TELINIT (IM) CB—UNIX 2.3 TELINIT (IM)

NAME

telinit — user communication with init
SYNOPSIS

telinit [0123456sSQabc]
DESCRIPTION

Telinit, which is linked to /etc/init, is used to direct the actions of init. It takes a one character
argument and signals init via the kill system call to perform the appropriate action. The follow-
ing arguments serve as directives to init.

[0-6] tells init to place the system in one of the run states 0-6.

[a,b,c] tells init to process only those /etc/inittab file entries having a the a, b or ¢ run

state set.
Q tells init to reexamine the /etc/inittab file.
[s,S] tells init to enter the single user environment. When this level change is

effected, the virtual system teletype, /dev/syscon, is changed to the terminal
from which the command was executed.

Telinit can only be run by one who is super user or a member of group sys.

FILES
init(1M), who(1), kill(2), inittab(5)

DIAGNOSTICS
Nlegal Argument

February 24, 1980 Page 1 February 24, 1980

TEST (1)

NAME

CB—UNIX 2.1 TEST (1)

test — condition evaluation command

SYNOPSIS
test expr
[expr |

DESCRIPTION

Test evaluates the expression expr and, if its value is true, returns a zero (true) exit status; oth-
erwise, a non-zero (false) exit status is returned; fest also returns a non-zero exit status if there
are no arguments. The following primitives are used to construct expr:

—r file
—w file
—x file
- f file
—d file
—~¢ file
-b file
—-u file
—~g file
-k file
—s file
—~t [fildes]

-z sl

-n sl

sl = 52
sl = s2
sl

nl —eq n?2

true if file exists and is readabie.

true if file exists and is writable.

true if file exists and is executable.

true if file exists and is a regular file.

true if file exists and is a directory.

true if file exists and is a character special file.
true if file exists and is a block special file.
true if file exists and its set-user-1D bit is set.
true if file exists and its set-group-ID bit is set.
true if file exists and its sticky bit is set.

true if file exists and has a size greater than zero.

true if the open file whose file descriptor number is fildes (1 by default) is associ-
ated with a terminal device.

true if the length of string s/ is zero.

true if the length of the string s/ is non-zero.
true if strings s/ and s2 are equal.

true if strings s/ and s2 are not equal.

true if s/ is not the null string.

true if the integers n/ and n2 are algebraically equal. Any of the comparisons
—ne, —gt, —ge, —It, and —le may be used in place of —eq.

These primaries may be combined with the following operators:

!
—a
-0

(expr)

unary negation operator. —
binary and operator.
binary or operator (—a has higher precedence than —o).

parentheses for grouping.

Notice that all the operators and flags are separate arguments to test. Notice also that
parentheses are meaningful to the shell and, therefore, must be escaped.

SEE ALSO

find(1), sh(1).

WARNING

In the second form of the command (i.e., the one that uses [], rather than the word test), the
square brackets must be delimited by blanks.

Page 1

November 1979

TIME(1) CB-UNIX 2.3 TIME(1)

NAME

time — time a command
SYNOPSIS

time command [args ...]
DESCRIPTION

The command is executed with arguments args; after it completes, the following report is
printed on the standard output:

real rtime

user utime

sys stime

breads nbreads
bwrites nbwrites

rtime: Total elapsed clock time during execution of command.

utime: Time spent in user mode during execution of command.

stime: Time spent in system mode during execution of command.

breads: Number of block device reads (e.g., disk, magtape, etc.) caused by command.
bwrites: Number of block device writes during execution of command.

The execution time can depend on what kind of memory the program happens to land in; the
user time in MOS is often half what it is in core.

BUGS
Notice that:

time who >x

puts the timing information into x. If it desired to put the output from who into file x the fol-
lowing command line will serve:

time sh -¢ who >x

Elapsed time is accurate to the second, while the CPU times are measured to the 60th second.
Thus the sum of the CPU times can be up to a second larger than the elapsed time.

February 19, 1980 Page 1 February 19, 1980

ot M

TK (1)

NAME

CB—-UNIX 2.1 TK(1)

tk — paginator for the Tektronix 4014

SYNOPSIS

tk [=t][-N1[—=pL] [name]

DESCRIPTION

The output of tk is intended for a Tektronix 4014 terminal. Tk arranges for 66 lines to fit on
the screen, divides the screen into N columns, and contributes an eight space page offset in the
single-column case. Tabs, spaces, and backspaces are collected and plotted when necessary.
Teletype Model 37 half- and reverse-line sequences are interpreted and plotted. At the end of
each page rk waits for a newline (empty line) from the keyboard before continuing on to the
next page. In this wait state, the command !line will send /ine to the shell.

The command line options are:

=t Don’t wait between pages; for directing output into a file.

=N Divide the screen into N columns and wait after the last column.

—pL Set page length to L. L accepts the scale factors i (inches), and I (lines): default is lines.

SEE ALSO

November 1979 Page |

T

nroff (1)

November 1979

s T ——

TKDUMP (1G) CB—-UNIX 2.1 TKDUMP (1G)

NAME
tkdump — prints a Tektronix file
USAGE
tkdump file [file ...]
DESCRIPTION
Tkdump prints a file containing Tektronix scope code, any file name ending with ‘.tk’ written by
gex(1G).
Example:
Wed Aug 24 14:12:00 1977 t.tk
Line Style=140
J252,442 V252,442 V536,442 V536,524
Line Style=150
J253,276 V253,276
J251,276 V251,276
J252,276 V252,276
J252,275 V536,275
J252,277 V536,277
J252,276 V536,276
J537,276 V537,214
J535,276 V535,214
J536,276 V536,214
SEE ALSO
gex(1G)
AUTHOR

D. J. Jackowski

Page 1 November 1979

TM(1)

NAME

CB—UNIX 2.3 T™(1)

tm — meditate

SYNOPSIS

tm [—number] [time]

DESCRIPTION

FILES

Tm causes UNIX to go into a state in which all current activities are suspended for time minutes
(default is 20). At the beginning of this period, tm generates a set of number (default 3) tran-
scendental numbers. Then it prints a two- to six-character nonsense syllable (mantra) on every
logged-in terminal (a different syllable on each terminal). For the remainder of the time inter-
val, it repeats these numbers to itself, in random order, binary digit by binary digit (memory
permitting), while simultaneously contemplating its kernel. It is suggested users utilize the
time thus provided to do some meditating (or praying) themselves. One possibility is to close
one’s eyes, attempt to shut out one’s surroundings, and concentrate on the mantra supplied by
tm. At the end of the time interval, UNIX returns to the suspended activities, refreshed and
reinvigorated. Hopefully, so do the users.

Tm does not use any files, from external influences and distractions.

DIAGNOSTICS

BUGS

If disturbed for any reason during the interval of meditation, tm locks the keyboard on every
terminal, prints an unprintable expletive, and unlocks the keyboard. Subsequent UNIX opera-
tion may be marked by an unusual number of lost or scrambled files and droped lines.

If number is greater that 32,767 (decimal), tm appears to generate rational numbers for the
entire time interval, after which the behavior of the system may be completely irrational (i.e.
transcendental).

WARNING

May 22,

Attempts to use flog(1) on tm are invariably counterproductive.

NOTE:
This page was copied from PWB/UNIX Release 2.0 (IH) and brought to you for your amusement.

1981 Page 1 May 22, 1981

TOUCH (1) CB—UNIX 2.1 TOUCH (1)

NAME
touch — change modification time of a file
SYNOPSIS
touch [—c] [—fprotofile] file ...
DESCRIPTION
Touch with no arguments, will cause the modification time of each file to be changed to current
time.

The —c option prevents rouch from creating the file if it did not previously exist.
The —f option tells touch to make the modification time of file the same as the modification
time of protofile. There must be no blank between —f and protofile.
SEE ALSO
stat(2), time(2), utime(2),
DIAGNOSTICS
All diagnostics are hopefully self-explanatory.

BUGS
The access time is unchanged intentionally.
Future enhancements to accept date format mmddhhmm(yy]

Page | November 1979

TP(1)

NAME

CB—-UNIX 2.1 TP(1)

tp — manipulate tape archive

SYNOPSIS

tp [key] [name ...]

DESCRIPTION

Page |

Tp saves and restores files on DECtape or magtape. Its actions are controlled by the key argu-
ment. The key is a string of characters containing at most one function letter and possibly one
or more function modifiers. Other arguments to the command are file or directory names
specifying which files are to be dumped, restored, or listed. In all cases, appearance of a direc-
tory name refers to the files and (recursively) subdirectories of that directory.

The function portion of the key is specified by one of the following letters:

T The named files are written on the tape. If files with the same names already exist,
they are replaced. ‘Same’ is determined by string comparison, so ./abc can never be
the same as /usr/sho/abc even if /usr/sbo is the current directory. If no file argu-
ment is given, . is the default.

u updates the tape. u is like r, but a file is replaced only if its modification date is later
than the date stored on the tape; that is to say, if it has changed since it was dumped.
u is the default command if none is given. d

d deletes the named files from the tape. At least one name argument must be given.
This function is not permitted on magtapes.

X extracts the named files from the tape to the file system. The owner and mode are
restored. If no file argument is given, the entire contents of the tape are extracted.

t lists the names of the specified files. [f no file argument is given, the entire contents
of the tape is listed. -

The following characters may be used in addition to the letter which selects the function
desired.

m Specifies magtape as opposed to DECtape.

b Normally #p writes a boot routine in tape block 0 and begins writing the directory
and specified files in block 1. The b modifier causes tp to write the boot routine in
block 1 and begin writing the directory and specified files in block 2. This modifier
is used in place of m for writing a DEC ROM bootable magtape.

0,...,7 This modifier selects the drive on which the tape is mounted. For DECtape, x is
default; for magtape 0 is the default.

v Normally i does its work silently. The v (verbose) option causes it to type the
name of each file it treats preceded by the function letter. With the t function, v
gives more information about the tape entries than just the name.

c means a fresh dump is being created; the tape directory is cleared before beginning.
Usable only with r and u. This option is assumed with magtape since it is impossible
to selectively overwrite magtape.

i Errors reading and writing the tape are noted, but no action is taken. Normally,
errors cause a return to the command level.

f Use the first named file, rather than a tape, as the archive. This option is known to
work only with x.

w causes (p to pause before treating each file, type the indicative letter and the file
name (as with v) and await the user’s response. Response y means ‘yes', so the file
is treated. Null response means ‘no’, and the file does not take part in whatever is

November 1979

TP (1) CB—-UNIX 2.1 TP (1)

being done. Response x means ‘exit’; the p command terminates immediately. In
the x function, files previously asked about have been extracted already. With r, u,
and d no change has been made to the tape.

FILES
/dev/tap?
/dev/mt?

SEE ALSO
ar(1), tar(1)
DIAGNOSTICS
Several; the non-obvious one is ‘Phase error’, which means the file changed after it was
selected for dumping but before it was dumped.
BUGS
A single file with several links to it is treated like several files.

Binary-coded control information makes magnetic tapes written by s difficult to carry to other
machines; ar(1) avoids the problem.

November 1979 Page 2

TR(1) CB-UNIX 2.1 TR(1)

NAME

tr — translate characters
SYNOPSIS

tr [—eds] [stringl [string2]]
DESCRIPTION

Tr copies the standard input to the standard output with substitution or deletion of selected
characters. Input characters found in stringl are mapped into the corresponding characters of
string2. When string2 is short it is padded to the length of stringl by duplicating its last charac-
ter. Any combination of the options —cds may be used: —c¢ complements the set of characters
in stringl with respect to the universe of characters whose ASCII codes are 01 through 0377
octal; —d deletes all input characters in stringl; —s squeezes all strings of repeated output char-
acters that are in string2 to single characters.

In either string the notation a— b means a range of characters from a to 4 in increasing ASCII
order. The character \ followed by 1, 2 or 3 octal digits stands for the character whose ASCII
code is given by those digits. A \ followed by any other character stands for that character.

EXAMPLE
The following example creates a list of all the words in filel one per line in file2, where a word
is taken to be a maximal string of alphabetics. The second string is quoted to protect \ from
the Sheil. 012 is the ASCII code for new-line.

tr —cs A—Za—z \012" <filel >file2

SEE ALSO
ed(1), ascii(?)

BUGS
Won’t handle ASCII NUL in stringl or siring2; always deletes NUL from input.

Page 1 . November 1979

TRUE (1) CB—UNIX 2.1 TRUE (1)

NAME
true, false — provide truth values

SYNOPSIS
true

false

DESCRIPTION

True does nothing, successfully. False does nothing, unsuccessfully. They are typically used in
input to s#(1) such as:

while true
do
command
done
SEE ALSO
sh(1)
DIAGNOSTICS

True has exit status zero, false nonzero.

Page 1 November 1979

TSET(1)

NAM

_ SYNOPSIS
y taet

&

&1

- o

o eda,

FILE

T

Lo a5

3

SN —
AL W o

Lo

ooy o
TVSy ey

SEE ALY

NOTES

-1

ohoopsh

R RTINS

.

TSORT (1) CB—UNIX 2.1 TSORT (1)

NAME
tsort — topological sort

SYNOPSIS
tsort [file]

DESCRIPTION
Tsort produces on the standard output a totally ordered list of items consistent with a partial

ordering of items mentioned in the input file. If no file is specified, the standard input is
understood.

The input consists of pairs of items (nonempty strings) separated by blanks. Pairs of different
items indicate ordering. Pairs of identical items indicate presence, but not ordering.

SEE ALSO
lorder(1)

DIAGNOSTICS
Odd data: there is an odd number of fields in the input file.

BUGS
Uses a quadratic algorithm; not worth fixing for the typical use of ordering a library archive file.

Page 1 November 1979

TTT (1X) CB—UNIX 2.1 TTT (1X)

NAME
ttt — tic-tac-toe

SYNOPSIS
/usr/games/ttt

DESCRIPTION
Tuis the X and O game popular in the first grade. This is a learning program that never makes
the same mistake twice.

Although it learns, it learns siowly. It must lose nearly 80 games to completely know the game.

FILES
/usr/games/ttt.k learning file

Page | November 1979

-~

TTY (1) CB-UNIX 2.1 TTY (1)

NAME
tty — get the terminal’s name

SYNOPSIS
tty [—s |

DESCRIPTION
Ty prints the pathname of the user’s terminal. The —s option inhibits printing, allowing one
to just test the exit code.

EXIT CODES

0 if standard input is a terminal
1 otherwise.
DIAGNOSTICS

““not a tty" if the standard input file is not a terminal (and —s is not specified).

Page 1 November 1979

TURBO ENCABULATOR (1) CB-UNIX 2.1 TURBO ENCABULATOR(1)

NAME
turbo — encabulator

DESCRIPTION
For a number of years now work has been proceeding in order to bring perfection to the
crudely conceived idea of a machine that would not only supply inverse reactive current for use
in unilateral phase detractors, but would also be capable of automatically synchronizing cardinal
grammeters. Such a machine is the "Turbo-Encabulator”. Basically, the only new priniple
involved is that instead of power being generated by the relaxive motion of conductors and
fluxes, it is produced by the modial interaction of megneto-reluctance and capacitive directence.

The original machine had a base-plate of prefabulated amulite, surmounted by a malleable loga-
rithmic casing in such a way that the two spurving bearings were in a direct line with the pen-
tametric fan. The latter consisted simply of six hydrocoptic marzelvanes, so fitted to the ambifa-
cient lunar waneshaft that sides fumbling was effectively prevented. The main winding was of
the normal lotus-o-delta type placed in panendermic semiboloid slots in the stator, every
seventh conductor being connected by a non-reversible tremie pipe to the differential girdlespr-
ing on the "up" end of the grammeters.

Forty-one manestically spaced grouting brushes were arranged to feed into the rotor slip-stream
a mixture of high S-valve phenyhydrobenzamine and five per cent reminative tetryliodohexam-
ine. Both of these liquids have specific pericosities given by P-2.5Cn where n is the diathetical
evolute of retrograde temperature phase disposition and C is the Cholmondeley's anular grillage
coefficient. Initially, n was measured with the aid of a metapolar refractive pilfrometer (for a
description of this ingenious instrument, see L. E. Rumpelverstein in "Zeitschrift fur
Elektrotechnistiatischs-Donnerblitze”, vol. vii.), but up to the present date nothing has been
found to equal the transcendental hopper dadoscope (see "Prological Sciences,” June, 1914).

Electrical engineers will appreciate the difficulty of nubing together a regurgitative purwell and a
supramitive wennelsprocket. Indeed, this proved to be a stumbling block to further develop-
ment until, in 1942, it was found that the use of anhydrous nagling pins enabled a kyptonastic
bolling shim to be tankered.

The early attempts to construct a sufficiently robust spiral decommutator failed largely because
of a lack of appreciation of the large quasi-piestic stress in the gremlin studs: the latter were
specially designed to hold the roffit bars to the spamshaft. When, however, it was discovered
that wending could be prevented by a simple addition to the living sockets almost perfect run-
ning was secured.

The operating point is maintained as near as possible to the h.f. rem peak by constantly fromag-
ing the bitumogenous spandrels. This is a distinct advance on the standard niveisheave in that
no dramcock oil is required after the phase detractors have remissed.

Undoubtedly, the turbo-encabulator has now reached a very high level of technical develop-
ment. It has been successfully used for operating nofer trunnions. In addition whenever a
barescent skor motion is required, it may be employed in conjunction with the drawn recipro-
cating dingle arm to reduce sinusoidal depleneration.

DIAGNOSTICS
All diagnostics are printed on file descriptor 2.

BUGS

The living sprockets can sometime react unfavorably with the hydrocoptic marzelvanes to pro-
duce a high level of radiation. This should not be considered a probiem though.

Page 1 November 1979

TYPO (1) CB—-UNIX 2.1 TYPO(1)

NAME
typo — find possibie typos

SYNOPSIS
typo [=n] [file] ..

DESCRIPTION
Typo hunts through a document for unusual words, typographic errors, and /iapax legomena and
prints them on the standard output.

The words used in the document are printed out in decreasing order of peculiarity along with an
index of peculiarity. An index of 10 or more is considered peculiar. Printing of certain very
common English words is suppressed.

The statistics for judging words are taken from the document itself, with some help from
known statistics of English. The —n option suppresses the help from English and should be
used if the document is written in, for example, Urdu.

Troff(1) control lines are ignored. Quote marks, vertical bars, hyphens, and ampersands within
words are equivalent to spaces. Words hyphenated across lines are put back together.
FILES
/tmp/ttmp??
/usr/lib/salt
/usr/lib/sq2006

SEE ALSO
spell(l).

Page 1 November 1979

UCORE(1) CB—UNIX 2.3 UCORE(1)

NAME .
ucore — turn on or off the unique core dumping feature.

SYNOPSIS
ucore onlofl shell command

DESCRIPTION
Ucore is used to turn on and off the unique core dumping feature of the operating system.
When the feature is off (the default), core files are dumped in core. When the feature is
enabled, cores are dumped in core.nnnnn, where nnnnn is the process id of the process that ter-
minated with the core dump. This feature is useful when more than one process drops a core,
or when it is necessary to terminate a multiprocess action and it is desired to see what each pro-
cess was doing. To get a sh which forks processes with the unique core feature on, do the fol-
lowing:

exec ucore on sh

This will replace the current shell with one in which the feature is enabled.

SEE ALSO
ucore(2)

February 24, 1980 Page 1 February 24, 1980

/

[P —

UMOUNT (1) CB—UNIX 2.3 UMOUNT(1)

NAME

umount — dismount file system
SYNOPSIS

umount special ...
DESCRIPTION

Umount announces to the system that the removable file system(s) previously mounted on spe-
cial file special is/are to be removed.

SEE ALSO
mount(1), umount(2), mtab(5)

FILES
/etc/mtab mounted device table

DIAGNOSTICS
Frequently, in the case of /usr, the file system is found to be busy because one of the Shell
accounting files (/usr/adm/sh_acct or /usr/adm/su_acct) is open for some Shell or system
accounting is active (/usr/adm/acct).

March 13, 1981 Page 1 March 13, 1981

UNAME (1) CB—UNIX 2.1 UNAME (1)

NAME
uname — print name of current UNIX

SYNOPSIS
uname [—snary]

DESCRIPTION
Uname prints the current name of UNIX on the standard output file. It is mainly useful to
determine what system one is using. The options cause selected information returned by
uname(2) to be printed:

-s print the system name (default).

-n print the nodename (the nodename may be a name that the system is known by to a
communications network i.e. wuucp(1C).)

-r print the operating system release.
-y print the operating system version.

SEE ALSO
uname(2)

Page 1 November 1979

UNHEX (D) CB—UNIX 2.1) UNHEX (1)

NAME

unhex — transiate hexed file to binary
SYNOPSIS

unhex filel file2
DESCRIPTION

Unhex will read filel outputting into file2 one byte for every two characters read. The input is
assumed to be in hex format (i.e., that produced by the hex program).

SEE ALSO
cu(1C), hex(1)

DIAGNOSTICS
Argument count
Unable to open input file
Unabie to create output file
Unexpected line feed
Garbage in file

November 1979 Page | November 1979

UNIQ(1) CB—~UNIX 2.1 UNIQ (1)

NAME

uniq — report repeated lines in a file
SYNOPSIS

unig [—ude [+n] [=n 1] [input [output]]
DESCRIPTION

Unig reads the input file comparing adjacent lines. In the normal case, the second and succeed-

ing copies of repeated lines are removed; the remainder is written on the output file. /nput and

ourput should always be different. Note that repeated lines must be adjacent in order to be
found: see sors(1). If the —u flag is used, just the lines that are not repeated in the original file
are output. The —d option specifies that one copy of just the repeated lines is to be written.

The normal mode output is the union of the —u and —d mode outputs.

The —c option supersedes —u and —d and generates an output report in default style but with

each line preceded by a count of the number of times it occurred.

The » arguments specify skipping an initial portion of each line in the comparison:

-n The first » fields together with any blanks before each are ignored. A field is defined
as a string of non-space, non-tab characters separated by tabs and spaces from its
neighbors.

+n The first n characters are ignored. Fields are skipped before characters.

SEE ALSO

comm (1), sort(1)

Page 1 November 1979

UNITS (1) CB—-UNIX 2.1 UNITS (1)

NAME
units — conversion program

SYNOPSIS
units

DESCRIPTION .
Units converts quantities expressed in various standard scales to their equivalents in other
scales. It works interactively in this fashion:

You have: inch

You want: cm
+ 2.54000e +00
[3.93701e—-01

A quantity is specified as a multiplicative combination of units optionally preceded by a numeric
multiplier. Powers are indicated by suffixed positive integers, division by the usual sign:

You have: 15 pounds force/in2
You want: atm

* 1.02069 +00

/ 9.79730e—01

Units only does multiplicative scale changes. Thus it can convert Kelvin to Rankine, but not
Centigrade to Fahrenheit. Most familiar units, abbreviations, and metric prefixes are recog-
nized, together with a generous leavening of exotica and a few constants of nature including:

pi ratio of circumference to diameter
c speed of light

e charge on an electron

g acceleration of gravity

force sameasg

mole Avogadro’s number

water pressure head per unit height of water
au astronomical unit

‘Pound’ is a unit of mass. Compound names are run together, e.g. ‘lightyear’. British units
that differ from their US counterparts are prefixed thus: ‘brgallon’. For a complete list of units,
‘cat /usr/lib/unittab’.

FILES
/usr/lib/unittab

Page 1 November [979

UNPACK(1) CB—~UNIX 2.1 UNPACK(1)

NAME

unpack — expand compressed files
SYNOPSIS

unpack name ...
DESCRIPTION

Unpack expands files created by pack(l). For each file name specified in the command, a
search is made for a file called name.z (or just name, if name ends in .z). If this file appears to
be a packed file, it is replaced by its expanded version. The new file has the .z suffix stripped
from its name, and has the same access modes, access and modification dates, and owner as
those of the packed file.

Unpack returns a value that is the number of files it was unable to unpack. Failure may occur

if:
the file name (exclusive of the .z) has more than 12 characters;
the file cannot be opened,;
the file does not appear to be the output of pack(1l);
a file with the ‘“‘unpacked”’ name already exists;
if the unpacked file cannot be created.
SEE ALSO

pack(1), pcat(1).

Page 1| : ; November 1979

UPDATE(1) CB—UNIX 2.1 UPDATE (1)

NAME
update — periodically update the super block

SYNOPSIS
update

DESCRIPTION
Update is a program that executes the sync primitive every 60 seconds. This insures that the file
system is fairly up to date in case of a crash. This command should not be executed directly,
but should be executed out of the /etc/lines file. See sync (2) for details.

SEE ALSO .
init(1M), sync(2)

BUGS
With update running, if the CPU is halted just as the sync is executed, a file system can be dam-
aged. This is partially due to DEC hardware that writes zeros when NPR requests fail. A fix
would be to have sync temporarily increment the system time by at least 60 seconds to trigger
the execution of updare. This would give 60 seconds grace to hait the CPU.

November 1979 Page 1 November 1979

UPDFS(1)

NAME

CB-UNIX 2.1 UPDFS (1)

updfs — update file system

SYNOPSIS

Jetc/updfs [—NmxctviogfuebpqR] [tapefile] [name] [file] [dir]

DESCRIPTION
Updfs reads magtapes (or files) created by the cmpfs command and updates the file system
named by the dirargument. Its actions are governed by the specified flags (in the absence of all
flags, updfs simply lists the contents of the tape):

N Nis an optional one or two decimal digits which designate which mag tape drive the pro-

e

gram should use. Drive 0 is default if no drive is specified.
Use the file tapefile as the input instead of a mag tape drive.

Extract files from the tape and write them into the file system as given by their name on
the tape. Names on the tape are relative, so that all files extracted from the tape will end
up being heirarchically lower than the argument dir .

Compare files on the tape with the corresponding files in the file system under the argu-
ment dir. Only the files which are different are noted. If the x flag has also been specified,
updfs will not extract a file unless it mismatches. Note that the only difference between x
and xcis that the modification dates on all files will be changed in the former case, while
the mod dates on only mismatching files will be changed in the latter. Files may
mismatch in terms of mode, owner id, group id, file contents, or, in the case of special
files, their major/minor device assignment.

Produce list of files for which updfs did something. This list will contain a subset of all
the names on the tape only if the ¢, ior o flags are specified. Each line will consist of the
entry type [dcall, the relative path name, and the link-to path name if the entry is a link
entry.

Produce verbose output. In addition to the information printed when the ¢t flag is given,
the verbose option expands the output to include the mode, link count, owner id, group
id, and size of the file on the tape. In addition, if the ¢ flag was specified, another line of
output is generated to show the mode, ownership, etc, of the corresponding file on the file
system, if any. This helps to identify exactly why updfs thought the two files mismatched.
If the two lines of output are identical, then it may be assumed that the mismatch
occurred in the contents of the files.

Ignore all files on the tape which have the same relative pathname as one of the path-
names in an ignore file, or which are heirarchically lower. The name of the ignore file is
taken to be the next argument in the argument list (.e. name above).

Look at only files which match a name in an only file or are heirarchicaily lower. The
name of the only file is taken to be the next argument in the argument list. An
ignore/oniy file should be a list of relative pathnames (both file names and directory
names are allowed) separated by newlines. The "relative” requirement is important; for
example, it should be clear that no pathname may start with a "/". Although it is logically
possible to have a situation where it would be convenient to have both an ignore and an
only file, updfsallows only one or the other to be used.

updfs is to look on the tape for the single file name given by the following argument
(name). If the name turns out to be a directory name, only the directory name is exam-
ined; heirarchicaily lower names are not examined. The flags x, c, tand v apply, but the
flags jand o are not allowed. The purpose of this option is to bypass the "only" option if
only one name is to be examined on the tape. Note that if either the x or c¢ flag is given,
the dir argument must also be given.

November 1979 Page 1 November 1979

UPDFS (1) ’ CB—UNIX 2.1 " UPDFS(1)

f Useful only if the flags x and g have been specified. This flag causes the single file
(name) to be extracted from the tape and given the name file .

u Unlink any file about to be created. Useful only when the x flag has been specifed, this
option allows an update to be brought in as the specified file name, but destroys any pre-
vious links to the file. If the unlink fails, either because the user does not have the
proper permission or because the file does not previously exist, a create failure message
will be printed.

e May be used when the tape is an incremental backup (created with the e option in the
cmpfs command). Any files or directories in the file system which were not in existence
when the incremental was made will be deleted (if x is specified) and listed Gf ¢or vis
specified). Using this option with updfs after reloading an epoch tape will restore the file
system to its state when the cmpfs was performed.

Input is blocked 5120 blocks per record instead of 512.
ignore file mode when doing comparsion.
ignore file user ownership when doing comparsion.

e w o

ignore file group ownership when doing comparsion.

FILES
/dev/mtN

SEE ALSO
cmpfs(1M)

November 1979 Page 2 November 1979

UUCLEAN(1IM) CB—UNIX 2.3 UUCLEAN(1IM)

NAME

uuclean — uucp spool directory clean-up
SYNOPSIS

vuclean [options] ...
DESCRIPTION

Uuclean will scan the spool directory for files with the specified prefix and delete all those which
are older than the specified number of hours.

The following options are available.

—ddirectory
Clean directory instead of the spool directory.

—ppre Scan for files with pre as the file prefix. Up to 10 —p arguments may be specified. A
—p without any pre following will cause all files older than the specified time to be
deleted.

—ntime Files whose age is more than time hours will be deleted if the prefix test is satisfied.
(default time is 72 hours)

—m Send mail to the owner of the file when it is deleted.
This program will typically be started by cron(1M).

FILES
/Jusr/lib/uucp directory with commands used by uuclean internally
/Jusr/spool/uucp spool directory

SEE ALSO
uucp(1C), uwux(1C).

May 18, 1981 Page 1 May 18, 1981

UUCP(1C) CB—UNIX 2.3 UUCP(1C)

NAME

uucp, uulog, uuname — unix to unix copy

SYNOPSIS

uucp [option] ... source-file ... destination-file
uulog [option] ...

uuname [—1]

DESCRIPTION

May 18,

Uucp copies files named by the source-file arguments to the destination-file argument. A file
name may be a path name on your machine, or may have the form:

system-name!path-name

where system-name is taken from a list of system names which uucp knows about. Shell meta-
characters ?#[] appearing in path-name will be expanded on the appropriate system.

Path names may be one of:
€Y a full path name;

(2) a path name preceded by ~“user where user is a login name on the specified system and
is replaced by that user’s login directory;

(3) a path name preceded by ~/user where user is a login name on the specified system and
is replaced by that user’s directory under PUBDIR;

(4) anything else is prefixed by the current directory.

If the result is an erroneous path name for the remote system the copy will fail. If the
destination-file is a directory, the last part of the source-file name is used.

Uucp preserves execute permissions across the transmission and gives 0666 read and write per-
missions (see chmod(2)).

The following options are interpreted by uucp:
-d Make all necessary directories for the file copy (default).
-—f Do not make intermediate directories for the file copy.

—c Use the source file when copying out rather than copying the file to the spool directory
(default).

—C Copy the source file to the spool directory.
—m Send mail to the requester when the copy is complete.

— nuser
Notify user on the remote system that a file was sent.

—esys Send the uucp command to system sys to be executed there. (Note — this will only be
successful if the remote machine allows the wuwcp command to be executed by
Jusr/lib/uucp/uuxqt.)

Uulog maintains a summary log of wuucp and wuux(1C) transactions in the file
/usr/spool/uucp/LOGFILE by gathering information from partial log files named
Jusr/spool/uucp/LOG.».?. (These files will only be created if the LOGFILE is being used by
another process.) It removes the partial log files.

The options cause uulog to print logging information:

—ssys Print information about work involving system sys.

— uuser
Print information about work done for the specified user.

1981 Page 1 May 18, 1981

UUCP(1C) CB—UNIX 2.3 UuCP(1C)

Uuname lists the uucp names of known systems. The —1 option returns the local system name.

FILES
Jusr/spool/uucp spool directory
Jusr/spool/uucppublic public directory for receiving and sending (PUBDIR)
/usr/lib/uucp/* other data and program files

SEE ALSO

mail(1), uux(1C).
Uucp Implementation Description by D. A. Nowitz.

WARNING
The domain of remotely accessible files can (and for obvious security reasons, usually should)
be severely restricted. You will very likely not be able to fetch files by path name; ask a
responsible person on the remote system to send them to you. For the same reasons you will
probably not be able to send files to arbitrary path names. As distributed, the remotely accessi-
ble files are those whose names begin /usr/spool/uucppublic (equivalent to “nuucp or just 7).

BUGS
All files received by uucp will be owned by uucp.
The —m option will only work sending files or receiving a single file. (Receiving multiple files
specified by special shell characters ?#[] will not activate the —m option.)

May 18, 1981 Page 2 May 18, 1981

LULOG (1C) CB—-UNIX 2.1 UULOG (1C)

NAME :

uulog — uucp user log inquiry
SYNOQPSIS

uulog [option] ...
DESCRIPTION

Uulog will search through the uucp log file and output the requested lines.

The requested lines are specified using one or more of the following options:

—ssys Output lines which have sys as a prefix to the system name;

—uuser Output lines which have user as a prefix to the user who requested the work.

FILES
/usr/lib/uucp - directory with commands used by wu/log internally
/usr/lib/uucp/spooi - spool directory
/usr/lib/uucp/spool/LOGFILE

SEE ALSO
uucp(1C), uux(1C), uuclean(1C)

Page |) November 1979

UUNAMES (1C) CB—UNIX 2.1 UUNAMES (1C)

NAME

uunames — list names of UNIX systems known to uucp
SYNOPSIS

uunames [=1] [—v]
DESCRIPTION

Uunames returns the list of the names of all UNIX systems known to the local uucp(1C). The
—1 option causes uunames to return the name of the local system. The —v option causes
uunames to return the description of the uucp systems.

FILES
/usr/lib/uucp/L.sys
/usr/lib/uucp/ ADMIN
/usr/lib/uucp/uuname

SEE ALSO
uucp_(lC)

November 1979 Page 1 November 1979

—

VURELC (12

e

SYNDFPSIS

LRURS Y

DESCRIFTION

SEE ALS0

1 i3

UUSTAT(1C) CB—UNIX 2.3 UUSTAT(1C)

NAME

uustat — uucp status inquiry and job control
SYNOPSIS

uustat [option] ...
DESCRIPTION

Uustat will display the status of, or cancel, previously specified uucp commands, or provide gen-
eral status on uucp connections to other systems. The following options are recognized:

—mmch Report the status of accessibility of machine mch. If mch is specified as all, then the
status of all machines known to the local uucp are provided.

—kjobn Kill the uucp request whose job number is jobn. The killed uucp request must
belong to the person issuing the uustat command unless he is the super-user.

—chour Remove the status entries which are older than howr hours. This administrative
option can only be initiated by the user uucp or the super-user.

—uuser Report the status of all uucp requests issued by user.

—Ssys Report the status of all uucp requests which communicate with remote system sys.

—ohour Report the status of all uucp requests which are older than hour hours.

—yhour Report the status of all uucp requests which are younger than hour hours.

—jall Report the status of all the uucp requests.

—v Report the uucp status verbosely. If this option is not specified, a status code is
printed with each uucp request.

When no options are given, uustat outputs the status of all uucp requests issued by the current

user. Note that only one of the options —j, —m, —k, —¢, or the rest of other options may be

specified.

For example, the command
uustat —ujdd —scbosg —y72 —v

will print the verbose status of all uucp requests that were issued by user jdd to communicate
with system cbosg within the last 72 hours. The meanings of the job request status are:

job-number user remote-system command-time status-time status

where the stafus may be either an octal number or a verbose description. The octal code
corresponds to the following description:

OCTAL STATUS

00001 the copy failed, but the reason cannot be determined
00002 permission to access local file is denied

00004 permission to access remote file is denied

00010 bad uucp command is generated

00020 remote system cannot create temporary file

00040 cannot copy to remote directory

00100 cannot copy to local directory

00200 local system cannot create temporary file

00400 cannot execute uucp

01000 copy succeeded
02000 copy finished, job deleted
04000 job is queued

The meanings of the machine accessibility status are:
system-name time status

where time is the latest status time and status is a self-explanatory description of the machine
status. :

May 18, 1981 Page 1 May 18, 1981

S S SV —

UUSTAT (1C) CB—UNIX 2.3

FILES
/usr/spool/uucp spool directory
/usr/spool/uucp/L_stat system status file
/usr/spool/uucp/R_stat
request status file

SEE ALSO
uucp(1C).
Uustat — A UUCP Status Inquiry Program, by H. Che.

May 18, 1981 Page 2

UUSTAT(IC)

May 18, 1981

~1

UUSUB(IM) CB—UNIX 2.3 UUSUB(1IM)

NAME

uusub — monitor uucp network

SYNOPSIS

uusub [options]

DESCRIPTION

Uusub defines a uucp subnetwork and monitors the connection and traffic among the members
of the subnetwork. The following options are available:

—asys Add sys to the subnetwork.
—dsys Delete sys from the subnetwork.

-1 Report the statistics on connections.
-r Report the statistics on traffic amount.
—f Flush the connection statistics.

—uhr Gather the traffic statistics over the past hr hours.
—csys Exercise the connection to the system sys. If sys is specified as all, then exercise the
connection to all the systems in the subnetwork.

The meanings of the connections report are:
sys #call #ok time #dev #login #nack #other

where sys is the remote system name, #call is the number of times the local system tries to call
sys since the last flush was done, #0k is the number of successful connections, time is the the
latest successful connect time, #dev is the number of unsuccessful connections because of no
available device (e.g. ACU), #login is the number of unsuccessful connections because of login
failure, #nack is the number of unsuccessful connections because of no response (e.g. line
busy, system down), and #other is the number of unsuccessful connections because of other
reasons.

The meanings of the traffic statistics are:
sfile sbyte rfile rbyte

where sfile is the number of files sent and sbyte is the number of bytes sent over the period of
time indicated in the latest uusub command with the —uhr option. Similarly, rfile and rbyte are
the numbers of files and bytes received.

The command:
uusub —c all —u 24

is typically started by cron(1M) once a day.

FILES
/usr/spool/uucp/SYSLOG system log file
/usr/lib/uucp/L_sub connection statistics
/usr/lib/uucp/R_sub traffic statistics

SEE ALSO

uucp(1C), uustat(1C).

May 18, 1981 Page 1 May 18, 1981

t
Lt
¥ ."11“:“"
i i

o e @ i @

UUX(1C) CB—UNIX 2.3 UUX(1C)

NAME

uux — unix to unix command execution
SYNOPSIS

wux [—] command-string
DESCRIPTION

Uux will gather zero or more files from various systems, execute a command on a specified sys-
tem and then send standard output to a file on a specified system. Note that, for security rea-
sons, many installations will limit the list of commands executable on behalf of an incoming
request from uux. Many sites will permit little more than the receipt of mail (see mail(1)) via
uux. ;

The command-string is made up of one or more arguments that look like a Shell command line,
except that the command and file names may be prefixed by system-name!. A null system-name
is interpreted as the local system.

File names may be one of
(1) a full path name;

(2) a path name preceded by “xxx where xxx is a login name on the specified system
and is replaced by that user’s login directory;

(3) anything else is prefixed by the current directory.

The — option will cause the standard input to the uux command to be the standard input to the
command-string. For example, the command

uux "!diff usg!/usr/dan/fl pwba!/a4/dan/f1 > !f]1.diff"
will get the f1 files from the ‘“‘usg’ and “‘pwba’’ machines, execute a diff command and put the
results in f1.diff in the local directory.

Any special shell characters such as <<>>;| should be quoted either by quoting the entire
command-string, or quoting the special characters as individual arguments.

Uux will attempt to get all files to the execution system. For files which are output files, the
file name must be escaped using parentheses. For example, the command

uux aluucp b!/usr/file \(c!/usr/file\)

will send a uucp command to system *‘a’ to get /usr/file from system *““b’* and send it to sys-

‘6 7Y

tem ¢ .

Uux will notify you if the requested command on the remote system was disallowed. The
response comes by remote mail from the remote machine.

FILES
/Jusr/lib/uucp/spool spool directory
Jusr/lib/uucp/* other data and programs
SEE ALSO

BUGS

May 18,

uuclean(1M), uucp(1C).
Uucp Implementation Description by D. A. Nowitz

Only the first command of a shell pipeline may have a system-name!. All other commands are
executed on the system of the first command.

The use of the shell metacharacter = will probably not do what you want it to do. The shell
tokens << and >> are not implemented.

1981 Page 1 May 18, 1981

VAL (18)

NAME

CB—UNIX 2.1 VAL (1S)

val — validate SCCS file

SYNOPSIS
val —

. val [=s] [—=rSID] [—mname] [—ytype] file ..

DESCRIPTION

Val determines if the specified file is an SCCS file meeting the characteristics specified by the
optional argument list. Arguments to va/ may appear in any order. The arguments consist of
keyletter arguments, which begin with a —, and named files.

Val has a special argument, —, which causes reading of the standard input until an end-of-file
condition is detected. Each line read is independently processed as if it were a command line

argument list.

Vai generates diagnostic messages on the standard output for each command line and file pro-
cessed and also returns a single 8-bit code upon exit as described below.

The keyletter arguments are defined as follows. The effects of any keyletter argument apply
independently to each named file on the command line.

=S

~rSiD

- mname

—Yope

The presence of this argument silences the diagnostic message normally
generated on the standard output for any error that is detected while pro-
cessing each named file on a given command line.

The argument value SID (SCCS /Dentification String) is an SCCS delta
number. A check is made to determine if the SID is ambiguous (e. g., rl
is ambiguous because it physically does not exist but implies 1.1, 1.2, etc.
which may exist) or invalid (e. g., r1.0 or rl.1.0 are invalid because nei-
ther case can exist as a valid delta number). If the SID is valid and not
ambiguous, a check is made to determine if it actually exists.

The argument value name is compared with the SCCS "M% keyword in

file.

The argument value gype is compared with the SCCS % Y% keyword in
Jile.

The 8-bit code returned by valis a disjunction of the possible errors, i. e., can be interpreted as
a bit string where (moving from left to right) set bits are interpreted as follows:

bit 0 =
bit 1
. bit 2
bit 3
bit 4
bit 5 =
bit 6 =
bit 7 =

missing file argument;

unknown or duplicate keyletter argument;
corrupted SCCS file;

can't open file or file not SCCS:

SID is invaiid or ambiguous:

SID does not exist;

%Y%, —y mismatch;

%M%, —m mismatch;

Note that va/ can process two or more files on a given command line and in turn can process
multiple command lines (when reading the standard input). In these cases an aggregate code is
= returned — a logical OR of the codes generated for each command line and file processed.

SEE ALSO

admin(1S), delta(1S), get(1S), prs(1S)

DIAGNOSTICS

Use /elp (1S) for explanations.

November 1979

VAL (1S) CB—-UNIX 2.1 VAL (1S)

BUGS
Vai can process up to 50 files on a single command line. Any number above 50 will produce a

core dump.

November 1979 Page 2

VPMC(1C) CB—UNIX 2.3 VPMC(1C)

NAME
vpmc — compiler for the virtual protocol machine

SYNOPSIS
vpme [-m] [—r] [—c] [—x] [—s sfile] [—11fle] [—iifile] [—o ofile]
file

DESCRIPTION

Vpme is the compiler for a language that is used to describe communications link protocols.
The output of vpmc is a load module for the virtual protocol machine (VPM), which is a
software construct for implementing communications link protocols (e.g., BISYNC) on the DEC
KMC11-B microprocessor. VPM is implemented by an interpreter in the KMC which cooperates
with a driver in the UNIX host computer to transfer data over a communications link in accor-
dance with a specified link protocol. UNIX user processes transfer data to or from a remote ter-
minal or computer system through VPM using normal UNIX open, read, write, and close opera-
tions. The VPM program in the KMC provides error control and flow control using the conven-
tions specified in the protocol.

The language accepted by vpme is essentially a subset of C; the implementation of vpmc uses
the RATFOR preprocessor (ratfor(1)) as a front end; this leads to a few minor differences,
mostly syntactic.

There are two versions of the interpreter. The appropriate version for a particular application is
selected by means of the —i option. The BISYNC version (—i bisync) supports half-duplex,
character-oriented protocols such as the various forms of BISYNC. The HDLC version (—i hdle,
the default) supports full-duplex, bit-oriented protocols such as HDLC. The communications
primitives used with the BISYNC version are character-oriented and blocking; the primitives
used with the HDLC version are frame-oriented and non-blocking.

Options

The meanings of the command-line options are:

—m Use m4(1) instead of ¢pp as the macro preprocessor.

-r Produce RATFOR output on the standard output and suppress the remaining com-
piler phases.

—c Compile only (suppress the assembly and linking phases).

-X Retain the intermediate files used for communication between passes.

—s sfile Save the generated VPM assembly language on file sfile.
—1lfile Produce a VPM assembly-language listing on file lfile.
—iifile Use the interpreter version specified by ifile (default hdlc).
—o ofile Write the executable object file on file ofile (default a.out).

These options may be given in any order.
Programs

Input to vpmc consists of a (possibly null) sequence of array declarations, followed by one or
more function definitions. The first defined function is invoked (on command from the UNIX
VPM driver) to begin program execution.

Functions
A function definition has the following form:

function name()
statement_list
end

Function arguments (formal parameters) are not allowed. The effect of a function call with
arguments can be obtained by invoking the function via a macro that first assigns the value of

February 9, 1981 Page 1 February 9, 1981

s AL, Lo oS s

VPMC(1C) CB—UNIX 2.3 VPMC(1C)

each argument to a global variable reserved for that purpose. See EX4AMPLES below.

A statement_list is a (possibly null) sequence of labeled statements. A labeled_statement is a
statement preceded by a (possibly null) sequence of labels. A label is either a name followed
by a colon (:) or a decimal integer optionally followed by a colon.

The statements that make up a statement list must be separated by semicolons (;). (A semi-
colon at the end of a line can usually be omitted; refer to the description of RATFOR for
details.) Null statements are allowed.

Statement Syntax
The following types of statements are allowed:

expression

Ivalue = expression

Ivalue + = expression

lvalue — = expression

bvalue | = expression

Ivalue & = expression

Ivalue ™ =expression

halue <<<=-expression

lvalue >> =-expression

if (expression)statement

if (expression)statement else statement
while(expression)statement
for(statement; expression; statement)statement
repeat statement

repeat statement until expression
break

next
switch(expression){case_list}
return(expression)

return

goto name

goto decimal_constant
{statement_list}

repeat is equivalent to the do keyword in C; next is equivalent to continue.

A case_list is a sequence of statement lists, each of which is preceded by a label of the form:
case constant:

The label for the last statement_list in a case_list may be of the form:
default:

Unlike C, RATFOR supplies an automatic break preceding each new case label.

Expression Syntax

A primary_expression (abbreviated primary) is an lvalue or a constant. An lalue is one of the
following:

name
name [constant]

A unary_expression (abbreviated unary) is one of the following:

primary
name()

February 9, 1981 Page 2 February 9, 1981

VPMC(1C) CB—UNIX 2.3 VPMC(1C)

system_call
+ +halue
— —halue
(expression)
lunary
“unary

The following types of expressions are allowed:

unary

unary + primary
unary — primary
unary |primary
unary &primary
unary &~ primary
unary " primary
unary <<<primary
unary >>>primary
unary = =primary
unary!=primary
unary > primary
unary <<primary
unary > =primary
unary <=primary

Note that the right operand of a binary operator can only be a constant, a name, or a name with
a constant subscript.

System Calls

A VPM program interacts with a communications device and a driver in the host computer by
means of system calls (primitives).

The following primitives are available only in the BISYNC version of the interpreter:

atoe(primary)
Translate ASCII to EBCDIC. The returned value is the EBCDIC character that
corresponds to the ASCII character represented by the value of the primary expression.
The translation tables reflect the prejudices of a particular installation.

crc16(primary)
The value of the primary expression is combined with the cyclic redundancy check-sum
at the location passed by a previous ercloc system call. The CRC-16 polynomial
(x'4x'5+x2+1) is used for the check-sum calculation.

crcloc(name)
The two-byte array starting at the location specified by name is cleared. The address of
the array is recorded as the location to be updated by subsequent crcl6 system calls.

etoa(primary)
Translate EBCDIC to ASCIL. The returned value is the ASCII character that
corresponds to the EBCDIC character represented by the value of the primary expres-
sion. The translation tables reflect the prejudices of a particular installation.

get(lvalue)
Get a byte from the current transmit buffer. The next available byte, if any, is copied
into the location specified by /value. The returned value is zero if a byte was obtained,
otherwise it is non-zero.

getrbuf(name)

February 9, 1981 Page 3 February 9, 1981

s

ry——

& oo e Bt (3

VPMC(1C) CB—UNIX 2.3 YPMC(1C)

Get (open) a receive buffer. The returned value is zero if a buffer is available, other-
wise it is non-zero. If a buffer is obtained, the buffer parameters are copied into the
array specified by name. The array should be large enough to hold at least three bytes.
The meaning of the buffer parameters is driver-dependent. If a receive buffer has pre-
viously been opened via a getrbuf call but has not yet been closed via a call to rtnrbuf,
that buffer is reinitialized and remains the current buffer.

getxbuf(name)
Get (open) a transmit buffer. The returned value is zero if a buffer is available, other-
wise it is non-zero. If a buffer is obtained, the buffer parameters are copied into the
array specified by name. The array should be large enough to hold at least three bytes.
The meaning of the buffer parameters is driver-dependent. If a transmit buffer has pre-
viously been opened via a getxbuf call but has not yet been closed via a call to rtnxbuf,
that buffer is reinitialized and remains the current buffer.

put(primary)
Put a byte into the current receive buffer. The value of the primary expression is
inserted into the next available position, if any, in the current receive buffer. The

returned value is zero if a byte was transferred, otherwise it is non-zero.

rev(lvalue)
Receive a character. The process delays until a character is available in the input silo.
The character is then moved to the location specified by halue and the process is reac-
tivated.

rsom(constant)
Skip to the beginning of a new receive frame. The receiver hardware is cleared and the
value of constant is stored as the receive sync character. This call is used to synchron-
ize the local receiver and remote transmitter when the process is ready to accept a new
receive frame.

rtnrbuf(name)
Return a receive buffer. The original values of the buffer parameters for the current
receive buffer are replaced with values from the array specified by name. The current
receive buffer is then released to the driver.

rtnxbuf(name)
Return a transmit buffer. The original values of the buffer parameters for the current
transmit buffer are replaced with values from the array specified by name. The current
transmit buffer is then released to the driver.

xeom(constant)
Transmit end-of-message. The value of the constant is transmitted, then the
transmitter is shut down.

xmt(primary)
Transmit a character. The value of the primary expression is transmitted over the com-
munications line. If the output silo is full, the process waits until there is room in the
silo.

xsom(constant)
Transmit start-of-message. The transmitter is cleared, then the value of constant is
transmitted six times. This call is used to synchronize the local transmitter and the
remote receiver at the beginning of a frame.

The following primitives are available only with the HDLC version of the interpreter:

abtxfrm()
The current transmission, if any, is aborted, if possible, by sending a frame-abort

February 9, 1981 Page 4 February 9, 1981

VPMC(IC) CB—UNIX 2.3 VPMC(1C)

sequence (seven one bits, followed immediately by a terminating flag). This operation
is not feasible with some hardware interfaces, in which case this primitive is a no-
operation.

getxfrm(primary)
Get a transmit buffer. If the transmit-buffer queue is not empty, the buffer at the head
of the queue is removed from the queue and attached to the sequence number specified
by the value of the primary expression If the sequence number is greater than seven or
the sequence number already has a buffer attached, the process is terminated in error.
The returned value is zero if a buffer was obtained, otherwise non-zero.

norbuf()
Test for the availability of an empty receive buffer. The returned value is true (non-
zero) if the queue of empty receive buffers is currently empty; otherwise the returned
value is false (zero).

revfrm(name)
Get a completed receive frame. If the queue of completed receive frames is non-
empty, the frame at the head of the queue is removed and becomes the current receive
frame. If a frame is obtained, the first five bytes of the frame are copied into the array
specified by name. The returned value is true (non-zero) if a frame was obtained;
otherwise, it is false (zero). The rightmost four bits of the returned value indicate the
frame length as follows: if the value of the rightmost four bits is equal to fifteen, the
frame length is greater than or equal to 15; otherwise the frame length is equal to the
value of the rightmost four bits. The frame length includes the two CRC bytes at the
end of the frame and any control information at the beginning of the frame. Bytes fol-
lowing the first two bytes of the frame, but not including the two CRC bytes, are copied
into a receive buffer, if one is available at the time the frame is received. Bit 020 of
the returned value is zero if a receive buffer was available, otherwise non-zero. The
values of the leftmost three bits of the returned value are currently unspecified. If a
frame was obtained, the first five bytes of the frame are copied into the array specified
by name. Frames with errors are discarded; a count is kept for each type of error.

: Frames may be discarded for any of the following reasons: (1) CRC error, (2) frame
i too short (less than four bytes), (3) frame too long (buffer size exceeded), or (4) no
: receive buffer available. If a frame with a buffer attached was previously obtained with
¥

revfrm, but the buffer has not been released to the driver with rtnrfrm, that buffer is
returned to the queue of empty receive buffers. At most one receive frame with no
buffer attached is retained by the interpreter; if a new frame arrives before the frame
with no buffer attached has been obtained with revfrm, the new frame is discarded.

! rtarfrm()

; Return a receive buffer. The current receive buffer (the one obtained by the most
recent revfrm primitive) is returned to the driver. If there is no current receive buffer,
the process is terminated in error.

rsxmtq()

; Reset the transmit-buffer queue. The sequence number assignment is removed from
: all transmit buffers. If a transmission is currently in progress, the transmission is
! aborted, if possible.

) rtnxfrm(primary)

! Return a transmit buffer. The transmit buffer currently attached to the sequence

' number specified by the value of the primary expression is returned to the driver and
the sequence number assignment is removed from that buffer. If the specified

‘ sequence number does not have a buffer attached, the process is terminated in error.

Transmit buffers must be returned in the same sequence in which they were obtained,

February 9, 1981 Page S February 9, 1981

VPMC(1C) CB—UNIX 2.3 VPMC(1C)

otherwise the process is terminated in error.

setctl(name,primary)
Specify transmit-control information. The number of bytes specified by the primary
expression are copied from the array specified by name and saved for use with subse-
quent xmtfrm or xmtctl primitives. If the transmitter is currently busy, the process is
terminated in error.

xmtbusy()
Test for transmitter busy. If a frame is currently being transmitted, the returned value

is true (non-zero); otherwise the returned value is false (zero).

xmtetl()
Transmit a control frame. If a transmission is not already in progress, a new transmis-
sion is initiated. The transmitted frame will contain the control information specified
by the most recent setctl primitive, followed by a two-byte CRC. The CRC-CCITT poly-
nomial (x'6+x!2+x%+1) is used for the CRC calculation. The returned value is zero if a
new transmission was initiated, otherwise non-zero.

xmtfrm(primary)

Transmit an information frame. If a transmission is not already in progress, 2 new
transmission is initiated. The transmitted frame will contain the control information
specified by the most recent setctl primitive, followed by the contents of the buffer
which is currently attached to the sequence number specified by the value of the pri-
mary expression followed by a two-byte CRC. The CRC-CCITT polynomial
(x'6+x!2+x%+1) is used for the CRC calculation. The returned value is zero if a new
transmission was initiated, otherwise non-zero. If the sequence number is greater than
seven or the sequence number does not have a buffer attached, the process is ter-
minated in error.

The following primitives are available with all versions of the interpreter:

dsrwait()
Wait for modem-ready and then set modem-ready mode. The process delays until the
modem-ready signal from the modem interface is asserted. If the modem-ready signal
subsequently drops, the process is terminated. If dsrwait is never invoked, the
modem-ready signal is ignored.

exit(primary)
Terminate execution. The process is halted and the value of the primary expression is
passed to the driver.

getcmd(name)
Get a command from the driver. If a command has been received from the driver
since the last call to getcmd, four bytes of command information are copied into the
array specified by name and a value of true (non-zero) is returned. If no command is
available, the returned value is false (zero).

pause()

Return control to the dispatcher. This primitive informs the dispatcher that the virtual
process may be suspended until the next occurrence of an event that might affect the
state of the protocol for this line. Examples of such events are: (1) completion of an
output transfer, (2) completion of an input transfer, (3) timer expiration, and (4) a
buffer-in command from the driver. In a multi-line implementation, the pause primi-
tive allows the process for a given line to give up control to allow the processor to ser-
vice another line. In a single-line implementation this primitive has no effect.

snap(name)
Create a snap event record. Four bytes from the array specified by name are passed to

February 9, 1981 Page 6 February 9, 1981

Lovaswnin © e s A o AR . Mo IOt iR

USRI

VPMC(1C) CB—UNIX 2.3 VPMC(1C)

the driver, which prefixes a time stamp and sequence number and creates a trace event
record containing the data. If minor device 1 of the trace driver is currently open, the
record is placed on the read queue for that device; otherwise the event record is dis-
carded. The information passed via the snap primitive can be displayed using the
vpmsnap command (see vpmstart(1C)).

rtnrpt(name)
Return a report to the driver. Four bytes from the array specified by name are
transferred to the driver. The process delays until the transfer is complete.

testop(primary) 7
Test for odd parity. The returned value is true (non-zero) if the value of the primary

expression has odd parity, otherwise the returned value is false (zero).

timeout(primary)

Schedule or cancel a timer interrupt. If the value of the primary expression is non-
zero, the current values of the program counter and stack pointer are saved and a timer
is loaded with the value of the primary expression. The system call then returns
immediately with a value of false (zero) as the returned value. The timer is decre-
mented each tenth of a second thereafter. If the timer is decremented to zero, the
saved values of the program counter and stack pointer are restored and the system call
returns with a value of true (non-zero). The effect of the timer interrupt is to return
control to the code immediately following the timeout system call, at which point a
non-zero return value indicates that the timer has expired. The timeout system call
with a non-zero argument is normally written as the condition part of an if statement.
A timeout system call with a zero argument value cancels all previous timeout requests,
as does a return from the function in which the timeout system call was made. A
timeout system call with a non-zero argument value overrides all previous timeout
requests. The maximum permissible value for the argument is 255, which gives a
timeout period of 25.5 seconds.

timer(primary)

Start a timer or test for timer expiration. If the value of the primary expression is
non-zero, a software timer is loaded with the value of the primary expression and a
value of true (non-zero) is returned. The timer is decremented each tenth of a second
thereafter until it reaches zero. If the value of the primary expression is zero, the
returned value is the current value of the timer; this will be true (non-zero) if the
value of the timer is currently non-zero, otherwise false (zero). The timer used by this
primitive is different from the timer used by the timeout primitive. ‘

trace(primary|,primary))

The values of the two primary expressions and the current value of the script location
counter are passed to the driver, which prefixes a sequence number and creates a trace
event record containing the data. If minor device 0 of the trace driver is currently
open, the record is placed on the read queue for that device; otherwise the event record
is discarded. The information passed via the frace primitive can be displayed using the
vpmtrace command (see vpmstart(1C)). If the second argument is omitted, a zero is
used instead. The process delays until the values have been accepted by the host com-
puter.

Constants

A constant is a decimal, octal, or hexadecimal integer, or a single character enclosed in single
quotes. A token consisting of a string of digits is taken to be an octal integer if the first digit is
a zero, otherwise the string is interpreted as a decimal integer. If a token begins with 0x or 0X,
the remainder of the token is interpreted as a hexadecimal integer. The hexadecimal digits
include a through f or, equivalently, A through F.

February 9, 1981 Page 7 February 9, 1981

VPMC(1C) CB—UNIX 2.3 VPMC(1C)

Variables

Variable names may be used without having been previously declared. All names are glo'bal.
All values are treated as 8-bit unsigned integers.

Arrays of contiguous storage may be allocated using the array declaration:

array name[constant]
where constant is a decimal integer. Elements of arrays can be referenced using constant sub-
scripts:

name [constant]

Indexing of arrays assumes that the first element has an index of zero.

Names

A name is a sequence of letters and digits; the first character must be a letter. Upper- and
lower-case letters are considered to be distinct. Names longer than 31 characters are truncated
to 31 characters. The underscore (_) may be used within a name to improve readability, but is
discarded by RATFOR.

Preprocessor Commands

If the —m option is omitted, comments, macro definitions, and file inclusion statements are
written as in C. Otherwise, the following rules apply:

1. If the character # appears in an input line, the remainder of the line is treated as a com-
ment.

2. A statement of the form:
define(name text)
causes every subsequent appearance of name to be replaced by text. The defining text
includes everything after the comma up to the balancing right parenthesis; multi-line
definitions are allowed. Macros may have arguments. Any occurrence of $n within the
replacement text for a macro will be replaced by the nth actual argument when the macro
is invoked.

3. A statement of the form:
include(file)
inserts the contents of file in place of the include command. The contents of the included
file is often a set of definitions.

EXAMPLES
These examples require the use of the —m option.

The function defined below transmits a frame in transparent BISYNC.
A transmit buffer must be obtained with getxbuf before the function
is invoked.

#

Define symbolic constants:

#

define(DLE,0x10)

define(ETB,0x26)

define(PAD,0xff)

define(STX,0x02)

define(SYNC,0x32)

#

Define a macro with an argument:

#
define(xmtcrc,{crc16(8$1); xmt(51);})

February 9, 1981 Page 8 February 9, 1981

= =i

VPMC(1C)

FILES

#

Declare an array:

array crc2];
#
Define the function:
#
function xmtblk()
crcloc(cre);
xsom(SYNC);
xmt(DLE);
xmt(STX);
while(get(byte) ==0){
if(byte == DLE)
xmt(DLE);
xmtcrc(byte);
}
xmt(DLE);
xmtcrc(ETB);
xmt(crc{0]);
xmt(crcl1]);
xeom(PAD);
end

#

CB—UNIX 2.3

The following example illustrates the use of macros to simulate a

function call with arguments.

#

The macro definition:
#
define(xmtctl, {c=81;d=%$2;xmtctl1()})
#
The function definition:
#
function xmtctil()
xsom(SYNC);
xmt(c);
if(d!=0)
xmt(d);
xeom(PAD);
end
#
Sample invocation:
#
function test()
xmtctl{ DLE,0x70);
end

sas_temp#* temporaries
/tmp/sas_ta?? temporary
/tmp/sas_tb?? temporary
Jusr/lib/vpm/pass* compiler phases
Jusr/lib/vpm/pl compiler phase

February 9, 1981 Page 9

VPMC(1C)

February 9, 1981

YPMC(1C) CB—UNIX 2.3 VPMC(IC)

Just/lib/vpm/vratfor compiler phase

/lib/cpp preprocessor

/usr/bin/m4 preprocessor

/bin/kasb KMC11-B assembler

Jusr/lib/vpm/bisync/* interpreter source for the BISYNC interpreter

Jusr/lib/vpm/hdic/= interpreter source for the HDLC interpreter
SEE ALSO

m4(1), ratfor(1), vpmstart(1C), vpm(4).

C Reference Manual by D. M. Ritchie.

RATFOR— A Preprocessor for a Rational Fortran by B. W. Kernighan.
The M4 Macro Processor by B. W. Kernighan and D. M. Ritchie.
Software Tools by B. W. Kernighan and P. J. Plauger (pp. 28-30).

February 9, 1981 Page 10 February 9, 1981

VPMSAVE(1C) CB—UNIX 2.3 VPMSAVE(1C)

NAME
vpmsave, vpmsnap, vpmtrace, vpmfmt — save and print VPM event traces

SYNOPSIS
vpmsave mask device

vpmsnap mask
vpmtrace mask
vpmfmt

DESCRIPTION
Vpmsave opens the minor device of the trace driver specified by device, enables the channels
specified by mask (octal), and then reads event records and writes them to its standard output
(unformated) until killed.

Vpmtrace opens /devftrace (assumed to be minor device 0 of the trace driver) and enables the
channels specified by mask (octal). It then reads event records and prints them until killed.

Vpmsnap opens /dev/snap (assumed to be minor device 1 of the trace driver) and enables the
channels specified by mask (octal). It then reads time-stamped event records and prints them
until killed.

Vpmfmt reads its standard input, which it assumes was generated by vpmsave, and prints it for-
matted to its standard output.

Note that

vpmsave mask device | vpmfmt
is equivalent to

vpmtrace mask

where device is the name of minor device O of the trace driver. If device is the name of minor
device 1 of the trace driver, it is almost equivalent to

vpmsnap mask

the only difference being that the times are not normalized to zero.

Vpmsave and vpmfmt are provided because fewer event records are lost when they are used as
follows:

vpmsave mask device > t &

vpmfmt < t

SEE ALSO
vpmc(1C), kmc(4), trace(4), vpm(4).

February 9, 1981 Page 1 February 9, 1981

VPMSET (1C) CB—UNIX 2.3 VPMSET (1C)

NAME
vpmset, vpmstart — connect VPM drivers and KMCs; load the KMC11-B.

SYNOPSIS
vpmset pdev idev kdev [lineno]

vpmstart device n [filen]

DESCRIPTION

The vpmset command provides a means for dynamically associating a VPM protocol driver minor
device with a particular KMC11 microcomputer or a particular line on a KMS11 communications
mutiplexor. Each such connection requires the use of a separate VPM interface driver minor
device as an intermediary. Until these connections have been made, a user program cannot
open the VPM protocol minor device for reading and/or writing. These connections can be
changed provided the VPM protocol minor device is not open for reading and/or writing and the
VPM interface driver is not connected to a KMC or the protocol associated with the interface
driver is not running (see the VPM interface functions vpmstart and vpmstop (vpm(4)).

Example:
vpmset /dev/vpm2 /dev/vpb3 /dev/kmcl 4

Vpmstart writes filen (a.out by default) to the KMC11-B specified by device and initiates execu-
tion,

The argument n is a magic number that the KMC driver saves to identify the running program.
This number is checked when the VPM driver is opened to provide some assurance that the
program running in the KMC is the one expected. The magic number for VPM interpreters is 6.
When filen has been loaded into to the KMC, its execution is begun. Filen may be any file exe-
cutable by the KMC.

If filen was made using vpmc(1C), the VPM interpreter will be started by vpmstart. The VPM
interpreter waits for a RUN command from the VPM interface driver before beginning execu-
tion of the protocol script. The RUN command is sent by the VPM interface driver when the
VPM protocol minor device is opened.

SEE ALSO
kmc(4), vpm(4).

April 8, 1981 Page 1 April 8, 1981

VCRT(1) CB-UNIX 2.1 VCRT (1)

NAME
vert — filter nroff output for virtual crts

SYNOCPSIS
vert

DESCRIPTION
Vert reads from the standard input and writes onto the standard output. Its input is assumed to
be from nroff running with the —T43 option, and its output is intended for a crt using the vir-
tual crt protocol. While vert will handle reverse paper motion correctly, if the crt being used
does not have enough memory to hold at least a page of text, double column output will not
work correctly unless the nroff output is first piped through co/(1) using col’s —f option.

When outputting to a fully capable crt, verr will result in overstruck characters being in bold
intensity, underlined characters underlined, greek characters in reverse video, superscripts in
dim video, and subscripts in dim, underlined video.

SEE ALSO
nroff (1), col(1), over(1)

BUGS
Chinese characters come out sideways.

November 1979 Page 1 November 1979

WAIT (1) CB—UNIX 2.1 ' WAIT (1)

NAME
wait — await completion of process

SYNOPSIS
wait
DESCRIPTION
Wait until all processes started with & have completed, and report on abnormal terminations.

Because the wair(2) system call must be executed in the parent process, the Shell itself exe-
cutes wais, without creating a new process.

SEE ALSO
sh(1)
BUGS

Not all the processes of a 3- or more-stage pipeline are children of the Shell, and thus can’t be
waited for.

Page | November 1979

WALL(1) CB—UNIX 2.1 WALL(1)

NAME
wall — write to all users

SYNOPSIS
wall [—g grpname | [file]

DESCRIPTION
Wall reads its standard input until an end-of-file. It then sends this message to all currently
logged in users preceded by ‘Broadcast Message from yourname (In??) ..°. It is used to warn
all users, typically prior to shutting down the system.

If a file is given wal/ will read the file instead of the standard input.
The sender should be super-user to override any protections the users may have invoked.

If the -g option is used, a legitimate group name must be supplied. In this case the wall goes
only to members of the group who are currently logged on to the system.

FILES
/dev/In??

SEE ALSO
mesg(1), write(l)

DIAGNOSTICS
"Can’t fork!"

"Cannot send to ..." when the open on a user’s terminal file fails.

Page | November 1979

wC (1) CB—UNIX 2.1 wC (1)

NAME
we — word count

SYNOPSIS
we [—lwe] [name ...]

DESCRIPTION
Wc¢ counts lines, words and characters in the named files, or in the standard input if no name
appears. It also keeps a total count for all named files. A word is a maximal string of charac-
ters delimited by spaces, tabs or new-lines.
The options 1, w, and ¢ may be used in any combination to specify that a subset of lines, words,
and characters are to be reported. The default is —Iwe.
When file names are specified on the command entry line the name(s) will be printed along
with any counts.

Page 1

November 1979

WHAT (18) CB—-UNIX 2.1 WHAT (1S)

NAME
what — identify files

SYNOPSIS
what file

DESCRIPTION
What searches the given files for all occurrences of the pattern which ger(1S) substitutes for
%Z% (this is @(#) at this printing) and prints out what follows until the first ", >, newline, \,
or null character. For example, if the C program in file f.c contains

char iden—_[] "@ (#)identification information”;
and f.c is compiled to yield f.o and a.out, then the command
what f.c f.o a.out

will print
f.c:
identification information
f.o:
identification information
a.out:

identification information

What is intended to be used in conjunction with the command ger (1S), which automatically
inserts identifying information, but it can also be used where the information is inserted manu-
aily.

SEE ALSO
get(1S), heip(1S), stamp(1)

DIAGNOSTICS
Use help (1S) for explanations.

BUGS
It’s possible that an unintended occurrence of the pattern @(#) could be found just by chance,
but this causes no harm in nearly all cases.

November 1979 Page | November 1979

WHO(1)

NAME

CB—UNIX 2.3 WHO(1)

who — who is on the system

SYNOPSIS

who [—rbtpluda] [who-like file]
who [am i]

DESCRIPTION
Who, without an argument, lists the name, whether the user can write to the line, line id, login
time, how long since output occurred to line, and the process id of the command
interpreter(shell) for each current UNIX user. Who with the am i option identifies the user.

Without an argument, who examines the /etc/utmp file to obtain its information. If a file is
given, that file is examined. Typically the given file will be /etc/wtmp, which contains a record
of all the logins since it was created.

The general format for all entries is:

name [state] line time activity pid [loclid] [exit]

With switches who will list logins, logouts, reboots, and modifications of the system clock, as
well as other processes spawned by the init process.

This is the default option and lists only those users who are currently logged in. The
name is the user’s login name. The state describes whether someone else can write to
that terminal. A ‘4 appears if the terminal is writable by anyone. A ‘—’ appears if it is
not. If the person executing the who command is root, then an ‘x” will appear for lines
which have the exclusive use bit set and thus are not writable by root. All other lines will
have a ‘+> or ‘— as is appropriate. Root can write to all lines havinga ‘+’ora ‘=", If
a bad line is encountered, a ‘?’ is printed. The line is the name of the line as found in
the directory /dev. The time is the time that the user logged in. The activity is the
number of hours and minutes since output last went to that particular line. A ‘.’ indi-
cates that the terminal has seen activity in the last minute and is therefore "current”. If
more than twenty-four hours elapse, the entry is marked ‘old’. This field is useful when
trying to determine whether a person is working at the terminal or not. The pid is the
process id of the user’s shell. The Joc field is the comment field associated with this line
as found in /etc/inittab. This is usually contains information about where the terminal is
located.

This option lists only those lines on which the system is waiting for someone to login.
The name field is LOGIN in such cases. Other fields are the same as for user entries
except that the state field doesn’t exist.

This option lists any other process which is currently active and has been previously
spawned by init. The name field is the name of the program executed by init as found in
/etc/inittab. The state, line, and activity fields have no meaning. The loc field is
replaced with the id field, which is the first two characters of the line in /etc/inittab that
spawned this process. -

This option displays all processes that have expired and not been respawned by init. The
exit field appears for dead processes and contains the exit status of the dead process.
This can be useful in determining why a process terminated.

lists the last instance of a hardware boot successfully invoking the init process.
indicates the run state init has been placed in.
lists changes to the system clock and who made them.

lists all options.

September 30, 1980 Page 1 September 30, 1980

WHO(1)

FILES
/etc/utmp
/etc/wtmp
/etc/inittab

SEE ALSO

date(1), init(1M), login(1), mesg(1), inittab(5), utmp(5)

September 30, 1980

CB—-UNIX 2.3

Page 2

WHO(1)

September 30, 1980

WHODO (1M)
NAME
whodo — who is doing what
SYNOPSIS
/etc/whodo
DESCRIPTION

CB—UNIX 2.1

WHODO (1M)

Whodo produces merged, reformatted, and dated output from the who(1) and ps(1) commands.

November [979

Page |

November 1979

~ A e 6

.

PR

043l L3 S kR

T UL PP INPRIS

WRITE(1) CB—UNIX 2.3 WRITE(1)

NAME
write — write to another user
SYNOPSIS
write user [line]
DESCRIPTION
Write copies lines from your terminal to that of another user. When first called, it sends the
message
Message from yourname (In??)...
to the person you want to talk to. When it has successfully completed the connection it also
sends two bells to your own terminal to indicate that what you are typing is being sent. -
The recipient of the message should write back at this point. Communication continues until
an end of file is read from the terminal or an interrupt is sent. At that point write writes ‘EOT’
on the other terminal and exits.
If you want to write to a user who is logged in more than once, the line argument may be used
to indicate which line or tty to send to; otherwise the first instance of the user found in the who
(/etc/utmp) file is assumed and the following message posted:
user is logged on more than one place.
You are connected to "terminal".
Other locations are:
terminal
Permission to write may be denied or granted by use of the mesg command. At the outset writ-
ing is allowed. Certain commands, in particular nroff and pr disallow messages in order to
prevent messy output. However, if the user has super user permissions messages can be forced
onto a write inhibited terminal. :
If the character ‘!’ is found at the beginning of a line, write calls the shell to execute the rest of
the line as a command.
The following protocol is suggested for using write: when you first write to another user, wait
for him or her to write back before starting to send. Each party should end each message with
a distinctive signal ((o) for ‘over’ is conventional) that the other may reply. (oo) (for ‘over
and out’) is suggested when conversation is about to be terminated.
FILES
/etc/utmp to find user /bin/sh to execute ‘!’
SEE ALSO
mail(1), mesg(1), who(1)
DIAGNOSTICS

user not logged in

February 24, 1980 Page 1 February 24, 1980

WUMP (1X) CB—-UNIX 2.1 WUMP (1X)

NAME

wump — hunt the wumpus
SYNOPSIS

/usr/games/wump
DESCRIPTION

Wump plays the game of ‘‘Hunt the Wumpus.” A Wumpus is a creature that lives in a cave
with several rooms connected by tunnels. You wander among the rooms, trying to shoot the
Wumpus with an arrow, meanwhile avoiding being eaten by the Wumpus and falling into Bot-
tomless Pits. There are also Super Bats which are likely to pick you up and drop you in some
random room.

The program asks various questions which you answer one per line; it will give a more detailed
description if you want.

This program is based on one described in People’s Computer Company, 2, 2 (November 1973).

BUGS
It will never replace Space War.

Page 1 November 1979

X25PVC(1C) CB—UNIX 2.3 X25PVC(1C)

NAME
x25pve, x25Ink — install, remove, or get status for a PVC or BX.25 link

SYNOPSIS
x25pve options

x25Ink options

DESCRIPTION
X25pve may be used to install or remove a BX.25 Permanent Virtual Circuit (PVC) on a
specified BX.25 interface (link), or to display the status of a specified BX.25 minor device {slor).
Exactly one of the following options must be used:

—i[—S1[—R][=N slotname chno linkno
Slotname is a path name that specifies a BX.25 minor device (slot). If the minor device
is currently connected to some logical channel on some BX.25 interface (link), then first
that minor device will be removed, if possible (see the —r option). If that minor dev-
ice is available, it is connected to logical channel chno on link number linkno. Chno
must be in the range of 1 to 4,095 and must not be currently in use for any other BX.25
minor device associated with that link. Exactly one of three options must be used to
indicate the session-establishment protocol to be used. The —S option, which is the
preferred option, indicates that session-layer connect/accept/disconnect qualified data
messages are to be used. The —R option indicates that RESET in-order/out-of-order
packets will be recognized. The —N option indicates that the ‘‘no protocol’ session
mode is used.

—r slotname
Remove BX.25 minor device slotname. The command will fail if the slot is open, if
packets are waiting to be transmitted, or if there are unacknowledged packets outstand-
ing.

—s slotname
Print the status of BX.25 minor device slotname. The information printed consists of
slotname, the logical channel number, the link number, and the session-establishment
option.

X25Ink is used to activate or deactivate a specified BX.25 link. Exactly one of the following
options must be used:

—i[—b][—p pkesize] linkno vpmb kmc lineno [kdm]
Activate the BX.25 link that is specified by linkno. The —b option specifies that the
link-level protocol will use Address B. The default is Address A. The —p option
defines the packet size; if it is used, pktsize must be a number that is a power of 2
between 16 and 1,024 inclusive. The default packet size is 128. Linkno is the number
of the BX.25 link to be installed. Vpmb is a path name that specifies the minor device
number of the VPM interface driver that is to be used for the link. Kmc is a path name
that specifies the minor device of the KMC driver and lineno specifies one of the eight
lines (0-7) of a KMS11 multiple-line hardware interface. Kdm is a pathname that
specifies the minor device of the DM11 modem control driver. The —i option makes
the necessary connections between data structures and starts the BX.25 protocol on the
link.

—h linkno
Halt the link specified by linkno.

—s linkno
Print the status of the link specified by linkno. The information printed consists of the
link number, the packet size used on that link, the minor device number of the VPM

interface driver, the minor device number of the KMC driver, and the line number of
the KMC or KMS. .

January 30, 1981 Page 1 January 30, 1981

a
. |

ram

X25PVC(1C) CB—UNIX 2.3

SEE ALSO
nc(4), vpm(4), x25(4).
Operations Systems Network Protocol Specification: BX.25 Issue 2, Bell Laboratories.

January 30, 1981 Page 2

X25PVC(1C)

January 30, 1981

XARGS (1) CB—UNIX 2.1 XARGS (1)

NAME

xargs — construct argument lists and execute command
SYNOPSIS

xargs [-count] command [initial arguments]
DESCRIPTION

Xargs concatenates the given command (and initial arguments) with lines from the standard
input. The command is executed for every 20 lines of input, unless the optional countis given.

EXAMPLE
The command line
find . —type f —print | xargs —35 echo
will execute the echo command for each 5 lines delivered by find (i.e., printed 5 per output
line).

Page 1 November 1979

XREF (1) CB—UNIX 2.1 XREF (1)

NAME
xref = cross reference for C programs
SYNOPSIS
xref [file ...]
DESCRIPTION
xrefreads the named files or the standard input if no file is specified and prints a cross reference
consisting of lines of the form
identifier file-name line-numbers ...
Function definition is indicated by a plus sign (+) preceding the line number.
SEE ALSO

cref(1)

Page | November 1979

YACC(1) CB—UNIX 2.1 YACC(1)

NAME

yacc — yet another compiler-compiler
SYNOPSIS

yace [—vd | grammar
DESCRIPTION

Yacc converts a context-free grammar into a set of tables for a simple automaton which exe-
cutes an LR parsing algorithm. The grammar may be ambiguous; specified precedence rules are
used to break ambiguities.

The output file, y.tab.c, must be compiled by the C compiler to produce a program yyparse.
This program must be loaded with the lexical analyzer program, yylex, as well as main and yyer-
ror, an error handling routine. These routines must be supplied by the user; /fex(1) is useful
for creating lexical analyzers usable by yacc.

If the —v flag is given, the file y.output is prepared, which contains a description of the parsing
tables and a report on conflicts generated by ambiguities in the grammar.

If the —d flag is used, the file y.tab.h is generated with the #define statements that associate
the yacc-assigned ‘token codes’ with the user-declared ‘token names’. This allows source files
other than y.tab.c to access the token codes.

FILES
y.output
y.tab.c
y.tab.h defines for token names
yacc.tmp, vacc.acts temporary files
/usr/lib/yaccpar parser prototype for C programs
SEE ALSO
lex(D)
LR Parsing by A. V. Aho and S. C. Johnson, Computing Surveys, June, 1974.
YACC = Yer Another Compiler Compiler by S. C. Johnson.
DIAGNOSTICS
The number of reduce-reduce and shift-reduce conflicts is reported on the standard output; a
more detailed report is found in the y.output file. Similarly, if some rules are not reachable
from the start symbol, this is also reported.
BUGS

Because file names are fixed, at most one yacc process can be active in a given directory at a
time.

Page 1 November 1979

