS
pwd
DESCRIPTION
Pwd prints the pathname of the working (current) directory.

SEE ALSO
cd(1)

DIAGNOSTICS
‘Cannot open .." and ‘Read error in ..’ indicate possible file system trouble and should be
referred to a UNIX programming counselor. One possible problem is a file system mounted on
a node which is not a directory.

Page 1 November 1979

QUOT (1IM) CB—UNIX 2.1 QUOT (1M)

NAME

quot — summarize file system ownership
SYNOPSIS

quot [option] ... [filesystem]
DESCRIPTION

Quot prints the number of inodes and blocks in the named filesystem currently owned by each
user and the total and free inode counts. If no filesystem is named, a default name is assumed.
The following options are available:

—n Cause the pipeline ncheck filesystem | sort +0n | quot —n filesystem to produce
a list of all files and their owners.

-1 Print only the total and free inode counts.
-f Causes the output list to be sorted on inode usage.

FILES

/etc/passwd to get user names
SEE ALSO

Is(1), du(l)

BUGS
Holes in files are counted as if they actually occupied space.

November 1979 Page 1 November 1979

RATFOR (1) CB—-UNIX 2.1 RATFOR (1)

NAME
ratfor — rational FORTRAN dialect

SYNOPSIS
ratfor { option ...] [filename ... |

DESCRIPTION
Rarfor converts a rational dialect of Fortran into ordinary irrational Fortran. Ratfor provides
control flow constructs essentially identical to those in C:

statement grouping:
{ statement; statement; statement }
decision-making:
if (condition) statement [else statement |
switch (integer value) {
case integer: statement

[default:] statement
}
loops: while (condition) statement
for (expression; condition; expression) statement
do limits statement
repeat statement [until (condition)]
break
next

and some syntactic sugar to make programs easier to read and write:

free form input:
multiple statements/line; automatic continuation

comments:
this is a comment

translation of relationals:
>, > =, etc., become .GT., .GE., etc.

return (expression)
returns expression to caller from function

define: define name replacement

include:
include filename

Ratifor is best used with f77(1).

SEE ALSO
f77(1)
B. W. Kernighan and P. J. Plauger, Sofiware Tools, Addison-Wesiey, 1976.

Page 1 ; November 1979

READL (1) CB—UNIX 2.1 READL (1)

NAME
readl — read one line

SYNOPSIS
readl

DESCRIPTION
Read| copies one line (up to newline) from the standard input and writes it on the standard out-
put. It is often used within shell files to read from the user’s terminal.

SEE ALSO
sh(1), read(2)

BUGS
Read! truncates after 255 characters.

Page | November 1979

TS

READNEWS (1)

READNEWS L

HAME

SYROPSTS
ARG

1 5

fo=3prM 3 L -

T earews

DESCRIFTION
AR

!
3 o

4

MEWEG 1

READMELS (1)

»
i

A

EXAGHMPLES
rearinews

Fagainews

rRacnews

P eadnsws PARL:3 g3 Tl

reanNews

FLE

h e

READNEWS (1)

READREWS(1)

RECHEWS (1)

NAM

g

S YMOF

N

REBOOT (1M) CB—UNIX 2.1 REBOOT (1M)

NAME

reboot — replace current UNIX with new program or system
SYNOPSIS

/etc/reboot device file [nosync]
DESCRIPTION

Reboot is the command level interface to the repoot system call. The device specified shouid
correspond to the octal device code expected by the DEC YC ROM. This number is normally
placed in the console switches prior to starting the ROM. The file is the name of the program
that is to be booted, replacing the current UNIX. If the nosync option is not used this com-
mand will link /dev/syscon to the terminal from which the command is issued, issue a sync Sys-
tem call, halt the currently running UNIX and reboot the specified program. If the nosync
option is specified reboor will verify that the terminal from which the command is issued is
linked to /dev/syscon before halting the current UNIX and rebooting the specified program.

SEE ALSO
reboot(2)

Page | : November 1979

REFORM (18) CB—UNIX 2.1 REFORM (18)

NAME

reform — reformat text file

SYNOPSIS

reform [tabspecl [tabspec2 1 1 [#bn)l [+en] [+f1 [+in] [+mn) [+pn]l
+s 1 [+tn]

DESCRIPTION

Page 1

Reform reads each line of the standard input file, reformats it, and then writes it to the standard
output. Various combinations of reformatting operations can be selected, of which the most
common involve rearrangement of tab characters.

Reform first scans any arguments, which may be given in any order. It then processes its input
file, performing the following actions upon each line, in the order given.

— A line is read from the standard input.

— If +s is given, the first 10 characters of the line are stripped off. Characters 1—4 (SCCS
Release) and 6—9 (SCCS Level) are saved for later addition to the end of the line.

— The line is expanded into a tabless form, by replacing tabs with blanks according the input
tab specification rabspec!.

— If +pnis given, nblanks are prepended to the line.

— If +tnis given, the line is truncated to a length of » characters.

— All trailing blanks are now removed.

— If +enis included, the line is extended out with blanks to the length of s characters.

— If +s is given, the previously-saved SCCS Release and Level are added to the end of the
line.

— If +bnis given, the n characters at the beginning of the line are converted to blanks, if and
only if all of them are either digits or blanks.

— If +mn is included, the line is moved left, i.e., n characters are removed from the begin-
ning of the line.

— The line is now contracted by replacing some blanks with tab characters according to the list
of tabs indicated by the output tab specification tbspec2, and is written to the standard out-
put file. Option +i controls the method of contraction (see below).

The various arguments accepted by reform are as follows:

tabspec! describes the tab stops assumed for the input file. This tab specification may take on
any of the forms described below. In addition, the operand — — indicates that the
tab specification is to be found in the first line read from the standard input. If no
legal tab specification is found there, —8 is assumed. If rabspec! is omitted entirely,
— — is assumed.

tabspec2 describes the tabs assumed for the output file. [t is interpreted the same as wbspec!,
except that omission of rabspec2 causes the value of tabspec! to be used for abspec?.

The remaining arguments are all optional and may be used in any combination, aithough only a
few combinations make much sense. Specifying an argument causes an action to be performed,
as opposed to a usual default of not performing the action. Some options include numeric
values, which also have default values. Option actions are applied to each line in the order
described above. Any line length mentioned applies to the length of a line just previous to the

execution of the option described, and the terminating newline is never counted in the line
length.

November 1979

REFORM (18)

+bn

+en

+f

+in

+mn

+pn

+tn

Three

= code

November 1979

CB—UNIX 2.1 REFORM (18S)

causes the first » characters of a line to be converted to blanks, if and only if those char-
acters include only blanks and digits. If »is omitted, the default value is 6, which is use-
ful in deleting sequence numbers from COBOL programs.

causes each line shorter than # characters to be extended out with blanks to that length.
Omitting » implies a default value of 72. This option is useful for those rare cases in
which some sequence numbers need to be added to an existing unnumbered file, e.g.,
the use of $ in editor regular expressions is more convenient if all lines have equal
length. lLe., the user intends to issue editor commands like:

s/8/00001000/

causes a format line to be written to the standard output, preceding any other lines writ-
ten. The format line is taken from abspec?, i.e., the line normally appears as follows:

<:t—tabspec? d:>

controls the technique used to compress interior blanks into tabs. Unless this option is
specified, any sequence of 1 or more blanks may be converted to a single tab character if
it occurs in an appropriate place. This causes no problems for blanks occurring before
the first nonblank character in a line, and it is always possible to convert the result back
to an equivalent tabless form. However, occasionally an interior blank (one occurring
after the first nonblank) is converted to a tab when this is not intended. For instance,
this might occur in any program written in a language utilizing blanks as delimiters. Any
single blank might be converted to a tab if it occurred just before a tab stop. Insertion or
deletion of characters preceding such a tab may cause it to be interpreted in an unex-
pected way at a later time. If the +i option is used, no string of blanks may be con-
verted to a tab unless there are n or more contiguous blanks. The default value is 2.
Note that leading blanks are always converted to tabs when possible.

causes each line to be moved left » characters, with a default value of 6. This can be
useful for crunching COBOL programs.

causes n blanks to be prepended (default of 6 if omitted). This option is effectively the
inverse of +mx, and is often useful for adjusting the position of nroff(1) output for ter-
minals lacking both forms tractor positioning and settable left margin.

is used with the —m option of ges(1S). The —m option causes ger to prepend SCCS
Release and Level numbers to each generated line. The +s option causes these
numbers to be removed from the front of each line, saved, and then later added to the
end of the line. Because +e72 is implied by this option, the effect is to produce 80-
character card images with SCCS Release and Level in columns 73 —80.

causes any line longer than » characters to be truncated to that length. If » is omitted,
the length defaults to 72. Sequence numbers can thus be removed, also permitting addi-
tional preceding blanks to be deleted.

types of tab specification are accepted for rabspec: "canned”, repetitive, and arbitrary.

gives the name of one of a set of "canned” tabs. The legal codes and their meanings are
as follows:

1,10,16,36,72
Assembler, IBM S/370, first format

1,10,16,40,72
Assembier, IBM S/370, second format

1,8,12,16,20,55
COBOL, normal format

Page 2

REFORM (18) CB—-UNIX 2.1 REFORM (1S)

-2 1,6,10,14,49 A
COBOL compact format (columns 1—6 omitted).

-c3 1,6,10,14,18,22,26,30,34,38,42,46,50,54,58,62,67
COBOL compact format (columns 1—6 omitted), with more tabs than —c2.

-f 1,7,11,15,19,23

FORTRAN

-p 1,5,9,13,17,21,25,29,33,37,41,45,49,53,57,61
PL/I

-s 1,10,35
SNOBOL

-u 1,12,20,44
UNIVAC 1100 Assembler

In addition to these "canned" formats, three other types exist:
-n a repetitive specification requests tabs at columns 1+ 4, 1+2%5, etc.

nl, n2,...
the arbitrary format permits the user to type any chosen set of numbers, separated by
commas, in ascending order. Up to 20 numbers are allowed. The maximum tab value
accepted is 158. If any number (except the first one) is preceded by a plus sign, it is
taken as an increment to be added to the previous value. Thus, the tab lists 1,10,20,30
and 1,10,+10,+ 10 are considered identical.

DIAGNOSTICS
All diagnostics are fatal, and the offending line is displayed following the message.
"line too long" if any line exceeds 512 characters (in tabless form).
"not SCCS -m" if first 10 characters of line are not in proper format when +s flag used.

EXIT CODES
0 — normal
1 — any error

SEE ALSO
get(1S), nroff(1)

BUGS
Reform is aware of the meanings of Backspace and Escape sequences, so that it can be used as a
postprocessor for nroff. However, be warned that the +e, +m, +t options only count charac-
ters, not positions. Anyone using these options on output containing backspaces or halfline
motions will probably obtain unexpected and useless results.

AUTHOR
J. R. Mashey

Page 3 November 1979

RELEASE (1) CB—UNIX 2.1 RELEASE (1)

NAME
release — restore printing of queued line printer jobs

SYNOPSIS
release type item [item]

DESCRIPTION
Release restores a set of line printer requests which were suspended by a hold or restrain com-
mand to a printable state. Type (either user, printer, or job) indicates the type of irems which
follow. At least one item is required.

In the case of typeuser, the items are login ids of users with queued jobs. For each specified
user, release restores printing of all the user’s line printer jobs, regardless of the queue in which
the request resides. Printing begins on a page boundary, two pages before the point of interr-
uption. If the rype is printer, then each item is a printer name, and refease places the named
printers back in service of their respective queues. For typejob, each of the specified jobs is
restored to a printable state.

SEE ALSO
abort(1), init(1), hold(1), lpr(1), restrain(1), start(1)

November (979 Page 1 November 1979

B \"1

RESTRAIN (1) CB—UNIX 2.1 RESTRAIN(1)

NAME

restrain — suspend printing of queued line printer jobs
SYNOPSIS

restrain type item [item]*
DESCRIPTION

Restrain suspends printing of a set of line printer requests, but does not interrupt any currently
printing job. Type (either user, printer, or job) indicates the type of irems which follow. At
least one item is required.

In the case of typeuser, the items are login ids of users with queued jobs. For each specified
user, restrain suspends the printing of all the user’s line printer jobs, regardless of the queue in
which the request resides. If the rype is printer, then each irem is a printer name, and restrain
allows the currently printing job to complete on each of the named printers, but disallows
further printing by that printer until it is either srarred or refeased. For typejob, each of the
specified jobs is inhibited from printing, unless it currently printing.

SEE ALSO
abort (1), init(1), hold(1), lpr(1), release(1), start(1)

November 1979 Page | November {979

REW (1) CB—-UNIX 2.1 REW (1)

NAME
rew — rewind tape

SYNOPSIS
rew [[m] digit]

DESCRIPTION
Rew rewinds DECtape or magtape drives. Digir is the logical tape number, and should range
from 0 to 7. If digit is preceded by m, rew applies to magtape rather than DECtape. A missing
digit indicates drive 0.

FILES
/dev/tap? , /dev/mt?

Page | November 1979

RM (1) CB—UNIX 2.1 RM (1)
NAME
rm, rmdir — remove files or directories
SYNOPSIS
rm [~fri] file .
rmdir dir ...
DESCRIPTION

Rm removes the entries for one or more files from a directory. If an entry was the last link to
the file, the file is destroyed. Removal of a file requires write permission in its directory, but
neither read nor write permission on the file itself.

If a file has no write permission and the standard input is a terminal, its permissions are printed
and a line is read from the standard input. If that line begins with y the file is deleted, other-
wise the file remains. No questions are asked when the —f (force) option is given or if the
standard input is not a terminal.

If a designated file is a directory, an error comment is printed unless the optional argument —r
has been used. In that case, rm recursively deletes the entire contents of the specified direc-
torv, and the directory itself.

If the —i (interactive) option is in effect, rm asks whether to delete each file, and, under —r,
whether to examine each directory.

Rmdir removes entries for the named directories, which must be empty.

SEE ALSO

unlink (2)

DIAGNOSTICS

Page 1|

Generally self-explanatory. It is forbidden to remove the file .. merely to avoid the antisocial
consequences of inadvertently doing something like ‘rm —r .=

November 1979

RMDEL (18) CB—UNIX 2.1 RMDEL (18)

NAME

rmdel — remove a delta from an SCCS file

SYNOPSIS

rmdel —rSID name ...

DESCRIPTION

Rmdel removes the delta specified by the SID from each named SCCS file. The delta to be
removed must be the newest (most recent) delta in its branch in the delta chain of each named
SCCS file. In addition, the SID specified must nof be that of a version being edited for the pur-
pose of making a delta (i. e., if a p-file (see ger(1S)) exists for the named SCCS file, the SID
specified must norappear in any entry of the p-file).

If a directory is named, rmde!/ behaves as though each file in the directory were specified as a
named file, except that non-SCCS files (last component of the pathname does not begin with
s.) and unreadable files are silently ignored. If a name of — is given, the standard input is
read; each line of the standard input is taken to be the name of an SCCS file to be processed.
Again, non-SCCS files and unreadable files are silently ignored.

The exact permissions necessary to remove a delta are documented in the Source Code Control
System User's Guide. Simply stated, they are either (1) if you make a delta you can remove lt
or (2) if you owr the file and directory you can remove a delta.

FILES
x-file (see delta (1S))
z-file (see delra (1S))
SEE ALSO

get(1S), delta(1S), prs(1S), help(1S), sccsfile(5)
Source Code Control System User’s Guide by L. E. Bonanni and C. A. Salemi

DIAGNOSTICS

Page 1

Use /elp(1S) for explanations.

November 1979

RSH (1)

NAME

CB—UNIX 2.1 RSH (1)

rsh — restricted shell (command interpreter)

SYNOPSIS

rsh [flags | [name [argl ...]]

DESCRIPTION

SEE AL

Page 1

Rsh is a restricted version of the standard command interpreter s#(1). It is used to set up login
names and execution environments whose capabilities are more controlled than those of the
standard shell. The actions of rsh are identical to those of sh, except that the following are
disallowed:

cd
command names containing /
> and >>

When invoked with the name —rsh, rsh reads the user’s .profile (from SHOME/.profile). It
acts as the standard s# while doing this, except that an interrupt causes an immediate exit,
instead of causing a return to command level. The restrictions above are enforced after .profile
is interpreted.

When a command to be executed is found to be a shell procedure, rs/ invokes sh to execute it.
Thus, it is possible to provide to the end user shell procedures that have access to the full
power of the standard shell, while restricting him to a limited menu of commands; this scheme
assumes that the end user does not have write and execute permissions in the same directory.

The net effect of these rules is that the writer of the .profile has complete control over user
actions, by performing guaranteed setup actions, then leaving the user in an appropriate direc-
tory (probably not the login directory). The .profile should make SPATH readoniy to keep the
user from changing it.

Rsh is actually just a link to s# and any flags arguments are the same as for sh(1).

The system administrator often sets up a directory of commands that can be safely invoked by
rsh. Some systems.also provide a restricted editor red.

SO
sh(1), profile(5).

November 1979

RSTLFS(1) CB—UNIX 2.3 RSTLFS(1)

NAME

rstlfs — restore logical file system from tape

SYNOPSIS

rstifs 1fs_name tape_unit#

DESCRIPTION

Rstlfs restores a logical file system (LFS) from a tape written by dmplfs(1). When used in con-
junction with dmplfs, rstlfs restores a previously-save LFS or completes the compression of a
fragmented LFS. After reloading by rstlfs, the logical files are stored in ascending order
immediately following the overhead area, and the free space is consolidated into a single large
area following the last logical file, with the file definition entries, freelist, and bitmap modified
accordingly.

Lfs_name is the filename of the LFS within directory /dev and tape_unit# is the number of the
tape drive on which the dump tape is mounted. For convenience, the user may specify the tape
unit as 0-3; the program will modify the unit number as necessary to get the correct density.
Both parameters are required and if the command is entered without parameters, the program
will print the expected syntax.

Rstlfs assumes the LFS to be restored is the same one that was dumped on the tape and checks
the tape label to see that the names are the same; the user is asked whether to continue if there
is a mismatch. It also checks to be sure that the reels are mounted in the correct order, and
prompts the user when a new reel is to be mounted.

FILES
/dev /lfs_name LFS to be read from tape
/dev/mttape_unit# tape unit to be used
/etc/Imtab list of mounted logical file systems
SEE ALSO

dmpifs(1), Ifcheck(1), mkifs(1)

DIAGNOSTICS

Rstlfs prints self-explanatory error messages on exit whenever a problem is detected.

WARNINGS

BUGS

If the LFS did not check (using [fcheck(1)) prior to running dmplfs, any overlapped files will
have been "unfolded" and there should be no duplicated blocks after reloading with rstifs.

Do not attempt to restore a mounted logical filesystem; the LFS should be unmounted and
flushed to disk before rstifs is invoked.

The LFS should be re-made using mkifs(1) before restoring. As additional insurance, it is wise
to make a dd tape of the LFS block device before doing the mkifs so the LFS can be restored to
its prior state if necessary (i.e., if rstlfs has trouble reading the dmplfs tape).

Rstlfs assumes that the 1600 bpi tape units have file names /dev/mt8 — /dev/mtl1l (rewind)
and /dev/mt12 — /dev/mt15 (no rewind).

As the program cannot tell when the end of the data file has been reached, the user must enter
a q instead of just a <<CR>> to let rstlfs know when the last reel has been read.

May 15, 1981 Page 1 May 15, 1981

S’

SA(IM) CB—UNIX 2.3 SA(IM)

NAME

sa — shell accounting

SYNOPSIS

sa [—abcijlmnorstuv] [file]

DESCRIPTION

When a user logs in, if the Shell is able to open the file /usr/adm/sh_acct, then as each com-
mand completes, the Shell writes at the end of this file the name of the command, the user,
system time and real time consumed, and the user ID. Sa reports on, cleans up, and generally
maintains this and other accounting files. To turn accounting on and off, the accounting file
must be created or destroyed externally. If the user is the super-user, accounting is placed into
/usr/adm/su_acct instead. As with sh_acct, it must be created or destroyed externally. Simi-
larly, if the file /usr/adm/acct is created and system accounting is activated (using accton(2)),
an accounting record is written when each process terminates.

Sa is able to condense the information in /usr/adm/su_acct or /usr/adm/acct into a summary
file /usr/adm/savacct which contains a count of the number of times each command was called
and the time resources consumed. The summary file /usr/adm/usracct is used to record for
each user the total number of commands executed, and the total cpu time used. This conden-
sation is desirable because on a large system accounting files can grow by 100 blocks per day.
The summary file is read before the accounting file, so the reports include all available informa-
tion.

If a file name is given as the last argument, that file will be treated as the accounting file; acct is
the default. When a Shell accounting file (sh_acct or su_acct) is processed, commands that
were executed from a command file have an asterisk appended to their name. If the system
accounting file, acct, is processed, an asterisk is appended to those commands that did not do
an exec(2) (e.g. daemons). There are many options:

a Do not place all command names containing unprintable characters and those used only
once under the name “‘***other’’.

b Sort output by sum of user and system time divided by number of calls. Default sort is
by sum of user and system times.

¢ Besides total user time, system time, and real time for each command, print percentage of
total time over all commands.

i Do not read the summary files /usr/adm/savacct and /usr/adm/usracct, so only infor-
mation in the accounting files is condensed and reported.

Instead of total minutes time for each category, give seconds per call.

ute

1 Separate system and user time; normally they are combined.

m Superseding all other flags except u, print for each user the login name, number of com-
mands executed, and the total number of minutes of cpu time used.

n Sort by number of calls.

o Superseding the 1 flag, report for each command the ratio of user cpu time to user + sys-
tem cpu time.

r Reverse order of sort.

s Merge accounting file into summary files /usr/adm/savacct and /usr/adm/usracct when
done. This option also causes the a option to be used.

t For each command report ratio of real time to the sum of user and system times.
u Superseding all other options, print the raw data.

v If the next character is a digit n, then type the name of each command used n times or

March 25, 1981 Page 1 March 25, 1981

SA(IM)

CB—UNIX 2.3

SA(IM)

fewer. Await a reply from the typewriter; if it begins with “‘y’’, add the command to the

category ““**junk**”’. This is used to strip out garbage.

FILES
/usr/adm/sh_acct
Jusr/adm/acct
Jusr/adm/savacct
/usr/adm/usracct
Jusr/adm/su_acct

SEE ALSO
ac(1), accton(1), accton(2)

BUGS
Probably.

March 25, 1981

Page 2

March 25, 1981

SAVDATE(1) CB-UNIX 2.1 SAVDATE (1)

NAME

savdate — save and restore modification date
SYNOPSIS

savdate filel file2 ... : cmd argl arg2 ..
DESCRIPTION

Savdate saves the modification dates of each file argument; invokes the command c¢md with the
arguments given; and then restores the original modification dates. The colon (:) must be sup-
plied as a separate argument to allow savdare to determine where the file list ends and the com-
mand begins.

SEE ALSO
mdate(2), stat(2)

Page | November 1979

SCCSCLEAN (18) CB—-UNIX 2.1 SCCSCLEAN (1S)

NAME

scesclean — remove unwanted files in SCCS directories

SYNOPSIS

scesclean [—n] [—s] file [files]

DESCRIPTION

Page |

Scesclean is a utility to clean out SCCS directories. It will take as arguments a list of files or
directories with optional flags. Each directory argument is expanded into a list of all files in the
directory. All non-essential files in the resulting list which can be re-created from other files in
the current directory are listed on the standard output and removed. This includes all .o files
and all files which have a corresponding s. SCCS source file. Any file which has a correspond-
ing p. SCCS protection file is not removed; it is presumed to be the most recent edited copy.

Optional flags coansist of:

-n no removal; causes sccsclean to merely list the files it finds which would normally be
removed.

-s silent; do not list removed files.

Secesclean is designed to be used in conjunction with make(l) to replace the normal ‘‘rm *.0”
rule for the clean: target, so that either normal or SCCS directories are effectively cleaned.

November 1979

SCCSDIFF(18) CB—UNIX 2.1 SCCSDIFF (1S)

NAME

scesdiff — compare two versions of an SCCS file
SYNOPSIS

scesdiff old-spec new-spec [pr-args | file ...
DESCRIPTION

Scesdiff compares two versions of an SCCS file and generates the differences between the two
versions. The old-spec is any valid ger (1S) specifier (e.g., -rl.1) for the old version to be got-
ten. Similarly, new-spec is any valid ger specifier (e.g., -r1.4) for the new version to be gotten.
The pr-args are any valid pr(1) arguments which begin with a —. except for —h (the output of
scesdiff is piped through pr). Any number of SCCS files may be specified, but the old-spec and
new-spec apply to all files.

Scesdiff is a simple shell procedure; interested persons should “‘cat /usr/bin/sccsdiff®’ to dis-
cover how it works.

FILES
/tmp/get??222? Temporary for old gotten version
/usr/bin/bdiff Program that generates differences
SEE ALSO

bdiff(1), get(1S), help(1S), pr(l)
Source Code Conirol System User's Guide by L. E. Bonanni and C. A. Salemi.

DIAGNOSTICS
Use help (1S) for explanations.

file: No differences If the two versions are the same.

November [979 Page | Qiovember 1979

SCCSTRING (18) CB—UNIX 2.1 SCCSTRING (1S)

NAME

scestring — echo SCCS keywords to standard output
SYNOPSIS

scestring file
DESCRIPTION

The sccstring command will echo SCCS keywords % W% to the standard output surrounded by
the appropriate characters to make the entire string a comment. Scestring knows the comment
conventions for files whose suffices are:

* [chlyl, *.mk, [Mmlakefile, *.sh
The output string is a legitimate comment for each of the types of file.

Scestring is used by the addsces(1S) command to automaticaily add the SCCS keyword string to
named files.

SEE ALSO
addsces(1S), gadd(1S)
DIAGNOSTICS
All diagnostics are printed on file descriptor 2.
BUGS
There is no way to specify the type of file other than the suffix.

Page 1 November 1979

SENDHEWS (]

FRT

b
!

SDIFF (1) CB—-UNIX 2.1 SDIFF (1)

NAME

sdiff — side-by-side difference program
SYNOPSIS

sdiff { options ...] filel file2
DESCRIPTION

Sdifff uses the output of djff(1) to produce a side-by-side listing of two files indicating those lines
that are different. Each line of the two files is printed with a blank gutter between them if the
lines are identical, a < in the gutter if the line only exists in file/, a > in the gutter if the line
only exists in file2, and a | for lines that are different.

For example:

X | y

a a

b <

(o <

d

> c
The following options exist: -
-W Use the next argument, n, as the width of the output line. The default line length
is 130 characters.

-1 Only print the left side of any lines that are identical.
- Do not print identical lines.

—o ourpur Use the next argument, ouput, as the name of a third file that is created as a user
controlled merging of file/ and file2. Identical lines of file/ and file2 are copied to
outpur. Sets of differences, as produced by djff(1), are printed; where a set of
differences share a common gutter character. After printing each set of differences,
sdiff prompts the user with a % and waits for one of the following user-typed com-

mands:
] append the left column to the output file
r append the right column to the output file
S turn on silent mode; do not print identical lines
v turn off silent mode
el call the editor with the left column
e call the editor with the right column
eb call the editor with the concatenation of left and right
e call the editor with a zero length file

exit from the program

=]

On exit from the editor, the resuiting file is concatenated on the end of the ourmpus
file.

SEE ALSO
diff(1), ed(1)

Page 1 i November 1979

SED (1)

NAME

CB—UNIX 2.1 SED(1)

sed — stream editor

SYNOPSIS

sed [—n][—escript] [—fsfile] [file]...

DESCRIPTION

Sed copies the named files (standard input default) to the standard output, edited according to a
script of commands. The —f option causes the script to be taken from file sfile; these options
accumulate. If there is just one =—e option and no —f options, the flag —e may be omitted.
The —n option suppresses the default output. A script consists of editing commands, one per
line, of the following form:

[address [, address]] function [arguments]

In normal operation, sed cyclically copies a line of input into a patrern space (unless there is
something left after a D command), applies in sequence all commands whose addresses select
that pattern space, and at the end of the script copies the pattern space to the standard output
(except under —n) and deletes the pattern space.

An address is either a decimal number that counts input lines cumulatively across files, a $ that
addresses the last line of input, or a context address, i.e., a ‘*/regular expression/’’ in the style
of ed(1) modified thus: :

The escape sequence \n matches a new-line embedded in the pattern space.

A period . matches any character except the terminal new-line of the pattern space.

A command line with no addresses selects every pattern space.

A command line with one address selects each pattern space that matches the address.
A command line with two addresses selects the inclusive range from the first pattern
space that matches the first address through the next pattern space that matches the
second. (If the second address is a number less than or equal to the line number first
selected, only one line is selected.) Thereafter the process is repeated, looking again
for the first address.

Editing commands can be applied only to non-selected pattern spaces by use of the negation
function ! (below).

In the following list of functions the maximum number of permissible addresses for each func-
tion is indicated in parentheses.

An argument denoted rext consists of one or more lines, all but the last of which end with \ to
hide the new-line. Backslashes in text are treated like backslashes in the replacement string of
an s command, and may be used to protect initial blanks and tabs against the stripping that is
done on every script line. An argument denoted rfife or wfile must terminate the command
line and must be preceded by exactly one blank. Each wfile is created before processing begins.
There can be at most 10 distinct wfile arguments.

(1) a\

rext
Append. Place rexr on the output before reading the next input line.

(2) b label
Branch to the : command bearing the /abel. If label is empty, branch to the end of the
script.

(2) c\

rext

Change. Delete the pattern space. With 0 or | address or at the end of a 2-address
range, place rext on the output. Start the next cycle.

(2)d Delete the pattern space. Start the next cycle.

November 1979 Page | November 1979

SED(1)

CB—UNIX 2.1 SED(1)

(2)D Delete the initial segment of the pattern space through the first new-line. Start the
next cycle. '

(D 1\
text
Insert. Place texr on the standard output.

(2)n Copy the pattern space to the standard output. Replace the pattern space with the next
line of input.

(2) N Append the next line of input to the pattern space with an embedded new-line. (The
current line number changes.)

(2)p Print. Copy the pattern space to the standard output.

(2)P Copy the initial segment of the pattern space through the first new-line to the standard
output.

(1)@ Quit. Branch to the end of the script. Do not start a new cycle.

) r rfile

Read the contents of rfile. Place them on the output before reading the next input line.

(2) s/regular expression/replacement/flags
Substitute the replacement string for instances of the regular expression in the pattern
space. Any character may be used instead of /. For a fuller description see ed(1).
Flags is zero or more of:

g Global. Substitute for all nonoverlapping instances of the regular
expression rather than just the first one.
P Print the pattern space if a replacement was made.

w wfile Write. Append the pattern space to wfile if a replacement was made.

(2) t label
Test. Branch to the : command bearing the /abe! if any substitutions have been made
since the most recent reading of an input line or execution of a t. If label is empty,
branch to the end of the script.

(2) w wfile
Write. Append the pattern space to wfile.

(2) ysstring 1 /string2/
Transform. Replace all occurrences of characters in swring/ with the corresponding
character in string2. The lengths of string/ and string2 must be equal.

(2! function
Don’t. Apply the function (or group, if function is {) only to lines not selected by the
address(es).

(0) : label
This command does nothing; it bears a /abel for b and t commands to branch to.

(1) = Place the current line number on the standard output as a line.

) Execute the following commands through a matching } only when the pattern space is
selected.

(0) An empty command is ignored.

SEE ALSO

awk(1), ed(1), grep(1).
SED—A Non-interactive Text Editor by L. E. McMahon.

November 1979 Page 2 November 1979

—

SEMA (1) CB—-UNIX 2.1 SEMA (1)

NAME
sema — semaphore operations

SYNOPSYS
sema {phitestipostblockisetsemlocklunlockitlockirdsem} sema-number {newval}

DESCRIPTION
Sema is used to perform semaphore operation from the Shell. The second argument to the
command specifies which semaphore operation is to be performed on the third argument, which
specifies the semaphore number. In all cases the value of the semaphore before the operation
was performed is reported.

SEE ALSO
Sema(2)

Page 1 November 1979

SETPGRP (1) CB—-UNIX 2.1 SETPGRP (1)

NAME

setpgrp — execute program with new process group
SYNOPSIS

setpgrp [[pgrp | command { argument ...]]
DESCRIPTION

Setpgrp executes the specified program after changing the process’ group to process ID of the
command itself (to guarantee uniqueness). [f the optional pgrp argument is given, the process
group is set to the group specified. Serpgrp with no arguments will report the current process
group. This command is normally used to spin commands off from a terminal when it is
desired to ignore any future signals generated at the terminal.

SEE ALSO
setpgrp(2)

November 1979 Page | November 1979

SH(1) CB—UNIX 2.3 SH(1,

NAME
sh, rsh — shell, the standard/restricted command programming language

SYNOPSIS
sh [—ceiknrstuvx] [args]
rsh [—ceiknrstuvx] [args]

DESCRIPTION
Sh is a command programming language that executes commands read from a terminal or a file.
Rsh is a restricted version of the standard command interpreter sh; it is used to set up login
names and execution environments whose capabilities are more controlled than those of the
standard shell. See Invocation below for the meaning of arguments to the shell.

Commands.

A simple-command is a sequence of non-blank words separated by blanks (a blank is a tab or a
space). The first word specifies the name of the command to be executed. Except as specified
below, the remaining words are passed as arguments to the invoked command. The command
name is passed as argument O (see exec(2)). The value of a simple-command is its exit status
if it terminates normally, or (octal) 200+ status if it terminates abnormally (see signal(2) for a
list of status values).

A pipeline is a sequence of one or more commands separated by |. The standard output of each
command but the last is connected by a pipe(2) to the standard input of the next command.
Each command is run as a separate process; the shell waits for the last command to terminate.

A list is a sequence of one or more pipelines separated by ;, &, &&, or ||, and optionally ter-
minated by ; or & Of these four symbols, ; and & have equal precedence, which is lower than
that of && and ||. The symbols && and || also have equal precedence. A semicolon (;) causes
sequential execution of the preceding pipeline; an ampersand (&) causes asynchronous execu-
tion of the preceding pipeline (i.e., the shell does not wait for that pipeline to finish). The sym-
bol && (||) causes the list following it to be executed only if the preceding pipeline returns a
zero (non-zero) exit status. An arbitrary number of new-lines may appear in a list, instead of
semicolons, to delimit commands.

A command is either a simple-command or one of the following. Unless otherwise stated, the
value returned by a command is that of the last simple-command executed in the command.

for name [in word ...] do list done
Each time a for command is executed, name is set to the next word taken from the in
word list. If in word ... is omitted, then the for command executes the do list once for
each positional parameter that is set (see Parameter Substitution below). Execution ends
when there are no more words in the list.

case word in [pattern [| pattern 1 ...) list ;3]... esac
A case command executes the list associated with the first pattern that matches word.
The form of the patterns is the same as that used for file-name generation (see File —
Name Generation below).

if list then list [elif list then list 1 ... [else list] fi
The list following if is executed and, if it returns a zero exit status, the list following
the first then is executed. Otherwise, the list following elif is executed and, if its value
is zero, the list following the next then is executed. Failing that, the else list is exe-
cuted. If no else /ist or then /ist is executed, then the if command returns a zero exit
status.

while list do list done =
A while command repeatedly executes the while /ist and, if the exit status of the last
command in the list is zero, executes the do /ist; otherwise the loop terminates. If no
commands in the do /st are executed, then the while command returns a zero exit
status; until may be used in place of while to negate the loop termination test.

January 12, 1981 Page 1 January 12, 1981

L

}

SH(1)

CB—UNIX 2.3 SH(1)

(list)
Execute /list in a sub-shell.

{list;}
list is simply executed.

The following words are only recognized as the first word of a command and when not quoted:
if then else elif fi case esac for while until do done { }

Comments.
A word beginning with # causes that word and all the following characters up to a new-line to
be ignored.

Command Substitution.
The standard output from a command enclosed in a pair of grave accents (* ") may be used as
part or all of a word; trailing new-lines are removed.

Parameter Substitution.
The character $ is used to introduce substitutable parameters. Positional parameters may be
assigned values by set. Variables may be set by writing:

name =value | name=value 1 ...
Pattern-matching is not performed on value.

${parameter}
A parameter is a sequence of letters, digits, or underscores (a name), a digit, or any of
the characters &, @, #, ?, —, §, and !. The value, if any, of the parameter is substi-
tuted. The braces are required only when parameter is followed by a letter, digit, or
underscore that is not to be interpreted as part of its name. A name must begin with a
letter or underscore. If parameter is a digit then it is a positional parameter. If parame-
ter is = or @, then all the positional parameters, starting with $1, are substituted
(separated by spaces). Parameter $0 is set from argument zero when the shell is
invoked.
${parameter: —word}
If parameter is set and is non-null then substitute its value; otherwise substitute word.
${parameter:=word}
If parameter is not set or is null then set it to word; the value of the parameter is then
substituted. Positional parameters may not be assigned to in this way.
${parameter:?word}
If parameter is set and is non-null then substitute its value; otherwise, print word and
exit from the shell. If word is omitted, then the message ‘‘parameter null or not set’ is
printed.
S{parameter: +word} -
If parameter is set and is non-null then substitute word; otherwise substitute nothing.

In the above, word is not evaluated unless it is to be used as the substituted string, so that, in
the following example, pwd is executed only if d is not set or is null:

echo ${d:— pwd"}

If the colon (:) is omitted from the above expressions, then the shell only checks whether
parameter s set or not.

The following parameters are automatically set by the shell:

The number of positional parameters in decimal.

Flags supplied to the shell on invocation or by the set command.

The decimal value returned by the last synchronously executed command.
The process number of this shell.

The process number of the last background command invoked.

- | W

January 12, 1981 Page 2 January 12, 1981

CB—UNIX 2.3 SH(1)

The following parameters are used by the shell:

HOME The default argument (home directory) for the cd command.

PATH The search path for commands (see Execution below). The user may not
change PATH if executing under rsh.

CDPATH
The search path for the ¢d command.

MAIL If this variable is set to the name of a mail file, then the shell informs the user

. of the arrival of mail in the specified file.

TIMEO
Time interval for shell timeout, decimal seconds (see Timeout below).

PS1 Primary prompt string, by default *°$ ™.

PS2 Secondary prompt string, by default > .

IFS Internal field separators, normally space, tab, and new-line.

The shell gives default values to PATH, TIMEO, PS1, PS2, and IFS, while HOME and MAIL
are not set at all by the shell (although HOME is set by login(1)).

Blank Interpretation.

After parameter and command substitution, the results of substitution are scanned for internal
field separator characters (those found in IFS) and split into distinct arguments where such
characters are found. Explicit null arguments ("* or ~ ") are retained. Implicit null arguments
(those resulting from parameters that have no values) are removed.

File Name Generation.

Following substitution, each command word is scanned for the characters #, ?, and [. If one of
these characters appears then the word is regarded as a pattern. The word is replaced with
alphabetically sorted file names that match the pattern. If no file name is found that matches
the pattern, then the word is left unchanged. The character . at the start of a file name or
immediately following a /, as well as the character / itself, must be matched explicitly.

& Matches any string, including the null string.
Matches any single character.

..]1 Matches any one of the enclosed characters. A pair of characters separated by
— matches any character lexically between the pair, inclusive. If the first char-
acter following the opening [~ is a *““!’’ then any character not enclosed is
matched.

~—.y

Quoting.
The following characters have a special meaning to the shell and cause termination of a word
unless quoted:

; & () | < > new-line space tab

A character may be quoted (i.e., made to stand for itself) by preceding it with a \. The pair
\new-line is ignored. All characters enclosed between a pair of single quote marks),
except a single quote, are quoted. Inside double quote marks (""), parameter and command
substitution occurs and \ quotes the characters \, ~, ", and $. "$#" is equivalent to "$1 82 ...%,
whereas "$(@" is equivalent to "$1" "$2°

Prompting.

When used interactively, the shell prompts with the value of PS1 before reading a command.
If at any time a new-line is typed and further input is needed to complete a command, then the
secondary prompt (i.e., the value of PS2) is issued.

Input/Output.

Before a command is executed, its input and output may be redirected using a special notation
interpreted by the shell. The following may appear anywhere in a simple-command or may pre-
cede or follow a command and are not passed on to the invoked command; substitution occurs

January 12, 1981 Page 3 January 12, 1981

SRTE AL

SH(1)

CB—UNIX 2.3 SH(1)
before word or digit is used:
<word Use file word as standard input (file descriptor 0).
>word Use file word as standard output (file descriptor 1). If the file does not exist
then it is created; otherwise, it is truncated to zero length.
>>word Use file word as standard output. If the file exists then output is appended to it

(by first seeking to the end-of-file); otherwise, the file is created.
<<[—]word The shell input is read up to a line that is the same as word, or to an end-of-file.
_ The resulting document becomes the standard input. If any character of word is
quoted, then no interpretation is placed upon the characters of the document;
otherwise, parameter and command substitution occurs, (unescaped) \new-line
is ignored, and \ must be used to quote the characters \, §, ~, and the first char-
acter of word. If — is appended to <<, then all leading tabs are stripped from
word and from the document.

< &digit The standard input is duplicated from file descriptor digit (see dup(2)). Simi-
larly for the standard output using >.
<&— The standard input is closed. Similarly for the standard output using >.

If one of the above is preceded by a digit, then the file descriptor created is that specified by the
digit (instead of the default 0 or 1). For example:

L 2>&1
creates file descriptor 2 that is a duplicate of file descriptor 1.

If a command is followed by & then the default standard input for the command is the empty
file /dev/null. Otherwise, the environment for the execution of a command contains the file
descriptors of the invoking shell as modified by input/output specifications.

Redirection of output is not allowed in the restricted shell.

Environment.

The environment (see environ(7)) is a list of name-value pairs that is passed to an executed pro-
gram in the same way as a normal argument list. The shell interacts with the environment in
several ways. On invocation, the shell scans the environment and creates a parameter for each
name found, giving it the corresponding value. Executed commands inherit the same environ-
ment. If the user modifies the values of these parameters or creates new ones, none of these
affects the environment unless the export command is used to bind the shell’s parameter to the
environment. The environment seen by any executed command is thus composed of any
unmodified name-value pairs originally inherited by the shell, plus any modifications or addi-
tions, all of which must be noted in export commands.

The environment for any simple-command may be augmented by prefixing it with one or more
assignments to parameters. Thus:

TERM =450 cmd args and
(export TERM; TERM=450; cmd args)

are equivalent (as far as the above execution of cmd is concerned).

If the —k flag is set, all keyword arguments are placed in the environment, even if they occur
after the command name. The following first prints a=b ¢ and then c:

echo a=b ¢
set —k
echo a=b ¢

Signals.

The INTERRUPT and QUIT signals for an invoked command are ignored if the command is fol-
lowed by &; otherwise signals have the values inherited by the shell from its parent, with the
exception of signal 11 (but see also the trap command below).

January 12, 1981 Page 4 January 12, 1981

SH(1)

CB—UNIX 2.3 . SH(1)

Timeout

The shell parameter TIMEO defines the decimal number of seconds which the shell will wait
for input after issuing a prompt. If no (possibly null) command has been input during this
interval, the warning message

Shell timeout: type return within 30 seconds.

will appear on the terminal. If no return (or command) is input, the shell will terminate 30
seconds later.

A value of 0 for TIMEO will result in no timeout.

Execution.
Each time a command is executed, the above substitutions are carried out. Except for the Spe-
cial Commands listed below, a new process is created and an attempt is made to execute the

command via exec(2).

The shell parameter PATH defines the search path for the directory containing the command.
Alternative directory names are separated by a colon (:). The default path is :/bin:/usr/bin
(specifying the current directory, /bin, and /usr/bin, in that order). Note that the current
directory is specified by a null path name, which can appear immediately after the equal sign or
between the colon delimiters anywhere else in the path list. If the command name contains a /
then the search path is not used; such commands will not be executed by the restricted shell.
Otherwise, each directory in the path is searched for an executable file. If the file has execute
permission but is not an a.out file, it is assumed to be a file containing shell commands. A
sub-shell (i.e., a separate process) is spawned to read it. A parenthesized command is also exe-
cuted in a sub-shell.

Special Commands.
The following commands are executed in the shell process and, except as specified, no
input/output redirection is permitted for such commands:

: No effect; the command does nothing. A zero exit code is returned.

. file Read and execute commands from file and return. The search path specified by PATH
is used to find the directory containing file.

break [n]
Exit from the enclosing for or while loop, if any. If n is specified then break n levels.

continue [n]
Resume the next iteration of the enclosing for or while loop. If n is specified then
resume at the n-th enclosing loop.

cd[arg]
Change the current directory to arg. The shell parameter HOME is the default arg.
The shell parameter CDPATH defines the search path for the directory containing arg.
Alternative directory names are separated by a colon (:). The default path is <null>
(specifying the current directory). Note that the current directory is specified by a null
path name, which can appear immediately after the equal sign or between the colon del-
imiters anywhere else in the path list. If arg begins with a / then the search path is not
used. Otherwise, each directory in the path is searched for arg. cd may not be executed
by rsh.

eval [arg ...]
The arguments are read as input to the shell and the resulting command(s) executed.

exec [arg ...]
The command specified by the arguments is executed in place of this shell without
creating a new process. Input/output arguments may appear and, if no other arguments
are given, cause the shell input/output to be modified.

exit [n]
Causes a shell to exit with the exit status specified by n: If n is omitted then the exit

January 12, 1981 Page § January 12, 1981

