10CTL(2) CB—UNIX 2.3 10CTL(2)

NAME
ioct] — control device

SYNOPSIS)
#include <sys/ioctl.h>

int ioctl (fildes, request, argp)
int fildes, request;
struct *argp;

DESCRIPTION
Joct! manipulates the file or device indicated by fildes as specified by request. The requests and

the kinds of things they can access are:

TIOCGETD, TIOCSETD
Get/set line discipline. Argp points to a structure containing an integer
with a valid line discipline indicator integer.

TIOCHPCL Hang up on last close. Argp indicates whether this feature should be
turned on or off.

TIOCSETO, TIOCGETO
Get/set ‘“‘other” bits. Argp contains a word with bits indicating which
“other’” bits are to be set/reset or interrogated. This request is essen-
tially an extension of the old suy/gry system call that allows
transmission/response to xon/xoff, half duplex line, no-hangup, exclud-
ing future device opens, no sleeping if not ready, and non-standard tty
escapes and kills.

TIOCGETP, TIOCSETP

These are equivalent to gtty(fildes, argp) and stty(fildes, argp). They
allow terminal (tty) characteristics to be set and examined. These
include terminal input and output speed, the erase character and kill
character, and mode flags. The allowed mode flags include hangup on
last close, map tabs to spaces, upper case only, character echo, cr/lf
mode, raw character input, parity, and delay on tabs, new lines, back-
space, carriage return, and vt delay. Note that setting input speed to zero
on a dh or dz line will disable the line by dropping the Data Terminal
Ready(DTR) bit for the line.

TIOCSETN Equivalent to old sty with noffush.

TIOCEXCL, TIOCNXCL
Get/clear the exclude bit, which disallows future opens on the device.

TIOCTSTP Stop toggle transmit.

DIOCGETT, DIOCSETT
Get/set terminal parameters. These include terminal type, current cursor
row and column (get only), variable row, last row, and terminal flags.
The flags include special newline, auto newline on column 80, last
column of last row special, echo of terminal cursor cqntrol, and not send-
ing escape sequences to the user. It is used primarily for CRT terminals.

DIOCSETS Set spy mode. All output directed to the terminal specified by fildes will
be copied to the terminal of the process performing the ioctl. Only one
spy operation may be active in the entire system at any time. The spy
continues until explicitly turned off. Currently, spy is only effective on
lines using the STD_LTYPE line discipline and is restricted to the
super-user. ’

January 9, 1981 Page 1 January 9, 1981

10CTL(2)

CB—UNIX 2.3 10CTL(2)

FIOCLEX, FIONCLEX 5
Set/clear auto close for a file. If auto close is set, then the file will not be

‘passed to children across an exec.

FIOSPIPE, FIOGPIPE
Get/set pipe sleep flags. This enables/disables sleeping on reads/writes
to a pipe, to avoid roadblocking. Normally, reads are blocking and writes
are not.

VIOCGETD, VIOCSETD
Get/set versatec parameters.-

There are also requests for the multiplexor (see mpx(2), mpxio(5) and <sys/mx.h>). In gen-
eral, each line discipline has a unique header file which defines the line discipline number and
format of the structure to be used with DIOCGETP and DIOCSETP requests.

The proper names for all these flags and other requests not currently used are contained in

<sys/ioctl.h>, which is included here:

! /* @(#)ioctl.h 3.5 */
; ”
i * structure of arg for iocd TIOCSETP and TIOCGETP
*
; /
i struct - ttiocb {
: char ioc_ispeed;
char ioc_ospeed;
char ioc_erase;
! char ioc_kill;
short ioc_flags;
b
/'
* structure for old stty and gtty system calls.
t 3
/
struct sgityb {
char sg_ispeed; /* input speed */
char sg_ospeed; /* output speed */
char sg_erase; /* erase character */
char sg_kill; /* kill character */
short sg_flags; /* mode flags */
i3
/‘
* tty joctl commands
‘/ N
#define TIOCGETD (Cr<<8)0) /* get line discipline */
#define TIOCSETD (Cr<<8)n /* set line discipline */
#define TIOCHPCL ((’t’<<8)t2) /* hangup on last close */
#define TIOCMODG (Cr<<8)B)
#define TIOCMODS ((t'<<8)K)
#define TIOCSETO (Ct'<<8)6) /* set other bits */
#define TIOCGETO (Cr<<8)7) /* get other bits */
#define TIOCGETP (Ct'<<8)l8) /* ety ¥/
#define TIOCSETP (< <8)P) /® stty */
#define TIOCSETN (CU<<8)10) /*stty - no flush */
#define TIOCEXCL (Cr<<®)l13) /* set exclude ¥/
#define TIOCNXCL (Cr<<8)14) /® clr exclude */
#define TIOCHMOD (Cr<<8)15)
#define TIOCTSTP ((v<<8)l16) /* toggle transmit stop */
#define DIOCGETP ((d < <8)B) /* get discipline parameters */
#define DIOCSETP ((Cd"<<8)9) /* set discipline parameters ®/
#define DIOCSETT (Cd'<<8)l10) /* set terminal info */

January 9, 1981

Page 2

January 9, 1981

T0CTL(2)

#define
#define
#define
#define
#define
#define
#define
#define

I.‘l

DIOCGETT
DIOCSETS
FIOCLEX
FIONCLEX
FIOSPIPE
FIOGPIPE
VIOCGETD
VIOCSETD

CB—-UNIX 2.3

(Cd < <8)11)
(Cd'<<8)12)

(Cr<<s8)R)
(Cp <<8))
(Cp<<8)R)
(v’ <<8)0)
(Cv'<<8))

/* get terminal info */

/* set spy mode */

(Cr<<8)) /* set auto close */
/* cir autoclose */

/* set pipe sleep flags */

/* get pipe sieep flags */

/* Versatec */

/* Versatec */

* Define standard line discipline for TIOCSETD and TIOCGETD

*/
#define

/l

STD_LTYPE

(short)0

* Define half duplex line discipline for TIOCSETD and TIOCGETD

=

#define HF_LTYPE

/l

(short)4

* Format of third argument for TIOCSETD and TIOCGETD

*/
struct sgldisc {

I

/t

short

sgl_type;

* Following ioctl.h commands are used within the system only.

=

#ifdef KERNEL

#define
#define
#define
endif

/‘

* Modes
*/

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

/t

OLDSGTTY
GETRFP
GETWFP

HUPCL
XTABS
LCASE
ECHO
CRMOD
RAW
ODDP
EVENP
ANYP
NLDELAY
TBDELAY
CRDELAY
VTDELAY
BSDELAY
ALLDELAY

* Delay algorithms

*/

#define
#define
#define
#define
#define
#define
#define

January 9, 1981

CRO
CR1
CR2
CR2
NLO
NL1
NL2

(<<

01

02

04

010

020

040
0100
0200
0300
001400
002000
030000
040000
0100000
0173400

010000
020000
030000

000400
001000

(< <8)R)
(CP<<8)B)

/* hangup on last close */

/* map tabs to spaces on output */
/* upper case only terminal */

/* echo all received characters */

/* map CR->LF;echo CR or LF as CR-LF */

/* raw character input */

/* odd parity rcvd/xmtd */
/* even parity rcvd/xmtd */
/* any parity mask */

Page 3

10CTL(2)

January 9, 1981

I0CTL(2) CB—UNIX 2.3 10CTL(2)

#define NL3 001400
#define TABO 0
#define TABI 002000
#define NOAL 004000
#define FFO 0
#define FF1 040000
#define BSO 0
#define BS1 0100000
/‘

* Speeds

*/

#define BO 0

#define BSO 1

#define B75 2

#define B110 3

#define B134 4

#define B150 5

#define B200 6

#define B300 7

#define B600 8

#define B1200 9

#define B1800 10
#define B2400 11
#define B4800 12
#define B9600 13
#define EXTA 14
#define EXTB 15

/.
* Character length and stop bits.

* Character length does not include parity or stop bits.
* Ored with ioc_ospeeed.

i/
#define SETSTOP 0200 /* set to change stop or length bits */
#define ONESTOP 0000
#define TWOSTOP 0100 /* 1.5 stop bits at 75 baud */
#define BITSS 0000
#define BITS6 0020
#define BITS?7 0040
#define BITS8 0060
#define SLBITS 0160 /* Mask of stop and length bits */
/'
* structure of arg for joctl TIOCSETO and TIOCGETO
*/
struct ttiotheb {
short ioth_flags;
L
/.
* Definition of "other” bits
*/
#define TANDEMO 01 /* enable transmission of xon/xoff */
#define HDPLX 0400 /* Half duplex line */
#define NOHUP 01000 /* not dial device flag */
define XCLUDE 02000 /* disallow future opens */
#define NOSLEEP 04000 /* dont sleep if nothing is ready */
#define TANDEMI 040000 /* enable response to xon/xoff */
#define STDTTY 0100000 /* non-standard tty escapes and kills */

January 9, 1981 Page 4 January 9, 1981

L]

JOCTL(

January

2) CB—UNIX 2.3 I0CTL(2)
/.
* struct of arg for ioctl FIOSPIPE and FIOGPIPE
*/
struct pipcb {
char pip_rfig; /* read flag; 0=>nosleep */
char pip_wflg; /* write flag; 0=>>nosleep */
I
/‘
* structure of ioctl arg for DIOCGETT and DIOCSETT
i
struct termcb {
char st_flgs; /* term flags */
char st_termt; /* term type */
char st_crow; /* gtty only - current row */
char st_ccol; /* gtty only - current col */
char st_vrow; /* variable row */
char st_Irow; /* last row */
b
/t
* Terminal types
*/
define TERM_NONE 0 /¥ty */
#define TERM_TEC 1 /* TEC Scope */
#define TERM_V61 2 /* DEC VTé1 */
#define TERM_V10 3 /* DEC VTI100 */
define TERM_TEX 4 /* Tektronix 4023 */
#define TERM_D40 5 /* TTY Mod 40/1 */
#define TERM_H45 6 /* Hewilitt-Packard 45 */
define TERM_DA42 7 /* TTY Mod 40/2B */
#define TERM_C100 8 /* Concept 100%/
E
* Terminal flags
*
#define TM_NONE 0000 /* use default flags */
#define TM_SNL 0001 /* special newline flag */
#define TM_ANL 0002 /* auto newline on column 80 */
#define TM_LCF 0004 /* last col of last row special */
#define TM_CECHO 0010 /* echo terminal cursor control */
#define TM_CINVIS 0020 /* do not send esc seq to user */
#define TM_SET 0200 /* must be on to set/res flags */

Several of the modes and flags require further explanation:

LCASE

RAW

9, 1981

Map upper case to lower case on input; map lower case to upper case on output.
Maplto!; “to’ {to (; }to); ~to ; \<C> to upper case input, where <C> is

L |

any upper case character.

In raw mode, every character is immediately passed to the program without waiting
for a full line to be typed. No input characters have a special meaning (e.g., the
interrupt character DEL will not cause the program to be interrupted, but will be
passed to the program as a character.). LCASE and CRMOD will still cause input
mapping; output character processing is unaffected. If the transmitter has been
stopped by the ESC key, setting RAW will release it. Note, however, that this can
only be effective if the TIOCSETP command is utilized. Otherwise, the program
will wait for the ESC key to be depressed again. Input and output data width is eight
bits, but the eigth bit may be a parity bit depending upon the setting of ODDP and
EVENP. ‘

Page 5 January 9, 1981

IOCTL(2) CB—UNIX 2.3 TOCTL(2)

ODDP, EVENP
For the standard line discipline, a character will be rejected unless its parity matches
that expected. If both bits are set, cither parity is accepted and even parity is
transmitted. If both bits are set and RAW is set, the parity is visible to and supplied
by the user on input and output. If neither bit is set, no parity is expected and even
parity is transmitted.

HDPLX For those communications controllers with the capability, disable reception during
transmission.

XCLUDE When set, no one may open the line. Cleared upon the last close.

NOSLEEP
Return a zero if a read is performed and no characters are present. Don’t wait to
flush output on close or ioctl. Don’t wait for carrier on the first read or write after an
open, if carrier is not up. Normally, a process will block when waiting for carrier to
come up after an open. This roadblock will take place in the first read or write, not
the open.

STDTTY Change the erase character from # to _ and the delete line character from @ to $.
In addition to CR and LF, wake up on / and !, and generate an interrupt upon
reception of & or DEL.

TANDEMO
When set, transmission of xon/xoff is enabled. This turns off the keyboard when

there are too many characters in the terminal hardware queue.

TANDEMI
When set, response to xon/xoff is enabled.

NOHUP Indicates that the line is not a dial-up line, and, therefore, will not hang up when the
terminal session is completed.

DELAY For certain line speeds, a delay is desired for certain functions. Delay can be
specified for CR, LF, tabs, backspaces, and formfeeds.

It is also possible for the user to set the number of data and stop bits, if the defaults are not
satisfactory. The default is TWOSTOP at speeds B75 and B110, ONESTOP otherwise; BITSS
for B75, with BITS7 plus one bit even parity otherwise. These bits are or’d in with the
ioc_ospeed flag. The SETSTOP bit must be set to change stop or length bits.

Normally, an TIOCSETP request will wait for output to be flushed before doing anything.
This can be circumvented by using the TFOCSETN request.

The normal CB-UNIX line discipline is STD_LTYPE. Request TIOCSETD can be used to set
the discipline to the commonly-supported half-duplex line discipline HF_LTYPE, and the tran-
sparent line discipline TRANS_LTYPE, described in <<sys/trans.h>. Different line discip-
lines expect different values for certain modes. However, STD_LTYPE and HF_LTYPE
require no additional information.

TRANS_LTYPE is a line discipline that allows the user full eight bit transparency on input and
output with or without parity. For this line discipline, a write will perform no mapping. A read
will return upon the occurrence of the first of the three conditions as specified by the user:

1) The requested number of characters have arrived.
2) The number of seconds, ts_quanta, has elapsed.
3) A break character has arrived.

If ts_quanta is zero, timing is disabled; otherwise, ts_guanta is the maximum wait time in
seconds. If ts_brk0O and ts_brk] are both zero, no break characters will awaken the process. If

January 9, 1981 Page 6 January 9, 1981

JOCTL(2) CB—UNIX 2.3 IOCTL(2)

ts_brkl is 0377 then ts_bbrk0 is taken as a single break character. Otherwise, both break charac-
ters are assumed valid. NCDELAY, XTABS, LCASE, ECHO, CRMOD, RAW, and
STDTTY have no meaning for this line discipline.

The DIOCSETT request is used to specify the type of CRT connected to a line.
TERM_NONE is the standard, non-CRT type. If a type other than TERM_NONE is
specified, input and output mapping will occur for the CRT language defined in the header file
<sys/ertctl.h>. In this case, the ESC character takes on special meaning, escaping the subse-
quent characters on input and output. The terminal flags sz_flgs and modes are given a default
set of values when the terminal type is set. The modes may be subsequently changed with a
DIOCSETT request. The flags may be changed by setting the TM_SET bit when changing the
terminal type and specifying the flag bits. The flag bits require further clarification:

TM_SNL Handle new lines specially, if the terminal driver is so equipped.
TM_ANL Provide a carriage return and new line when writing beyond column 80.

TM_LCF Immediately before placing a character in the last column and row, delete the top
line, print the character in the last column of the now second-to-last row, and then
move the cursor to column one of the new last line. This function is requires for
terminals that move the cursor to “‘bad’” places when printing in the last position.

TM_CECHO
Echo the control sequences, such as ‘‘cursor up’’, when received.

TM_CINVIS
Do not pass the cursor control characters to the user program on input.

SEE ALSO

/usr/include/sys/sgtty.h
/usr/include/sys/mx.h
/usr/include/sys/trans.h
stty:0(2), fentl(2)

ASSEMBLER

(ioctl = 54.)
(filedes in r0)
sys ioctl; request; argp

January 9, 1981 Page 7 January 9, 1981

KILL(2) CB—UNIX 2.1 KILL(2)

NAME
kill — send signal to a process

SYNOPSIS
kill (target, sig):

DESCRIPTION
There are several different cases of kill:

kill(target,+sig)
Sends the signal sig to the process with process id targer if the sending process’s uid
matches the uid of rarget. If the sending process’s uid is root, the signal is sent uncondi-
tionally.

kill(target,—sig)
Sends the signal sig to all processes in the process group rarget whose uids match the send-
ing process’s uid. If the sending process’s uid is root, all processes in the process group
target will receive the signal.

kill(0,+sig) ,
Sends the signal sig to all members of the process group of the sending process whose
uids match the uid of the sending process. If the sending process’s uid is root, all
members of the sending process’s group receive the signal. Note that the sending process
will also receive the signal.

kill(0,—sig)
Sends the signal sig to all members of the process group of the sending process whose
uids match the sending process’s uid - except that the sending process will not receive the
signal. If the sending process’s uid is roor, all members of the sending process’s process
group — except the sending process — will receive the signal.

kill(—1,+sig)
Sends the signal sig to all processes whose uids match the sending process’s uid. If the
sending process’s uid is root, all processes - except 0 and 1 - will receive the signal.
kill(-1,—-sig)
Sends the signal sig to all processes whose uids match the sending process’s uid — except

that the sending process will not receive the signal. [f the sending process’s uid is roor, all
processes — except 0, 1, and the sender — will receive the signal.

kill(target,0)
Reserved for future expansion.

See signal(2) for a list of signals.

SEE ALSO
signal(2), kill(1)

DIAGNOSTICS
The error bit (c-bit) is set if the process does not have the same user ID and the user is not
super-user, or if the process does not exist.

ASSEMBLER
(kill = 37.; not in assembler)
(process number in r0)
sys kill; sig

Page | November 1979

LINK(2) CB—UNIX 2.1 LINK (2)

NAME
link — link to a file

SYNOPSIS
int link (namel, name2)
char *namel, *name2;

DESCRIPTION
A link to namel is created; the link has the name name2. Ei}her name may be an arbitrary path
name.

SEE ALSO
In(1), unlink(2)

DIAGNOSTICS
Zero is returned when a link is made; —1 is returned when namel cannot be found, when
name?2 already exists; when the directory of name2 cannot be written; when an attempt is made
to link to a directory by a user other than the super-user; when an attempt is made to link to a
file on another file system; when a file has too many links.

ASSEMBLER
Qlink = 9.)
sys link; namel; name2

Page 1 November 1979

LSEEK (2) CB—-UNIX 2.1 LSEEK (2)

NAME
Iseek — move read/write pointer
SYNOPSIS
long lseek (fildes, offset, whence)
int fildes;
long offset;
int whence;

DESCRIPTION
The file descriptor refers to a file open for reading or writing. The read (resp. write) pointer for
the file is set as follows:

if whence is 0, the pointer is set to offser bytes.
if whence is 1, the pointer is set to its current location plus offser.
if whence is 2, the pointer is set to the size of the file plus offser.
The returned value is the resulting pointer location.
The obsolete function rell(fildes) is identical to Iseek (fildes, OL, 1).

SEE ALSO
creat(2), open(2), fseek(3S)

DIAGNOSTICS
—1 is returned for an undefined file descriptor, seek on a pipe, or seek to a position before the
beginning of file. SIGSYS is raised if whence is not 0, 1, or 2.

BUGS
Lseek is a no-op on character special files.

ASSEMBLER
(Isesk = 19.)
(file descriptor in r0)
sys Iseek; offsetl; offset2; whence
(new pointer location in r0-rl)

Offser] and offset2 are the high and low words of offser.

Page 1 - November 1979

MAUS (2) CB—-UNIX 2.1 MAUS (2)

NAME

maus, getmaus, freemaus, enabmaus, dismaus, switmaus — multiple access user space opera-
tions

SYNOPSIS

getmaus (name, mode)
char *name;

freemaus (mausdes)
char senabmaus (mausdes)

dismaus (vaddr)
char =vaddr;

char sswitmaus (mausdes, vaddr)
char svaddr;

DESCRIPTION

MAUS is a dedicated portion of core memory, which may be subdivided in, logical subsections.
See maus(4) for a discussion of MAUS layout. These subsections are referenced via entries in
the UNIX file system which may be used as arguments to the UNIX open system call or the ger-
maus system call. Opening such a special file results in a file descriptor being returned which
may be subsequently used with other file system calls like read, write, seek and close in the stan-
dard manner.

Performing the germaus primitive on a maus special file returns a maus descriptor which is
analogous to a file descriptor in many ways. This maus descriptor may be subsequently used
with the enabmaus primitive to attach the described maus subsection to the user’s address
space. If the enabmaus primitive is used repetitively on the same maus descriptor different vir-
tual addresses will be returned on each call until all memory mapping registers have been used;
at which time an error is returned. Note that every active instance of maus requires the alloca-
tion of a separate memory mapping register since no register may point to more than one maus
segment at a time.

Once enabmaus has been used the dismaus primitive may be utilized to remove active instances
of maus from the user’s address space. (In reality, enabmaus and dismaus are special cases of
the switmaus primitive described below.)

Finally, freemaus, deallocates a maus descriptor so that it may be reassigned by germaus. Note
that if a maus descriptor has been enabled it may still be freed: the virtual address returned by
enabmaus remains in the user’s address space until a dismaus primitive is utilized on the virtual
address in question.

The maus primitives are defined as follows:

if function is a 0, 1, or 2 (getmaus(name mode) from C), the maus file described by argy (name
from C) is accessed to determine if the read, write, or read/write permission as
specified by function (mode from C) should be granted to the specified user. This
permission check is in accordance with the standard UNIX file protection. The file
specified must be a special maus file. This primitive returns a maus descriptor which
must be saved for future use with freemaus and enabmaus. This primitive is similar
to the open system call in many respects.

if function is 3 (freemaus(mausdes) from C), the maus descriptor described by argy (mausfes
from C) is deallocated from the process. Any further attempts to use the value as a
maus descriptor will result in an error being returned.

if function is 4 (switmaus (mausdes,vaddr) from C), the system will select the user data memory
mapping register specified by argy (vaddr from C), and load it so that the maus seg-
ment specified by argx (mausdes from C), becomes part of the user’s virtual address

November 1979 Page | November 1979

MAUS (2).

FILES

CB—UNIX 2.1 MAUS (2)

space. When using the C interface, the value returned by switmaus is the old maus
descriptor associated with vaddr, if vaddr had not been associated with a maus
descriptor, —2 is returned. For the assembly interface, the value returned is a
pointer to the start of this maus area which may be used like any assembly pointer,
but should be preserved for future maus system calls. If argx is a —1,
{(dismaus (vaddr) from C), the specified virtual address is removed from the user’s
address space. The C interface returns the maus descriptor which had been associ-
ated with vaddr; if vaddr had not been enabled then -2 is returned. The assembly
interface returns some value not equal to —1 (unless there has been an error). If
argy is —1 (enabmaus(mdes) from C), the first available memory mapping register is
allocated and used. If both arguments are —1, an error will be returned only if
there are no unused user memory mapping registers. An error indication is always
returned if no memory mapping registers are available or if an address is specified
which is in use for program text, data or stack. When expecting a maus descriptor
to be returned, for example after a dismaus (vaddr), a -2 return means that no maus
descriptor had been enabled with the virtual address given. In all cases, a —1 return
means error.

/dev/maus/*
RULES OF THE ROAD

1) Maus descriptors are inherited across forks and executes. Note that if the new process
executed has text or data which wants to occupy the memory currently open to maus, the
execute will fail.

2) Maus virtual addresses are inherited across forks.

3) If the break system call is used to increase the user’s size to the point where an additional
memory mapping register is needed and maus is utilizing the next contiguous memory
mapping register, the break will fail. The user may then utilize enabmaus and dismaus to
reassign the maus virtual address(es). This can be done by doing successive enabmaus
system calls until the desired virtual address is reached and then disabling the unneeded
addresses before using the break system call. Alternatively, the user could disable all the
active maus segments, use the break system call, and then reenable the maus segments.

4) Since the memory mapping hardware does not allow a write-only segment, when the user
requests write-only maus via the getmaus primitive he is actually granted read-write per-
mission assuming the file system protection tests pass. Only write permission of the maus

‘ special file is tested in this case.
SEE ALSO
break(2), open(2), maus(4)
DIAGNOSTICS
From assembler the error bit is set for any error. From C, a —1 return indicates an error.
ASSEMBLER

{maus = 58.; not in assembier)
(function in R0)

(argx

in R1)

SYS maus; argy

November 1979 Page 2 November 1979

MDATE:0(2) CB—UNIX 2.1 MDATE:0(2)-

NAME
mdate — set modified date on file

SYNOPSIS
mdate (file, time)
char +file;
int timel2];

DESCRIPTION
File is the address of a null-terminated string naming a file; the modified time of the file is set
to the time given in registers r0 and rl (resp. in the vector which is the second argument). See
time(2) for the units and epoch.

This call is allowed only to the super-user or to the owner of the file.
Mdate is obsolete — use utime(2) instead.

SEE ALSO
time(2), utime(2)

DIAGNOSTICS
Error bit is set if the user is neither the owner nor the super-user or if the file cannot be found.
From C, a negative return indicates an error, a 0 return indicates success.

BUGS
Caution: setting back the date of a file probably will prevent it from being dumped by an incre-
mental dump.

Page | November 1979

MESSAGE(2) CB—UNIX 2.3 MESSAGE(2)

NAME
menab, mdisab, msend, mrecv, mctl — send and receive messages

SYNOPSIS
#include <sys/msg.h>

menab (name, flags)
short name;
short flags;

mdisab (disp)
short disp;

msend (&mstr, buf, size)
mrecy (&mstr, buf, size)
struct mstr mstr;

caddr_t buf;

short size;

mctl (&mstr, command, arg, size)
struct mstr mstr;

short command;

caddr_t arg;

short size;

DESCRIPTION
Messages are a very fast form of interprocess communication. Messages are stored on named
queues. A process may send a message to any queue for which it has permission. A process
can attach to one and only one queue at a time to receive messages according to the permis-
sions associated with the queue. (There may, however, be synonyms for the same queue, sece
below.)
menab(name,flags)
Enable message reception via the queue name. If the queue does not already exist, create
it, giving it the characteristics specified by flags. If the queue already exists, attempt to
attach the existing queue. Attaching an existing queue will succeed only if the following
conditions are met:

1) The flags argument does match the permissions for the queue (see <sys/msg.h>.)

2) The MXCLUDE bit is not set for the queue. (This bit is always cleared by the sys-
tem when the last process disconnects from a queue, hence it is always possible for a
process with the proper permissions to attach a queue if no one else is attached.)

3) The MOTHR and MGRPR permissions in combination with the queue’s and pro-
cess’ user and group ids allow the attempt. These permissions are interpreted in the
same way as the normal UNIX file permissions: see access(2).

The flags are as follows:

MNODESTROY Do not destroy the queue when the last process detaches. This is
the default action. When either MNODESTROY or MDESTROY
is specified by menab() it is used if the process dies or exits without
specifically detaching the queue with a mdisab().

MDESTROY Destroy the queue when the last process detaches. All messages
remaining on the queue at the time of destruction, which require
acknowledgement (the MACKREQ flag was set when they were
sent), are returned to the sending process if possible, with a type of
MACKTYP.

May 11, 1981 Page 1 May 11, 1981

MESSAGE(2) CB—UNIX 2.3 MESSAGE(2)

MXCLUDE Do not allow any other process to attach to this queue. This remains
in force as long as the current process is attached.
MPRIQ Queue messages in order of priority based on ms type. Normally

messages are queued in order of arrival, first-in, first-out (FIFO). In
a priority queue, messages with larger ms stype’s are stored before
messages with lower ms stype’s. (See mrecv below)

MGRPR Allow any process with the same group id as the group id of the ~
creating process to read the queue, i.e. attach the queue for receiv-
ing.

MGRPW Allow any process with the same group id as the group id of the
creating process to write the queue, i.e. send messages to the queue.

MOTHR Allow any process whose user id and group id are different from the
creating process’ ids to read the queue, i.e. attach the queue for
receiving.

MOTHW Allow any process whose user id and group id are different from the
creating process’ ids to write the queue, i.e. send messages to the
queue.

Upon a successfully attaching to a queue, menab() returns the number of processes
attached to the queue.

mdisab(disp)

Disable message reception and detach the queue. disp contains either the MNODESTROY
or the MDESTROY flag, stating what the disposition of the queue is to be if this is the last
process releasing the queue. This overrides the disposition specified during the menab().

msend(mstr,buf,size)

May 11, 1981

Send a message contained in buf, which is of size bytes to the queue specified by the mstr
structure. mstr should contain the queue name and the system name to which the message
is to be sent (in ms_gname and ms_system). It should also contain the message subtype in
ms_stype and the message type and flags, specified in ms_flags. Message subtypes can take
any value from 7 to /27.

The flags and types are as follows:

MNOBLOCK Do not wait if the message cannot be sent (or received for mrecv)
immediately, but return with an appropriate error message.

MNOCOPY Do not copy the message out of the user space. Instead adjust the
memory mapping so that it is no longer apart of the user’s address
space. For this feature to work the system must have the feature
enabled and the message itself must be in a section of sharec
memory. Initially shared memory for messages may be gotten using
smget (see shmem(2)). During an msend(), if the address of the
buffer supplied is not shared memory and the MNOCOPY flag is
set, then the msend() will fail. Messages sent without the MNO-
COPY flag cannot be larger than MAXMLEN. Messages sent as
MNOCOPY are limited only by the amount of shared memory that
can be in existence at one time, a system definable parameter.
When a process receives a MNOCOPY message, the shared memor,
message space is mapped into the address space of the receiver and '7
ms_addr is set to point to the beginning of this shared memory seg-
ment. The MNOCOPY flag will be on in ms flags. Messages
received with the MNOCOPY flag set may be sent to other

Page 2 May 11, 1981

MESSAGE(2) CB—UNIX 2.3 MESSAGE(2)

processes with it set or the shared memory space may be returned to
the operating system using smfree (see shmem(2)). If a process tries
to receive a MNOCOPY message and it cannot be mapped into the
user’s address space, as much as possible is copied into the user sup-
plied buffer and the MNOCOPY flag is turned off.

MACKREQ An acknowledgement is required for this message. If a message with
this type is still on a queue when it is destroyed, the operating sys-
tem will change its type to MACKTYP and attempt to return it to
the sender.

MDATATYP Declares that this message is a data type message. This type has no
meaning to the operating system and is supplied to be used by users.

MCTLTYP Declares that this message is a control type message. This type has
no meaning to the operating system and is supplied to be used by
users.

MINTRTYP Declares that this message is an interrupt type message. This type
has no meaning to the operating system and is supplied to be used
by users.

MACKTYP Declares that this message is an acknowledgement. The operating
system will not allow a message to be sent which has MACKREQ set
and is of type MACKTYP. The operating system will change the
type of any message being returned to sender to MACKTYP. (See
MACKREQ above.)

Upon successfully sending a message, msend() returns the number of bytes of message
actually sent.

mrecy(mstr,buf,size)

May 11, 1981

Receive a message. Normally the message will be placed in buf, and truncated to size bytes
if the message is bigger than the buffer. Messages received with the MNOCOPY flag on
will not use buf. mstr should initially contain the subtype (msstype) and optionally ‘the
MNOBLOCK flag, if waiting is not desired. The remainder of mstr will be filled in by the
operating system dependent upon the message actually being received. ms.gname and
ms_system will contain the name of the queue to which the sending process is attached. If
the message sender does not have messages enabled, then ms gname will be 0. ms rqgname
will contain the name of the queue that the message was actually sent to. (See MAPQ
below.) The subtype and the type of the queue (FIFO or priority) determine which mes-
sage will be received.

FIFO
ms_type = 0
Return next message of any subtype. The subtype of the message actually
received will be placed by the operating system into mstr.

ms_type = 1—127

Return only a message of this specific type. If the message queue is full and
there isn’t a message of the specific type on the queue and someone attempts to
send a message of the desired type, the message will be sent and the receiver will
wake up. This will not work if there are multiple receivers sleeping on different
non-zero types. In this case one of the processes may never wakeup. Receiving
a specific message type from a FIFO message queue should be used very care-
fully.

Page 3 May 11, 1981

MESSAGE(2)

Priority

ms_zype = 0—127

CB—UNIX 2.3 MESSAGE(2)

Return the first message whose subtype is greater than or equal to ms sype in the

receiver’s mstr.

mctl(mstr,command,arg,size)
Fetch and change various parameters for queues. The commands are:

GETMSTAT

SETMQLEN

SETREMQ

P

SETSPYQ

MAPQ

May 11, 1981

Returns an mstats structure containing the number of messages
presently on the queue, the maximum number allowable, the
owner and group of the queue, the number of processes
attached to the queue, and the modes and disposition of the
queue. ‘

Sets the maximum number of messages that a queue can con-
tain to command.ms_smqlen. This number cannot be greatel
than MAXMSGL (See <sys/param.h>>). Only processes with
the same user id as the queue or which are super—user can
change the maximum queue length.

This allows one queue to be declared as the remote queue. All
messages destined for systems other than the present system are
routed to this queue. The process reading the remote message
queue is responsible for actually getting the message to the
remote system by whatever means it is programmed to use.
ms_system, ms_gname, and ms.rqname have special meanings
when a remote queue manager receives and sends messages.
When receiving messages ms_gname contains the name of a local
queue attached to the sending process; ms system continues to
contain the name of the remote system to which the message is
to be sent; and ms._rgname contains the name of the remote
system queue to which the message is to be sent. When the
process attached to the remote message queue sends a message
ms_gname always specifies a local queue name. The operating
system takes the values of ms system and ms_rqname and places
them into ms system and ms_gname of the final message so that
the local receiver of the message sees the message as having
arrived from that system and remote queue.

This is a debugging aid. It specifies that a copy of all messages
sent to the queue specified by mstr be sent to the queue
arg.ms_spyq. There can only be one spy queue in the system a
a time. .

This command allows the creation and removal of synonym
queue names. A message sent to synonym queue name is sent
to the real queue, but with ms rgname set to the synonym queue
name to which the message was directed. In this way the receiv-
ing process will know where the sender thought the message was
going. Note that the synonym queue has all the permissions of
the original queue and that the synonym will disappear when th¢
original queue is destroyed. It is illegal to create a synonym
which is the same as the original and it is also illegal to attach to
a synonym queue. To create or remove a synonym queue the
process performing the MAPQ function must have read permis-
sion for the real queue. To create a synonym, msir specifies a

Page 4 May 11, 1981

MESSAGE(2) CB—UNIX 2.3 MESSAGE(2)

real queue and arg.ms synq is the synonym queue name to be
associated with the real queue. If mstr.ms gname is 0 and
arg.ms_synq specifies a current synonym queue name, then the
synonym queue name is removed.

Messages reception remains enabled across exec, but not across fork.

In creating queue names the following convention is recommended. All system wide per-
menant queue names should be defined in the header file, /usr/include/msgqueues.h. All
such permenant queue names should be negative numbers (0100000 to 0177777),
thereby leaving the positive numbers available to processes which need a temporary queue
for acknowledgements or which are using the old message veneer. (See msg(3)). Such
processes may therefore create temporary queues with names equal to their pid and be
assured that these names will not collide with permenant queue names since pids are never
negative.

The format of <sys/msg.h> is as follows:

I @(#)msg.h 3.1 v
/‘

* Message Control Structures

*/

typedef short queue.t; |

* Modes for menab and mdisab. (ST.mgq.modes)
* For mdisab only the MDESTROY flag is meaningful.

L]

#define MNODESTROY 0000 /* Retain queue when unreferenced */

#define MDESTROY 0001 /* Destroy queue when unreferenced */

#define MOTHR 0002 /* Other read permission */

#define MOTHW 0004 /* Other write permission */
#define MXCLUDE 0010 /* Only one process may attach */
#define MGRPR 0020 /* Group read permission ¥/

#define MGRPW 0040 /* Group write permission */

define MPRIQ 0100 /* Priority type queue */

#define MDEFAULT (MNODESTROYMOTHRMOTHWIMXCLUDEMGRPRMGRPW)
/.

* commands for mectl call

k]

#define GETMSTAT 0 /* get message status */

#define SETMQLEN 1 /* set message queue length 7

#define SETREMQ 2 /* set remote message queue */
#define SETSPYQ 3 /* set spy parameters */
#define MAPQ 4 /* create/destroy synonym queues */

/.

* structure of arg for GETMSTAT command of mctl

=

struct mstats {

short ma.cnt; /® number in queue */
short mqg-_mslim; /* maximum queue size */

short mq_uid; /* "owner” uid]
short mq_gid; /* "owner” gid */

char mq._refc; /* no. attached to queue ¥/

char mq.modes; /* permissions and disposition */

/‘

May 11, 1981 Page 5 May 11, 1981

MESSAGE(2) CB—UNIX 2.3 MESSAGE(2)

* structure of arg for SETMQLEN command
L
struct sctmgq {
short ms_smglen; /* maximum queue length */

|

* For the SETREMQ command the arg and size arguments to

* mctl are not used. The queue name specified in the first

* argument to mectl is the queue which becomes the remote queue.
* If this queue name is zero, the current remote queue is

*® disconnected.

*/

/‘

* structure of arg for SETSPYQ command

* The first arg to mctl specifies the queue to be spied upon.
® This arg specifies the queue to which a copy of the data is
* to be sent.

*

struct setspyq {
k
/8

* structure of arg for the MAPQ command

* The first arg to mcu specifies the existing queue

* to which the synonym is to be mapped. If it specifies a

* gname of zero any existing synonym with the name

* specified in the synq structure is eliminated.

* To successfully create or remove a queue synonym the

* user doing the MAPQ command must have read permission
* for the real queue.

*/

struct synq {

queuet ms.spyq;

queuet ms_syng;
h
/'
* structure for sending and receiving messages
*/
struct mstr {
long ms_system; /* system name */
queuet ms_gname; /® queue name */
char ms._stype; /® message sub-type/priority */
char ms_flags;
caddr_t ms_addr; /* address for mrecv */
queue { ms_rqname; /* queue msg was sent to */
short ms.uid; /® sender’s user id */
short ms_gid; /* sender’s group id */
L
/‘
* Flag values for ms_flags
-
/ .
define MNOBLOCK 001 /* Non-blocking send and recv */
#define MNOCOPY 002 /* Remap segment-no copy if possible */
#define MACKREQ 004 /® Ack required */
#define MDATATYP 000 /* Data message */
#define MCTLTYP 010 /* Control message */
#define MINTRTYP 020 /* Interrupt message */
#define MACKTYP 030 /* Ack message */
#define MTYPMSK 030 /* Mask of type bits */

May 11, 1981 Page 6 May 11, 1981

MESSAGE(2) CB—UNIX 2.3 MESSAGE(2)

#ifdef KERNEL

#define MFLGCARE (MOTHRIMOTHWIMGRPRIMGRPWIMPRIQ)
#define PMSG PZERO+35 /* message sleep priority */
#define MSGIN B_WRITE

#define MSGOUT B_.READ

#define MREADO2

#define MWRITE 04

#define MDISAB 0

#define MENAB 1
#define MSEND 2
#define MRECV 3

#define MSGCTL 4

#define NORMAL_SEND 00000 /* Normal msg - user to user */

#define REM_USR . 00400 /* Remote msg - daemon to user */
#define REM_SEND 01000 /* Remote msg - user to daemon */

/.

* State bits

*

fdefine I QWANT 0100 /* msg queue wanted */

#define [P_WANTED 0200 /*® resource is desired */

struct msghdr {
struct msghdr *mgq forw;

union {

struct {
short mq._size;
queue_t mq.sender;
long mqg-system;
paddr_t mq-addr;
queuet mq_rqname; /* remote queue name */
char mg_stype;
char mq_flags;
short mq.muid;
short mq.mgid;

}ms;

struct {
struct msghdr *mq_last;
queue .l mg.name;
char mgq.twant; /* Wanted for type */
char mq_state;
struct mstats st;

lqu;

JUN;

ki

. .

* Shorthand notations for accessing clements of above structure
*/

#define QU UN.qu
#define MS UN.ms
#define ST UN.qu.st

/.
* Message related measurements
=

struct M_MEAS {
short ginuse; /* number of queues in use */

May 11, 1981 Page 7 May 11, 1981

MESSAGE(2) CB—UNIX 2.3 MESSAGE(2)

short qtblovr; /* no. of queue table overflows */
short mtblovr; /*® no. of msg table overflows */
long msgsent; /® no. of msgs sent */
long msgrecv; /* no. of msgs received */
long msgfish; /* no. of msgs flushed */

b

endif

DIAGNOSTICS

FILES

BUGS

A —1 is returned for any one of a number of error conditions. An error occurs when enabling
messages if no queue can be allocated or if the process is attempting to connect to a queue that
does not have the appropriate permissions; it is also erroneous to attempt to disable message
reception if it is not enabled. When trying to send messages, errors occur because the message
is too long, the specified message queue or system does not exist, the type or priority specified
is not valid, the MNOCOPY bit is used incorrectly, or, for conditional sends, the system mes-
sage buffers are temporarily full or the receiver has an excessive number of messages on its._
queue. When receiving messages, errors may occur because the process has not enabled mes-
sage reception, the requested priority is invalid, or, for conditional receives, a message of the
requested type is not on the queue. It is also illegal to set the message limit (via mctl) to a
value larger than defined by MAXMSGL or to specify a metl for a queue that the user could
not connect to.

/usr/include/sys/param.h
/usr/include/sys/msg.h

It may not be possible to return errors correctly when trying to send messages to remote sys-
tems.

SEE ALSO

access(2), shmem(2), msg(3)

May 11, 1981 Page 8 May 11, 1981

MKNOD (2) ' CB—-UNIX 2.1 MKNOD(2)

NAME

mknod — make a directory or a special file
SYNOPSIS
= int mknod (name, mode, addr)

char =name;

int mode, addr;

DESCRIPTION
Mknod creates a new file whose name is the null-terminated string pointed to by name. The
mode of the new file (including directory and special file bits) is initialized from mode. (The
protection part of the mode is modified by the process’s mode mask; see umask(2)). The first
block pointer of the i-node is initialized from addr. For ordinary files and directories, addr is
normally zero. In the case of a special file, addr specifies which special file.

Mknod may be invoked only by the super-user.

SEE ALSO
mkdir(1), mknod (1), fs(5)

DIAGNOSTICS
Zero is returned if the file has been made; a —1 if the file already exists or if the user is not
the super-user.
ASSEMBLER
(mknod = 14.)
sys mknod; name; mode; addr

Page 1 November 1979

. MOUNT(2) CB—UNIX 2.3 MOUNT(2)

NAME
mount, umount — mount or remove file system

SYNOPSIS
#include <sys/types.h>
#include <sys/mount.h>
int mount (special, name, mtflags)
char sspecial, *name;
int mtflags;

DESCRIPTION
Mount announces to the system that a removable file system, special, is now mounted on the
innode associated with name. From now on, references to file name will refer to the root file
on the newly mounted file system. Special and name are pointers to null-terminated strings
containing the appropriate path names.

Name must exist already. Name must be a directory (unless the root of the mounted file system
is not a directory). Its old contents are inaccessible while the file system is mounted.

The mtflags argument passes two mount flags to the operating system. M_RONLY says that
the file system is to be read-only. Physically write-protected and magnetic tape file systems
must be mounted read-only or errors will occur when access times are updated, whether or not
any explicit write is attempted. M_NOSETUG says that the set user/group feature of the exec
system call is to be disabled for all executions taking place from this file system. M_NOCBO
says that opens of character and block special devices will not be allowed from this file system.

Mount may be issued only by the super-user.

SEE ALSO
mount(1), umount(2)

DIAGNOSTICS
Mount returns 0 if the action occurred; —1 if special is inaccessible or not an appropriate file; if
name does not exist; if special is already mounted; if name is in use; or if there are already too
many file systems mounted.

ASSEMBLER
(mount = 21.)
sys mount; special; name; rwflag

April 1, 1981 Page 1 April 1, 1981

