INTRO(2) CB—-UNIX 2.1 INTRO(2)

NAME
intro — introduction to system calls

DESCRIPTION :
Section 2 of this manual lists all the entries into the system.. In most cases two calling
sequences are specified, one of which is usable from assembly language, and the other from C.
Most of these calls have an error return. From assembly language an erroneous call is always
indicated by turning on the c-bit of the condition codes. The presence of an error is most easily
tested by the instructions bes and bec ("branch on error set (or clear)”). These are synonyms
for the bcs and bec instructions. From C, an error condition is indicated by an otherwise impos-
sible returned value. Almost always this —1; the individual sections specify the details.

In both cases an error number is also available. In assembly language, this number is returned
in 10 on erroneous calls. From C, the external variable ermo is set to the error number. Ermo
is not cleared on successful calls, so it should be tested only after an error has occurred. There
is a table of messages associated with each error, and a routine for pnntmg the message, see
perror(3). :

The possible error numbers are not recited with each writeup in section 2, since many errors
are possible for most of the calls. Here is a list of the error numbers, their names inside the
system (for the benefit of system-readers), and the messages available using perror. A short
explanation is also provided.

Users needing to examine these error codes directly should include the file
/usr/include/errno.h rather than wiring these numbers into their program.

0 - (unused)

1 EPERM Not owner and not super-user
Typically this error indicates an attempt to modify a file in some way forbidden except
to its owner. It is also returned for attempts by ordinary users to do things allowed
only th the super-user.

2 ENOENT No such file or directory
This error occurs when a file name is specified and the file should exist but doesn’t, or
when one of the directories in a path name does not exist.

3 ESRCH No such process

The process whose number was given to signal does not exist or is already dead. Also
returned for an attempt to send a message to a process that has not enabled message
reception.

4 EINTR Interrupted system call
An asynchronous signal (such as interrupt or quit), which the user has elected to catch,

occurred during a system call. If execution is resumed after processing the signal, it
will appear as if the interrupted system call returned this error condition.

5 EIO 1/0O error
Some physical [/O error occurred during a read or write. This error may in some cases
occur on a call following the one to which it actually applies.

6 ENXIO No such device or address
[/0 on a special file refers to a subdevice which does not exist, or is beyond the limits
of the allowed number of subdevices. It may aiso occur when, for example, a tape
drive is not on-line, or no disk pack is loaded on a drive.

7 E2BIG Arg list too long

An argument list longer than 5,120 bytes (counting the null at the end of each argu-
ment) is presented to a member of the exec family.

November 1979 Page 1 November 1979

INTRO(2), .., CB—UNIX 2.1 INTRO (2)
A B s o B

e L0

8 EN_OEXEC Exec format error

e, request is made to ececute a file which, although it has the appropriate permissions,

S50F does’not start with a valid magic number (see a.our (5)).

9 EBADF Bad file number
' Either a file descriptor refers to no open file, or a read (resp. write) request is made to

a file which is open only for writing (resp. reading).

AO EEHILD No children
Wait was requested but the process has no living or unwaited-for children.

ll, EAGAIN ‘No more processes,
In afork the system ’s process table is full and no more processes can, for the moment,

i "" Y e created N

12 ENOMEM Not enough core
Durmg Aan exec.or break , a program asks for more memory than the system is able to
supply This is not’a temporary condition; the maximum memory size is a system
parameter. The error may also occur if the arrangement of text, data, and stack seg-
ments is such 4s to require mor than the existing 8 segmentation registers, or if there is
not enough swap space during a fork .

5 13 EA@CES Permission denied -
An attempt was made to access a file or some other resource in a way forbidden by the
protection system.

14 EFAULT Memory fault .
User has supplied a non-existent address.

15 ENOTBLK Block device required -
A plain file was mentioned where a block device was required, e.g., in mount .
16 EBUSY Mount device'busy
~ An attempt t0 mount a‘device that was already mounted, or an attempt was made to

dismount a device on which there is an open file or which is some process’s current
. .directory, or the system profile clock was busy.

"'"17 EEXIST File exists - R

An existing ﬂle was memtioned in an mappropnate context e.g., link
~18 EXDEYV Cross-device link .. % g 2 d

A lmk toa file on: emothef devnce~ was attempted

" 19 ENODEYV No such device o
An attempt was made to apply an mappropnate system call to a device; e.g., read a
write-only device.

20 ENOTDIR Not a directory

A non-directory was speéxﬁed Where a dlrectory is required, for example in a path name
or as an argument to cd.

21 EISDIR Isa d:rectory :
- An attempt to write on a directory.

22 EINVAL Invalid argument Ny
some invalid argument: currently, dismounting a non-mounted device, m@ioning an
unknown signal in sigial, giving an unknown request to /ioc//| passing an invalid argu-
ment list to exec, providing an unknown function argument to sema or msg, reading or
swriting .a file for which /sezk has returned a ‘negative pointer, multiple system profiling
."was requested, or invalid math function arguriients (see 3M).

November 1979 ol Page 2 November 1979

INTRO (2) CB-UNIX 2.1 INTRO (3)

23 ENFILE File table overflow A
The system’s table of open files is full, and temporarily no more 0pens can be accepted

24 EMFILE Too many open files ‘

L Only 20 files can be open per process.

25 ENOTTY Not a typewriter -
The file mentioned inioct! is not a typewriter or one of the other devices to wlﬂoh these
calls apply.]

26 ETXTBSY Text file busy R
An attempt to execute a pure-procedure program Wthh is currently open for wrltmg
(or reading). Also an attempt to open for writing a pure- procedure program that is
being executed.

27 EFBIG File too large
An attempt to make a file larger than the maximum of ULIMIT or 2048 blocks

28 ENOSPC No space left on device ~e
During a write to an ordinary file, there is no free space left on th&dev:ce

29 ESPIPE Seek on pipe
An Iseek was issued to a pipe. This error shouid also be issued for other non-rseekable‘
devices.

30 EROFS Read-only file system :
An attempt to modify a file or directory was made on a device mounted read-only

31 EMLINK Too many links
An attempt to make more than 127 links to a ﬁle,

32 EPIPE Write on broken pipe .v
A write on a pipe for which there is no process to read the data.. This condition nor-
mally generates a signal; the error is returned if the signal is ignored.

33 ETABLE No entries left .
One of the system tables necessary to complete the request is: temporarlly full, or the
argement of a function in the math package (3M) is out of the .domain of the function.

33 EDOM Math argument : ' Trora e o
The argument of a function in the math package (3M) is out- of the domain of the
function. This error number is used by certain programs -that were transported from
UNIX/TS to CB-UNIX after that error number was already in use for another purpose

N in CB-UNIX (see 33 ETABLE above)

34 EFUNC Invalid function £
An attempt to perform an invalid operation, or the value of a function in the math
package (3M) is not representable within machine precrsxon

34 ERANGE Result too large
The value of a function in the math package (3M) is not representable within machine

precision. This error number is.also used for 34 EFUNC above See the note under 33
EDOM above.

35 ENOMSG No message \ _
A message of the requested type is not on the message -queue.

36 ENOALOC Resource not allocated
An attempt was made either to use -a facxllty that must first’ be allocated (e.g., recvw

without first enabling messages) or th allocate a facility in a way other than for its
intended use.

]

v

I P R

LU, A -1-
November 1979 Page 3 November 1979

3

INTRO () ¥ 57+ CB—UNIX 2.1 INTRO (2)

37 ELOCK Locking error
An attempt was made to unlock a process or text that was not locked, or an attempt
was fmade to lock the process/text when the text/process was already locked (the lock-
ing specifications are mutually exclusive). Other possibilities are that a locked process
tried to exec, or that sprofi could not lock the user buffer in memory.

SEE ALSO

intro 3)

ASSEMBLER®" -

OLD C

as /usr/include/sys.s file

’fhe“PD“Pdl _aséémbly language interface is given for each system call. The assembler symbols
‘are*défined’in’ /usr/include/sys.s.

Return values appear in registers 10 and rl; it is unwise to expect these registers to be
pteserved: Ar‘erroneous call is always indicated by turning on the c-bit of the condition codes.
The error number is then returned in r0. The presence of an error is most easily tested by the
instructions bes and bec ("branch on error set (or clear)"). These are synonyms for the bcs and
beéc dnstructions. :

For the syscb and utssys groups of system calls, the call’s number is passed in rl and the first
argument to the call, if there is one, is passed in r0.

COMPILER

The manual pages in sections 2 and 3 with names ending in ‘“:0’’ are system calls and functions
that are for use with the old C compiler (occ) and/or release 1 of CB-UNIX. When using the
oid C compiler, old system calls are used automatically via special ‘‘stamping’’ of the version
number in the load files in the compiled programs (see stamp(1)). For system calls that do not
exist in the new compiler, the old system routines are called. For system calls that have a
sysent index identical to a release 2 system call, the stamping determines which will be exe-
cuted. The ‘““:0’" routines are kept around primarily for the commands in section 1 of this
manual, which are still compiled with the old C compiler, and for user routines from version 1
systems that were compiled with the old C compiler (which was the new C compiler under the
old system). The load files for release 1 user programs have the inherent stamping that will
cause the proper system calls and library routines to be executed.

Users should eventually change and recompile programs that require any ‘“:0’’ routines, so that
all programs use the new C compiler and current system calls - the current occ will not be
available in release 3 of CB-UNIX. Of course, any new programs should be written to use the
new C compiler, if at all possible. It is anticipated that the CB-UNIX Systems Group will fol-
low its own advice and change those commands in section ! that still require the oid compiler.

November 197§ - Page 4 November 1979

ACCESS(2) CB—-UNIX 2.1 ACCESS(2) S

NAME o
access — determine accessibility of file v

SYNOPSIS ;
int access (name, mode) = P T
char *name; o !
int mode;

DESCRIPTION . .
Access checks the given file name for accessibility according to mode, which is 4 (read) 2
(write) or 1 (execute) or a combination thereof. ‘

R

R) LR TR Y 4 S
An appropriate error indication is returned if name cannot be found or 1f any of the -desired
access modes would not be granted. On disallowed accesses™1 is returned and the error cede is

in errno. 0 is returned from successful tests.

The user and group IDs with respect to which permission is checked are the reaL UID and GIb
of the process, so this call is useful to set-UID programs. S

Notice that it is only access bits that are checked. A directory may be announced as. writable: by
access, but an attempt to open it for writing will fail (although files may be created there);:a file

may look executable, but exec will fail unless it is in proper format.

SEE ALSO
stat(2)

ASSEMBLER
(access = 33.)
sys access; name; mode

Page 1 Novemper.1979 . .

ACCT(2). . CB—UNIX 2.1 ACCT (2)

TN RS 5
S A

NAME
acct — turn accounting on/off

SYNOPSIS
acct (name)
char »name;

DESCRIPTION
System per process accounting is started and stopped by the acct system call. When system
accounting is active, a record in shell accounting format (see sa(1)) is placed at the end of the
filc- aame for each process that terminates. Name is a pointer to a null terminated string of
ASCH characters that represents the file’s pathname. System accounting is terminated by
ivoking acct with a zero value for name.

Orily theé super-user may start and stop system accounting.
SEEALSO ~ =
accton (1), sa(1), acct(5), intro(2)

DIAGNOSTICS
The error bit (c-bit) is set if the user is not super-user or if an attempt is made to start account-
ing when it is already active. System accounting must have been enabled at system generation
time, else error ENODEV will be returned. From C, a —1 return indicates an error.

ASSEMBLER
(acct = 51.; not in assembler)
Sys acct; name

Page 1 1 November 1979

ALARM (2) CB—UNIX 2.1 ALARM(2)

NAME
alarm — schedule signal after specified time

SYNOPSIS
unsigned alarm (seconds)
unsigned seconds;

DESCRIPTION e
Alarm causes signal SIGALRM (see signal(2)) to be sent to the invoking process in a number
of seconds given by the argument. Unless caught or ignored, the signal terminatesnthe:prgces&

Alarm requests are not stacked; successive calls reset the alarm clock. If the argument is 0, any

alarm request is canceled. Because the clock has a 1-second resolution, the signal may ofcur up

to one second early; because of scheduling delays, resumption of execution of when the signal

is caught may be delayed an arbitrary amount. The longest specifiable delay time is 655335

seconds. R

The returned value is the amount of time previously remaining in the alarm clock. n
SEE ALSO - e g

pause(2), signal(2), sleep(3C) ‘
ASSEMBLER

(alarm = 27.)

(seconds in r0)

sys alarm
(previous amount in r0)

Page | ' November 1979

I EL

BREAK (2)- “#7875 CB—UNIX 2.1 BREAK (2)

NAME

break, brk, sbrk — change memory allocation

SYNOPSIS

char =sbrk (incp
char +brk (addr)

DESCRIPTION

Brk sets the system’s idea of the lowest location not used by the program to addr (rounded up
to the next muitiple of 64 bytes). Locations not less than addr and below the stack pointer are
not in the address space and will thus cause a memory violation if accessed.

The call to sbrk should normally be used; incr more bytes are added to the program’s data space
and a pointer to the start of the new area is returned.

- “The assembler call break call will act exactly like the brk call described above. A zero is return
-upon success.

When a program begins execution via exec the break is set at the highest location defined by
the program’s data area (for programs running without separated 1&D space the highest location
is the sum of the text and data space sizes). The amount of space available for break to grab is
thus the difference between the highest program location and the bottom of the stack. By
definition, the amount of space reserved for the stack (but not necessarily allocated) is 4096
words.

Also, be careful when using maus together with break. Maus has the effect of reducing the
amount of space availabie for allocation with break.

SEE ALSO

maus(2), exec(2), malloc(3)

DIAGNOSTICS

The c-bit is set whenever it is impossible to grant the memory request. From C, —1 is
returned for these errors.

BUGS
It is possible to reference memory past the end of the break without incurring an error. In fact,
it is possible to overflow normal references (for instance an array subscript gone wild) into the
stack without a memory fault occuring.

ASSEMBLER
(break = 17.)
sys break; addr

Page 1 November 1979

CHDIR(2) CB—UNIX 2.1 ‘CHDIR(2)- ., .

NAME ;

chdir — change working directory wwmn Ps
SYNOPSIS

chdir (dirname)

char *dirname;
DESCRIPTION

Dirname is the address of the pathname of a directory, terminated by a null byte. Chdir.causes.
this directory to become the current working directory.

SEE ALSO
chdir(1), chroot(2)
DIAGNOSTICS
The error bit (c-bit) is set if the given name is not that of a directory or is not sear;habl-_e,(,exe-
cutable). From C, a —1 returned value indicates an error, 0 indicates success. -~ . . -
ASSEMBLER

(chdir = 12.) _
sys chdir; dirname a1

Page | November 1979 ¢

CHGRP:0(2) CB—UNIX 2.1 CHGRP:0(2)
R Vo

3

NAME
chgrp — change group
SYNOPSIS
chgrp (name, group)
char *name;
DESCRIPTION
The file whose name is given by the null-terminated string pointed to by name has its group
changed to group (a numerical group ID). Only the present owner of a file (or the super-user)

‘may change the group of a file. Changing the group of a file removes the set-group-ID protec-
tion bit unless it is done by the super user.

Chgrp has been dropped from the new version of the library. Use chown(2) instead.

SEE ALSO
chgrp(1), chown(2)

DIAGNOSTICS

The error bit (c-bit) is set on illegal group changes. From C a —1 returned value indicates
error, 0 indicates success.

Page | . November 1979

)

CHMOD (2) CB-UNIX 2.1 CHMOD (2)

NAME
chmod — change mode of file

SYNOPSIS
int chmod (name, mode)
char *name;
int mode;

DESCRIPTION

The file whose name is given as the null-terminated string pointed to by name has its mode
changed to mode. Modes are constructed by ORing together some combination of the foliow-
ing:

04000 set user ID on execution

02000 set group ID on execution

01000 save text image after execution

00400 read by owner

00200 write by owner

00100 execute (search on directory) by owner

00070 read, write, execute (search) by group

00007 read, write, execute (search) by others

If an executable file is set up for sharing (—n or —i option of /d (1)) then mode 1000 prevents
the system from abandoning the swap-space image of the program-text portion of the file when

its last user terminates. Thus when the next user of the file executes it, the text need not be

read from the file system but can 51mﬂy be_s swapped in, saving ume "Ability to set this bit is—
restncted to the : super-user since swap space is consumed by the images; it is only worth while

for heavily used commands.

Only the owner of a file (or the super-user) may change the mode. Only the super-user can set
the 01000 mode.

SEE ALSO
chmod(1), umask(2)

DIAGNOSTIC

Zero is returned if the mode is changed; —1 is returned if name cannot be found or if the
current user is neither the owner of the file nor the super-user.

ASSEMBLER
(chmod = 15.)
sys chmod; name; mode

November 1979 Page 1 November 1979

NR— e S e i — SN S INDRUEIIE — e I

-

v s, L
ROAY S5
Ao o

CHOWN (2) CB—UNIX 2.1 CHOWN (2)
NAME

chown — change owner and group of a file
SYNOPSIS

chown (name, owner, group)
char =name;

DESCRIPTION
The file whose name is given by the null-terminated string pointed to by name has its owner and
group changed as specified. Only the present owner of a file (or the super-user) may donate the
file to another user. Changing the owner of a file removes the set-user-ID and set-group-ID
protection bits, unless it is done by the super user.

SEE ALSO
chown (1), chgrp(2), passwd(5)

DIAGNOSTICS

The error bit (c-bit) is set on illegal owner changes. From C a —1 returned value indicates
error, 0 indicates success.

ASSEMBLER
(chown = 16.)
sys chown; name; owner; group

Page 1 : November 1979

CHOWN:0(2) CB~UNIX 2.1 CHOWN:0(2)

NAME
chown — change owner

SYNOPSIS
chown (name, owner)
char *name;

DESCRIPTION
The file whose name is given by the null-terminated string pointed to by rame has its owner
changed to owner (a numerical user ID). Only the present owner of a file (or the super-user)
may donate the file to another user. Changing the owner of a file removes the set-user-ID pro-
tection bit unless it is done by the super-user.

SEE ALSO
chown (1), chgrp(2), passwd(5)

DIAGNOSTICS J
The error bit (c-bit) is set on illegal owner changes. From C a —1 returned value indicates
error, 0 indicates success. :

Page | November 1979

CHROOT (2)+7" CB—UNIX 2.1 CHROOT (2)

NAME

chroot — change root directory

SYNOPSIS

chroot (rootname)
char *rootname;

DESCRIPTION

Rootname is the address of the pathname of a directory, terminated by a null byte. Chroot
causes this directory to become the process’ root directory. This means that any references to
file names beginning with slash are not relative to the real root of the UNIX file system, but
relative to the new root directory specified in this system call. The current working directory
remains unchanged. Notice, however, that a chdir to slash ("/") following the chroot system
call will change the working directory to the new root directory. Arguments to chroot are always
absolute: no special meaning is given to initial slashes even if a chroot is currently in effect.

This system call is restricted to the super-user.

SEE ALSO

chroot (1)

DIAGNOSTICS

The error bit (c-bit) is set if the given name is not that of a directory or is not searchable (exe-
cutable) or the current user is not the super user. From C, a —1 returned value indicates an
error, O indicates success.

ASSEMBLER

Page 1

(chroot = 61.)
sys chroot; dirname

November 1979

CLOSE(2) CB-UNIX 2.1 . CLOSE.(2)

NAME
close — close a file

SYNOPSIS
int close (fildes)
int fildes;

DESCRIPTION
Given fildes, a file descriptor such as returned from an open, creat, dup or pipe call, close closes
the associated file. A close of all files is automatic on exit, but since there is a limit of 20 on

the number of open files per process, close is necessary for programs which deal with many
files.

Files are closed upon termination of a process, and may also be set to be closed automatically
on exec(2) — see ioctl(2).

SEE ALSO
creat(2), dup(2), exec(2), ioctl(2), open(2), pipe(2)

DIAGNOSTICS . '
Zero is returned if the file is closed successfully; —1 is returned for an unknown file descriptor.

ASSEMBLER
(close = 6.)
(file descriptor in r0)
sys close

Page 1 November 1979

CREAT(2) CB—UNIX 2.1 _ CREAT (2)

NAME

creal — creale a new file

SYNOPSIS

int creat (name, mode)
char =name;
int mode:

DESCRIPTION

Crear creates a new file or prepares 1o rewrite an existing file called name. given as the address
of a null-terminated string. If the file did not exist, it is given mode mode, as modified by the
process’'s mode mask (see wmask(2)). Also see chmod(2) for the construction of the mode
argument.

If the file did exist, its mode and owner remain unchanged but it is truncated 10 0 length.
The file is also opened for writing, and its file descriptor is returned.

The mode given is arbitrary: the file will be opened for writing even if the mode does not aliow
writing. This feature is used by programs which deal with temporary files of fixed names. The
creation is donc with a mode that forbids writing. Then if a second instance of the program
attempts a ¢rear, an error is returned and the program knows that the name is unusable for the
moment.

SEE ALSO

chmod(2), close(2), umask(2), write(2)

DIAGNOSTICS

The value —1 is returned if: a needed directory is not searchable: the file does not exist and the
directory in which it is to be created is not writable; the file does exist and is unwritable; the file
is a directory; there arc already 20 files open.

ASSEMBLER

Page 1

{creat = 8.)
S¥s creat: name:; mode
(file descriptor in r0)

November 1979

DUP(2) CB—-UNIX 2.1 DUP(2)

NAME

dup — duplicate an open file descriptor

SYNOPSIS

dup (fildes)
struct { char lobyte; char hibyte; } fildes;

DESCRIPTION

Given a file descriptor returned from an open, pipe, or creat call, dup will allocate another file
descriptor synonymous with the original. The original file descriptor must be placed in the low
byte of fildes, i.e. fildes.lobyte, the high byte of i.e. fildes. hibyte, must be 0. The new file descrip-
tor is returned. Normally the first available file descriptor is returned, however, the system can
be forced to assign file descriptors starting at some number other than zero by setting the high
byte of fildes, i.e. fildes.hibyte, to the desired starting point. The system attempts to find a non-
allocated file descriptor > fildes.hibyte. If all of the file descriptors beyond the start point are
used, the user is returned an error even if there are file descriptors with smaller values avail-
able. A process may have up to 20 file descriptors open at a time and the file descriptors will
be assigned as numbers from zero to nineteen. :

Dup is used more to reassign the value of file descriptors than to genuinely duplicate a file
descriptor. Since the algorithm to allocate file descriptors returns the lowest available value,
combinations of dup and close can be used to manipulate file descriptors in a general way. This
is handy for manipulating standard input and/or standard output.

SEE ALSO

open(2), close(2), creat(2), pipe(2), iocti(2)

DIAGNOSTICS

The error bit (c-bit) is set if: the given file descriptor is invalid; there are already too many
open files; there are no more file descriptors beyond the value specified in the high byte of
fildes. From C, a —1 returned value indicates an error.

ASSEMBLER

Page 1

(dup = 41.; not in assembler)
(file descriptor in r0)
sys dup

November 1979

‘EXEC(2) CB—UNIX 2.3 EXEC(2)

NAME

execl, execv, execle, execve, execlp, execvp — execute a file

SYNOPSIS

int execl (name, arg0, argl, ..., argn, 0)
char *name, sarg0, =argl, ..., *argn;

int execv (name, argv)

char *name, #argv| |;

int execle (name, arg0, argl, ..., argn, 0, envp)
char *name, sarg0, sargl, ..., *argn, =envpl |;
int execve (name, argv, envp)

char *name, sargv[], senvpl I;

int execlp (name, arg0, argl, ..., argn, 0)
char *name, =*arg0, =*argl, ..., =argn;

int execyp (name, argv)

char *name, *argV[l;

DESCRIPTION

Exec in all its forms overlays the calling process with the named file, then transfers to the entry
point of the core image of the file. There can be no return from a successful exec; the calling
core image is lost.

File descriptors ordinarily remain open across exec, but may be requested to be automatically
closed (see ioctl(2)). Ignored signals remain ignored across these calls, but signals that are
caught (see signal(2)) are reset to their default values.

Each user has a real user ID and group ID and an effective user ID and group ID. The real ID
identifies the person using the system; the effective 1D determines his access privileges. Exec
changes the effective user or group ID to the owner of the executed file if the file has the
“set-user-ID’" or “‘set-group-ID”> modes. The real user and IDs are not affected.

The name argument is a pointer to the name of the file to be executed. The pointers arg[0],
arg(1] ... address null-terminated strings. Conventionally arg[0] is the name of the file.

From C, two interfaces are available. exec! is useful when a known file with known arguments
is being called; the arguments to execl are the character strings constituting the file and the
arguments; the first argument is conventionally the same as the file name (or its last com-
ponent). A 0 argument must end the argument list.

The execv version is useful when the number of arguments is unknown in advance; the argu-
ments to execv are the name of the file to be executed and a vector of strings containing the
arguments. The last argument string must be Tollowed by a 0 pointer.

When a C program is executed, it is called as follows:

main (argc, argyv, envp)

int argce;

char =sargv, sxenvp; _
where argc is the argument count and argv is an array of character pointers to the arguments

themselves. As indicated, arge is conventionally at least one and the first member of the array
points to a string containing the name of the file.

Argv is directly usable in another execv because argvlarge] is 0.

Envp is a pointer to an array of strings that constitute the environment of the process. Each
string consists of a name, an =, and a null-terminated value. The array of pointers is ter-
minated by a null pointer. The shell sh(1) passes an environment entry for each global shell

February 27, '1981 Page 1 February 27, 1981

EXEC(2) CB—UNIX 2.3 EXEC(2)

FILES

variable defined when the program is called. See environ(7) for some conventionally used
names. The C run-time start-off routine places a copy of envp in a global cell:

extern char s=environ;

that is used by execv and exec! to pass the environment to any subprograms executed by the
current program. The exec routines use lower-level routines as follows to pass an environment
explicitly:

execve (file, argv, environ);

execle (file, arg0, argl, . . ., argn, 0, environ);
Execvp and execlp are called with the same arguments as execv and execl, but duplicate the
Shell’s actions in searching for an executable file in a list of directories. The directory list is
obtained from the environment.

/bin/sh, or the value specified by the shell variable $SSHELL, invoked if command file found
by execlp or execvp

SEE ALSO

iocti(2), fork(2), getenv(3C), environ(7)

DIAGNOSTICS

If the file cannot be found, if it is not executable, if it does not start with a valid magic number
(see a.out(5)), if maximum memory is exceeded, if it is a pure-procedure program which is
currently open for reading or writing, or if the arguments require too much space, a return con-
stitutes the diagnostic; the return value is —1. Even for the super-user, at least one of the
execute-permission bits must be set for a file to be executed.

ASSEMBLER
(exec = 11.)
SyS exec; name; argy
(exece = 59.)

SyS exece; name; argy; envp
Plain exec is replaced by exece, but remains for historical reasons.

When the called file starts execution, the stack pointer points to a word containing the number
of arguments. Just above this number is a list of pointers to the argument strings, followed by
a null pointer, followed by the pointers to the environment strings and then another null
pointer. The strings themselves follow; a 0 word is left at the very top of memory.
sp—> nargs

arg0

argn

0

env0
envm
0

arg0: <<argO\0O>

env0: <envO\0>
0

This arrangement happens to conform well to C calling conventions.

February 27, 1981 Page 2 February 27, 1981

EXEC:0(2) CB—UNIX 2.1 EXEC:0(2)

NAME
exec, execl, execv, exect — execute a file

SYNOPSIS
execl (name, argd, argl, ..., argn, 0)
char *name, *arg0, =argl, ..., =argn;

execy (name, argv)
char *name;
char sargvl];

exect (name, argv)
char *name;
char sargvll;

DESCRIPTION
Exec overlays the calling process with the named file, then transfers to the beginning of the
core image of the file. There can be no return from the file; the calling core image is lost.

Files remain open across exec calls except that all “‘auto-close’ files are closed (see dup(2) and
open(2)). Ignored signals remain ignored across exec, but signals that are caught are reset to
their default values. All maus descriptors remain open but no maus segments remain attached
(see maus(2)).

Each user has a real user ID and group ID and an ef@crive user ID and group ID. The real D
identifies the person using the system; the effective [D determines his access privileges. Exec
changes the effective user and group ID to the owner of the executed file if the file has the
“set-user-ID”’ or “‘set-group-ID’’ modes. The real user ID is not affected.

The form of this call differs somewhat depending on whether it is called from assembly
language or C; see below for the C version.

The first argument to exec is a pointer to the name of the file to be executed. The second is
the address of a null-terminated list of pointers to arguments to be passed to the filte. Conven-
tionally, the first argument is the name of the file. Each pointer addresses a string terminated
by a null byte.

Once the called file starts execution, the arguments are available as follows. The stack pointer
points to a word containing the number of arguments. Just above this number is a list of
pointers to the argument strings. The arguments are placed as high as possible in core.

sp— > nargs
arg0

argn
0
argl: <argO\0>

argn: <argn\0>

From C, three interfaces are available. Exec! is useful when a known file with known argu-
ments is being called; the arguments to exec! are the character strings constituting the file and
the arguments; as in the basic call, the first argument is conventionally the same as the file
name (or its last component). A 0 argument must end the argument list.

The execv version is useful when the number of arguments is unknown in advance; the argu-
ments to execv are the name of the file to be executed and a vector of strings containing the
arguments. The last argument string must be followed by a 0 pointer.

November 1979 Page 1 November 1979

EXEC:0(2) CB~UNIX 2.1 EXEC:0(2)

Exect , if successful, causes the trace bit (020) to be turned on in the program status word. It is
otherwise identical to execv.

When a C program is executed, it is called as follows:
main (arge, argy)

int arge;
char s=argv;

where arge is the argument count and argv is an array of character pointers to the arguments
themselves. As indicated, argc is conventionally at least one and the first member of the array
points to a string containing the name of the file.

Argv is directly usable in another execv, since argviargv] is 0. There is a new version of exec.

SEE ALSO
call(2), fork(2), open(2), dup(2), maus(2), signal(2)

DIAGNOSTICS
If the file cannot be found, if it is not executable, if it does not have a valid header (407, 410,
or 411 octal as first word), if maximum memory is exceeded, or if the arguments require more
than 512 bytes a return from exec constitutes the diagnostic; the error bit (c-bit) is set. Even
for the super-user, at least one of the execute-permission bits must be set for a file to be exe-
cuted. From C the returned value is —1.

November 1979 Page 2 November 1979

EXIT(2) CB—-UNIX 2.1 EXIT(2)

NAME
exit — terminate process

SYNOPSIS
exit (status)
struct { char lobyte; char hibyte; } status;

_exit(status)

DESCRIPTION
Exit is the normal means of terminating a process. Exit closes all the process’ files and notifies
the parent process if it is executing a wait. The low byte of r0, status.lobyte, is available as
status to the parent process via wait.

There are two C callable versions. Exit calls the user definable routine _cleanup to perform any
user defined cleanup actions; then it does an exit. The C library version of _cleanup - which is
used if the user does not supply his own - simply returns. The other version, _exit, exits
without calling anything. It is provided so that users may write their own version of exit.

When a process dies, e.g. via exit, the child death signal, SIGCLD, is sent to its parer{t (see sig-
nal(2)).

This call can never return.

SEE ALSO
wait(2), signal(2), fclose(3S)

ASSEMBLER
(exit = 1.)
(status in r0)
Sys exit

November 1979 Page 1 November 1979

FCNTL(2) CB—UNIX 2.1 FCNTL(2)

NAME
fentl — file control

SYNOPSIS
int fentl (fildes, request, argument)
int fildes, request, argument;
DESCRIPTION
This function provides for control over open files. The requests available are:
0 — duplicate fildes as the lowest-numbered available file descriptor not less than argument.
Returns the new file descriptor, or —1 if no appropriate file descriptors are available, or if
fildes is not open. The flags (see below) are set to zero.

1 — Get fildes flags where a 0 return means a normal file and 1 means that the file should be
closed on exec.

2 — Set fildes flags to argument (0 or 1 as above). Returns fildes if successful, otherwise —1.

EXAMPLES
The following pairs of calls are equivalent:
dup(x) = fentl(x, 0, 0)
rename(x, y) = close(y), fentl(x, 0, y), close(x)

NOTE
The future of this command is unsure. Joct/(2) should be used for auto-close purposes.

SEE ALSO
exec(2), open(2), close(2), ioctl (2)

ASSEMBLER
(fentl = 62.)
(fildes in r0)

sys fanll; request; argurment
(result in r0)

Page | ' November 1979

FORK(2) CB—-UNIX 2.1 FORK (2)

NAME

fork — spawn new process

SYNOPSIS

fork ()

DESCRIPTION

Fork is the only way new processes are created. The new process’s core image is a copy of that
of the caller of fork. The only distinction is the return location and the fact that r0 in the old
(parent) process contains the process ID of the new (child) process. (In the new process, r0
contains a). This process ID is used by wait(2).

The two returning processes share all open files that existed before the call. In particular, this
is the way that standard input an output files are passed and how pipes are set up.

In the child process, the external integer par_uid contains the process ID of the parent process.

From C, the returned value is 0 in the child process. The value returned to the parent process
is the child’s process ID; however, a return of —1 indicates inability to create a new process.

The return locations in the old and new processes differ by one word. The C—bit is set in the
old process if a new process could not be created.

SEE ALSO

wait (2), exec(2)

DIAGNOSTICS

The error bit (c-bit) is set in the old process if a new process could not be created because of
lack of process space. From C, a return of —1 (not just negative) indicates an error.

ASSEMBLER

Page 1

(fork = 2.)

sys fork

(new process return)
(old process return)

The return locations in the old and new processes differ by one word.

November 1979

FSTAT(2) CB—UNIX 2.1 FSTAT(2)

NAME
fstat — get status of open file

SYNOPSIS
fstat (fildes, buf)
struct inode =buf;

DESCRIPTION
This call is identical to szar, except that it operates on open files instead of files given by name.
It is most often used to get the status of the standard input and output files, whose names are
unknown. The inode structure is defined in star(2).

SEE ALSO
stat(2)

DIAGNOSTICS
The error bit (c-bit) is set if the file descriptor is unknown; from C, a —1 return indicates an
error, 0 indicates success.

ASSEMBLER
(fstat = 28.)
(file descriptor in r0)
sys fstat; buf

Page 1 November 1979

FTIME(2) CB—-UNIX 2.1 FTIME (2)

NAME

ftime — get date and time

SYNOPSIS

#include <sys/types.h>
#include <sys/timeb.h>

DESCRIPTION

ftime (tp)
struct timeb =tp;
The ftime system call fills in a structure pointed to by its argument, as defined by
< sys/timeb.h>:
/* @ (#)/usr/src/uch/sys/timeb.h 3.1 /]
/'
* Structure returned by ftime system call
*/
struct timeb {
time_t time;
unsigned short millitm,;
short timezone;
short dstflag;

b

The structure contains the time since the epoch in seconds, the number of milliseconds (less
than 1000) since the last second, the local timezone (measured in minutes of time westward
from Greenwich), and a flag that, if nonzero, indicates that Daylight Savings Time applies
locally during the appropriate part of the year.

SEE ALSO

date (1), stime(2), time(2), ctime(3C)

ASSEMBLER

Page 1

(ftime = 35.)
sys ftime; bufptr

November 1979

GETCSW (2) CB-—UNIX 2.1 GETCSW (2)

NAME
getcsw — read console switches
SYNOPSIS
getesw ()
DESCRIPTION
The setting of the console switches is returned (in r0).
ASSEMBLER
(syscb = 45.; getesw = 1)
sys sysch: getesw

Page | November 1979

GETGID:0(2) CB—-UNIX 2.1 GETGID:0(2)

NAME

getgid — get group identification
SYNOPSIS

getgid ()
DESCRIPTION

Gergid returns a word defined as follows:
struct { char lobyte; char hibyte; } val:

Val.lobyte returns the real group ID and val.hibyte returns the effective group [D of the current
process. The real group ID identifies the group of the person who is logged in, in
contradistinction to the effective group ID, which determines his access permission at the
moment. It is thus useful to programs which operate using the ‘‘set group ID”’ mode, to find
out who invoked them.

Getgid is obsolete — use gemid(2) instead in new code.

SEE ALSO
setgid (2), getuid(2)
ASSEMBLER

(getgid = 47. not in assembler)
sys getgid

Page | November 1979

GETPID(2) CB—UNIX 2.1 GETPID (2)

NAME
gelpid, getppid — get process identification

SYNOPSIS
getpid ()
getppid ()

DESCRIPTION
Getpid returns the process ID of the current process. Most often it is used to generate
uniquely-named temporary files.
Getppid returns the process ID of the parent of the current process. Note that a return of 1
from this call indicates that the parent process has terminated and the current process has been
inherited by the initialization process.

SEE ALSQO
fork(2), init(IM)
ASSEMBLER
(getpid = 20.; not in assembier)
sys getpid
(pid in 10)

(parent pid in r1)

Page 1 November 1979

GETU(2) CB—-UNIX 2.1 GETU(2)

NAME
getu — get selected user block information

SYNOPSIS
getu (offset, buffer, nbytes)
char *buffer;

DESCRIPTION
Getu is used to copy information from the current process’ user control block into the user’s
address space. Nbytes are copied into user’s space starting at the address specified by buyfer.
The copy begins offset bytes into the control block. All three arguments must be even
numbers. The number of bytes actually transferred is returned as the result.

DIAGNOSTICS
The error bit (c-bit) is set for an illegal request. If the actual number of bytes transferred is
not equal to the requested number, an error has occurred. From C, a —1 return indicates an
error.

ASSEMBLER

Page 1 November 1979

GETUID(2) CB—UNIX 2.1 GETUID(2)

NAME
getuid, getgid, geteuid, getegid — get user and group identity

SYNOPSIS
getuid ()

getenid ()
getgid ()
getegid ()

DESCRIPTION
Getuid returns the real user ID of the current process in r0 and the effective user ID inrl. The
real user ID identifies the person who is logged in, in contradistinction to the effective user ID,
which determines his access permission at the moment. It is thus useful to programs which
operate using the ‘‘set user ID’’ mode, to find out who invoked them.

In C, getuid returns the real user ID, gereuid the effective user ID.
Gergid returns the real group ID in r0, the effective group ID in rl.
In C, gewgid returns the real group ID, geregid the effective group ID.

SEE ALSO
setuid(2)

ASSEMBLER
(getuid = 24.)
sys getuid

(getgid = 47.; not in assembier)
sys getgid

Page 1 November 1979

GETUID:0(2) CB—UNIX 2.1 GETUID:0(2)

NAME

getuid — get user identification
SYNOPSIS

getuid ()
DESCRIPTION

Getuid returns a word with the following layout:
struct { char lobyte; char hibyte; } val;

Val.lobyte contains the real user ID and val hibyte contains the effective user ID of the current
process. The real user ID identifies the person who is logged in, in contradistinction to the
effective user ID, which determines his access permission at the moment. It is thus useful to
programs which operate using the ‘‘set user ID"’ mode, to find out who invoked them.

SEE ALSO
setuid(2)

Page | November 1979

INDIR (2) ' CB—UNIX 2.1 INDIR (2)

NAME
indir — indirect system call

DESCRIPTION
The system call at the location syscall is executed. Execution resumes after the indir call.

The main purpose of indir is to allow a program to store arguments in system calls and execute
them out of line in the data segment. This preserves the purity of the text segment.

If indir is executed indirectly, it is a no-op.

ASSEMBLER
(indir = 0.; not in assembler)
sys indir; syscall

Page 1 November 1979

10CTL(2)

NAME

CB—UNIX 2.3 IOCTL(2)

ioctl — control device

SYNOPSIS

#include <<sys/ioctl.h>

int ioctl (fildes, request, argp)

int fildes, request;
struct *argp;

DESCRIPTION

Ioctl manipulates the file or device indicated by fildes as specified by request. The requests and
the kinds of things they can access are: '

TIOCGETD, TIOCSETD

TIOCHPCL

Get/set line discipline. Argp points to a structure containing an integer
with a valid line discipline indicator integer.

Hang up on last close. Argp indicates whether this feature should be
turned on or off.

TIOCSETO, TIOCGETO
S— P ————

Get/set ‘‘other” bits. Argp contains a word with bits indicating which
“other’ bits are to be set/reset or interrogated. This request is essen-
tially an extension of the old smy/gry system call that allows
transmission/response to xon/xoff, half duplex line, no-hangup, exclud-
ing future device opens, no sleeping if not ready, and non-standard tty
escapes and kills.

TIOCGETP, TIOCSETP

TIOCSETN

These are equivalent to gtty(fildes, argp) and stty(fildes, argp). They
allow terminal (tty) characteristics to be set and examined. These
include terminal input and output speed, the erase character and kill
character, and mode flags. The allowed mode flags include hangup on
last close, map tabs to spaces, upper case only, character echo, cr/lf
mode, raw character input, parity, and delay on tabs, new lines, back-
space, carriage return, and vt delay. Note that setting input speed to zero
on a dh or dz line will disable the line by dropping the Data Terminal
Ready(DTR) bit for the line.

Equivalent to old sty with noflush.

TIOCEXCL, TIOCNXCL

TIOCTSTP

Get/clear the exclude bit, which disallows future opens on the device.

Stop toggle transmit.

DIOCGETT, DIOCSETT

DIOCSETS

January 9, 1981

Get/set terminal parameters. These include terminal type, current cursor
row and column (get only), variable row, last row, and terminal flags.
The flags include special newline, auto newline on column 80, last
column of last row special, echo of terminal cursor control, and not send-
ing escape sequences to the user. It is used primarily for CRT terminals.

Set spy mode. All output directed to the terminal specified by fildes will
be copied to the terminal of the process performing the ioctl. Only one
spy operation may be active in the entire system at any time. The spy
continues until explicitly turned off. Currently, spy is only effective on
lines using the STD_LTYPE line discipline and is restricted to the
super-user. '

Page 1 January 9, 1981

10CTL(2)

FIOCLEX, FIONCLEX

Set/clear auto close for a file. If auto close is set, then the file will not be

VIOCGETD, VIOCSETD

CB—UNIX 2.3

passed to children across an exec.

FIOSPIPE, FIOGPIPE
Get/set pipe sleep flags. This enables/disables sleeping on reads/writes
to a pipe, to avoid roadblocking. Normally, reads are blocking and writes
are not.

Get/set versatec parameters.-

10CTL(2)

There are also requests for the multiplexor (see mpx(2), mpxio(5) and <sys/mx.h>). -In gen-
eral, each line discipline has a unique header file which defines the line discipline number and

format of the structure to be used with DIOCGETP and DIOCSETP requests.

The proper names for all these flags and other requests not currently used are contained in
<sys/ioctl.h>, which is included here:

/t
/‘

@(#)ioctl.h

3.5

*/

* structure of arg for iocd TIOCSETP and TIOCGETP

7

struct

b
/'

ttiocb {
char
char
char
char
short

ioc_ispeed;
ioc_ospeed;
joc_erase;
foc_kill;
ioc_flags;

* structure for old stty and gtty system calls.

*/

struct

b
/'

sgttyb
char
char
char
char
short

* tty ioctl commands

Wi

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

January 9, 1981

TIOCGETD
TIOCSETD
TIOCHPCL
TIOCMODG
TIOCMODS
TIOCSETO
TIOCGETO
TIOCGETP
TIOCSETP
TIOCSETN
TIOCEXCL
TIOCNXCL
TIOCHMOD
TIOCTSTP
DIOCGETP
DIOCSETP
DIOCSETT

{
sg_ispeed;
sg_ospeed;
sg_erase;
sg_kill;
sg_flags;

(Cr<<8)0)
(Cr<<8)n
(Cr<<8))
(Cr<<8))
(Cr<<8)l)
(Cr<<8)6)
(Cr<<8))
(Cr<<38)B)
((r<<8)b)
(Cr<<8)0)
(Cr<<8)i3)
(Cr<<8)14)
((Ct'<<8)15)
(Cr<<3)li6)
(Cd’<<8)B)
(Cd"<<8)b)
(Cd < <8)10)

/* input speed */

/* output speed */
/* erase character */
/* kill character */
/* mode flags */

/* get line discipline */
/* set line discipline */
/* hangup on last close */

/* set other bits */
/* get other bits */
/* gty */

[*stty ®/

/* stty - no flush */
/* set exclude */
/* clr exclude */

/* toggle transmit stop */

/* get discipline parameters */
/* set discipline parameters */
/* set terminal info */

Page 2

January 9, 1981

