MPX (2) CB—-UNIX 2.1 MPX(2)

NAME
mpx, join, chan, extract, attach, detach, connect, npgrp, ckill, mpxcall — create and manipulate
multiplexed files

SYNOPSIS
mpx (name, access)
char *name;

join (fd, xd)

chan (xd)

extract (i, xd)
attach (i, xd)
detach (i, xd)
connect (fd, cd, end)

npgrp (i, xd, pgrp)
ckill (i, xd, signal)

#include <sys/mx.h>
mpxcall (cmd, vec)
int =vec;

DESCRIPTION
Mpxcall cmd, vec) s the system call shared by the library routines described below. Und selects
a command using values defined in <sys/mx.h>. Vec is the address of a structure containing
the arguments for the command:

mpx (name, access)

Mpx creates and opens the file name with access permission access (see creat (2)) and returns a
file descriptor available for reading and writing. A —1 is returned if the file cannot be created,
if name already exists, or if the file table or other operating system data structures are full. The
file descriptor is required for use with other routines.

If name designates a null string, a file descriptor is returned as described, but no entry is created
in the file system.

Once created, an mpx file may be opened (see open (2)) by any process. This provides a form
of interprocess communication whereby a process B can ‘‘call’”’ process A by opening an mpx
file created by A. To B, the file is ordinary with one exception: the connect primitive could be
applied to it. Otherwise, the functions described below are used only by process A and descen-
dants that inherit the open mpx file.

When a process opens an mpx file, the owner of the file receives a control message when the
file is next read. The method for ‘‘answering’’ this kind of call involves using artach and detach
as described in more detail below.

Once B has opened A’s mpx file, it is said to have a channel to A. A channel is a pair of data
streams: in this case, one from B to A and the other from A to B. Several processes may open
the same mpx file, yielding multiple channeis within the one mpx file. By accessing the
appropriate channel, A can communicate with B and any others. When A reads (see read (2))
from the mpx file, data written to A by the other processes appears in A’s buffer using a record
format described in mpxio (5). When A writes (see wrire (2)) on its mpx file, the data must be
formatted in a similar way.

The following commands are used to manipulate mpx files and channels.

join — adds a new channel on an mpx file to an open file F. /O on the new channel is

November 1979 Page 1 Novembér 1979

MPX (2) CB—UNIX 2.1 ' MPX (2)

I/0 on F.

chan — creates a new channel.

extract — file descriptor maintenance.

connect — similar 1o join except that the open file F is connected to an existing channel.
artach and derach — used with call protocol.

npgrp — manipulates process group numbers so that a channel can act as a control ter-
minal (see try(4)).

ckill — send signal (see signal (2)) to process group through channel.

A maximum of 15 channels may be connected to an mpx file. They are numbered O through
14. Join may be used to make one mpx file appear as a channel on another mpx file. A hierar-
chy or tree of mpx files may be set up in this way. In this case, one of the mpx files must be
the root of a tree where the other mpx files are interior nodes. The maximum depth of such a
tree is 4.

An index is a 16-bit value that denotes a location in an mpx tree other than the root: the path
through mpx "nodes” from the root to the location is expressed as a sequence of 4-bit nibbles.
The branch taken at the root is represented by the low-order 4-bits of an index. Each succeed-
ing branch is specified by the next higher-order nibble. If the length of a path to be expressed
is less than 4, then the illegal channel number, 15, must be used to terminate the sequence.
This is not strictly necessary for the simple case of a tree consisting of only a root node; its
channels can be expressed by the numbers 0 through 14. An index / and file descriptor xd for
the root of an mpx tree are required as arguments to most of the commands described below.
Indices also serve as channel identifiers in the record formats given in mpxio(5). Since —1 is
not a valid index, it can be returned as a error indication by subroutines that normally return
indices.

The operating system informs the process managing an mpx file of changes in the status of
channels attached to the file by generating messages that are read along with data from the
channels. The form and content of these messages is described in mpxio (5).

Join (fd, xd) establishes a connection (channel) between an mpx file and another object. A is an
open file descriptor for a character device or an mpx file and xd is the file descriptor of an mpx
file. Join returns the index for the new channel if the operation succeeds and —1 if it does not.

Following join, /@ may still be used in any system call that would have been meaningful before
the join operation. Thus, a process can read and write directly to /@ as well as access it via xd.
If the number of channels required for a tree of mpx files exceeds the number of open files
permitted a process by the operating system, some of the file descriptors can be released using
the standard c/ose (2) call. Following a close on an active file descriptor for a channel or inter-
nal mpx node, that object may still be accessed through the root of the tree.

chan &d) allocates a channel and connects one end of it to the mpx file represented by file
descriptor xd. (han returns the index of the new channel or a —1 indicating failure. The
extract primitive can be used 1o get a non-multiplexed file descriptor for the free end of a chan-
nel created by chan.

Both chan and join operate on the mpx file specified by xd. File descriptors for interior nodes
of an mpx tree must be preserved or reconstructed with extract for use with join or chan. For
the remaining commands described here, xd denotes the file descriptor for the root of an mpx
tree.

Extract (, xd) returns a file descriptor for the object with index / on the mpx tree with root file
descriptor xd. A —1 is returned by extract if a file descriptor is not available or if the arguments
do not refer to an existing channel and mpx file.

artach , xd)

.detach i, xd). 1f a process A has created an mpx file represented by file descriptor xd, then a

November 1979 Page 2 November 1979

MPX (2) CB-UNIX 2.1 MPX (2)

FILES

process B can open (see open (2)) the mpx file. The purpose is to establish a channel between
A and B through the mpx file. Artach and Detach are used by A to respond to such opens.

An open request by B fails immediately if a new channel cannot be allocated on the mpx file, if
the mpx file does not exist, or if it does exist but there is no process (A) with a multiplexed file
descriptor for the mpx file (i.e. xd as returned by mpx (2)). Otherwise, a channel with index
number / is allocated. The next time A reads on file descriptor xd, the WATCH control mes-
sage (see mpxio(5)) will be delivered on channeli. A responds to this message with attach or
detach. The former causes the open to complete and return a file descriptor to B. The latter
deallocates channel / and causes the open to fail.

One mpx file may be placed in ‘listener’ mode. This is done by writing ioal &d, MXLSTN, 0)
where xd is an mpx file descriptor and MXLSTN is defined in /usr/include/mx.h. The seman-
tics of listener mode are that all file names discovered by open(2) to have the syntax
system!pathname (see uucp (1C)) are treated as opens on the mpx file. The operating system
sends the listener process an OPEN message (see mpxio(5)) which includes the file name being
opened. Aftach and detach then apply as described above.

Detach has two other uses: it closes and releases the resources of any active channel it is applied
to, and should be used to respond to a CLOSE message (see mpxio(5)) on a channel so the
channel may be reused.

connect (fd, cd, end). K is a character file descriptor and ¢d is a file descriptor for a channel,
such as might be obtained via extract (chan &d), xd) or by open (2) followed by artach. Connect
splices the two streams together. If end is negative, only the output of /@ is spliced to the input
of cd. If end is positive, the output of ¢d is spliced to the input of /4. If end is zero, then both
splices are made.

npgrp €, xd, pgrp). 1f xd is negative, npgrp applies to the process executing it, otherwise i and xd
are interpreted as a channel index and mpx file descriptor, and 7pgrp is applied to the process
on the non-multiplexed end of the channel. If pgrp is zero, the process group number of the
indicated process is set to the process number of that process, otherwise the value of pgrp is
used as the process group number.

Npgrp normally returns the new process group number. If i and x4 specify a nonexistant chan-
nel, npgrp returns — 1.

ckill §, xd, signal) sends the specified signal (see signal(2)) through the channel specified by /
and xd. If the channel is connected to anything other than a process, ckill is a null operation. [f
there is a process at the other end of the channel, the process group will be interrupted (see sig-
nai (2), kill (2)). Ckill normally returns signal. If ¢h and xd specify a nonexistent channel, ckill
returns — 1.

/usr/include/sys/mx.h
/usr/include/sys/ioctl.h

SEE ALSO

BUGS

ioctl(2), mpxio(5)

Mpx files are an experimental part of the operating system more subject to change and prone to
bugs than other parts. Maintenance programs, €.g. icheck (1M), diagnose mpx files as an ille-
gal mode. Channels may only be connected to objects in the operating system that are accessi-
ble through the line discipline mechanism. Higher performace line disciplines are needed. A
non-destructive disconnect primitive (inverse of connect) is not provided. A non-blocking flow
control strategy based on messages defined in mpxio (5) should not be attempted by novices; the
enabling /ocrl command should be protected. The join operation could be subsumed by connecr.
A mechanism is needed for moving a channel from one location in an mpx tree to another.

November 1979 Page 3 November 1979

MPX (2) CB~UNIX 2.1 MPX (2)

Attempts to read when there are less than 14 bytes left in the channel buffer may cause an
incorrect length to be returned on the read. There are problems with splicing channels and
redirecting them.

November 1979 Page 4 November 1979

MSG (2)

NAME

CB—UNIX 2.1 MSG (2)

msg, msgenab, msgdisab, send, sendw, recv, recvw, msgstat, msgctl — send and receive mes-

sages

SYNOPSIS
include

< sys/ipcomm.h>

msgenab ()
msgdisab ()

send (buf,

size, topid, type)

sendw (buf, size, topid, type)

char +buf;

recv (buf,

size, &mstructp, type)

recvw (buf, size, &mstructp, type)

char +buf;

struct mstruct mstructp;

msgstat (&mstat, sizeof (mstat), pid)
struct mstat mstat;

msgetl (pid, command, arg)

DESCRIPTION
A process

that has enabled message reception has a message queue on which are placed, in

order of arrival, messages sent to it by other processes. The process actually receives a
message’s contents by requesting a message from the queue. A process may send a message to
any other process that has enabled message reception, as long as the receiver does not have an
excessive number of messages pending on its queue.

From assembly language, the function argument specifies the request type.

0

November 1979

Message reception is disabled; messages may no longer be sent to the process.
Depending on the 7ype, any message(s) still on the queue are either discarded or
returned to the sender. No other arguments are used for this kind of request.

Enable message reception. No messages may be sent to the process until this is
done. No other arguments are used in this kind of request. Message reception
remains enabled across exec, but not across.fork.

Send a message to another process. If the system’s message buffers are temporarily
full, return is immediate. (Conditional Send)

Send a message to another process. This is as above, except that execution may be
suspended until there is sufficient buffer space to send the message. (Unconditional
Send)

Receive the first message on the queue of the requested fype. Return immediately if
no such message exists. (Conditional Receive)

Receive a message as above, except that execution may be suspended until a suit-
able message is placed on the queue, if one is not already available. (Unconditional
Receive)

Regquest a count of the number of messages allowed and actual number of messages
queued for the process numbered pid.

Set control variables in message queue header as defined by command. At present,
only available command is setmglen which sets maximum number of messages
allowed by process numbered pid.

Page | November 1979

MSG (2) CB-UNIX 2.1 MSG (2)

The buf argument is the address of the buffer that, when sending, contains the message to be
sent, or, when receiving, is where the message is to be placed. The number of bytes to be sent
or received should be in r0. Currently, messages may be from 0 to 212 bytes in length. If,
when receiving, the length of the message exceeds the requested number of bytes, the message
is truncated. In any event, the number of bytes actually sent or received is returned in r0.

When a message is being sent, arg3 should contain the processid of the receiving process.
When receiving a message, arg3 should be the address of a structure of type mstruct.

The type argument is used by a sender to assign a type number (1 to 128) to a message. By
convention, types 1 to 63 imply that an acknowledgement message is desired; types 64 to 128
imply no acknowledgement is necessary; type 128 is an acknowledgement message. If a process
disables messages (or exits) with any messages still on its queue, those of type 1 to 63 are
changed to type 128 and, if possible, returned to the sender; those of type 64 to 128 are dis-
carded.

When receiving messages, a process may request 7ype 0, indicating that the first message on the
queue is to be retrieved, or a rype from 1 to 128, indicating that the first message on the queue
of the requested 7)ype is to be received. In either case, the message’s actual type is returned in
the second word of the structure provided by the user arg3.

From C, msgenab and msgdisab enable and disable message reception, respectively. Msgsrat
returns message status in terms of actual and maximum allowed message queue lengths. AMsgca!
allows modification of the maximum number of messages parameter. All return zero when
successful.

The send , sendw, recv, and recvw functions perform conditional send, unconditional send, con-
ditional receive, and unconditional receive operations, respectively. All return the number of
bytes actually sent or received, as appropriate. The format of ipcomm.h is as follows:

/* % W% */
/.
* Interprocess Communication Control Structures
*/
#ifdef KERNEL
/.
* common flags
*/
#define IP_PERM 03 /* scope permission mask */
#define [P_ANY 0 /* system scope */
#define IP_UID 01 /* userid scope */
#define IP_GID 02 /* groupid scope */
#define IP_QWANT 0100 /* entry in msg queue wanted */
#define [P_WANTED 0200 /* resource is desired */
struct ipaword
{ char ip_flag;
char ip_id; J;
/.
* message control
*
#define PMSG 5 /* message sleep priority */
#define MAXMLEN 212 /* max message length in bytes */
#define MAXMSGDEF 10 /* defauit max number unreceived msgs per §
#define MAXMSGL 20 /*max limit to be set by msgctl®/

November 1979 Page 2 November 1979

MSG (2) CB—UNIX 2.1 MSG (2)

#define MSGIO 02 /* tefl iomove() this is msg */

#define MSGIN 0 /* same as B_WRITE */

#define MSGOUT 01 /* same as B_READ */
#define MDISAB 0

#define MENAB 1
#define MSEND 2

#define MSENDW 3
#define MRECV 4
#define MRECVW 5
#define MSTAT 6
#define MSGCTL 7

struct msghdr
struct msghdr *mq_forw;

int mq_size;
int maq_sender;
int mq_type;

k

struct msgqhdr
struct msghdr *mgq_forw; /* note same position as in msghdr */
struct msghdr *maq_last;
int *mgq_procp;
char mq_flag;
char mq_cnt;
int mq_meslim;

3
#endif

/* commands for msgctl call here */
#define SETMQLEN 0 /*set mes q length command®/

struct mstat {

unsigned ms_cnt;
unsigned ms_maxm;
)
struct mstruct {
int ms_frompid:
int ms_type;

e
DIAGNOSTICS

The error bit (c-bit) is set for any one of a number of error conditions. An error occurs when
enabling messages if no queue is available for use; it is also erroneous to attempt to disable
message reception if it is not enabled. When trying to send messages, errors occur because the
message is too long, the receiver has not enabled message reception, the type specified is not
valid, the receiver has an excessive number of messages outstanding on its queue, or, for con-
ditional sends, the system message buffers are temporarily full. When receiving messages,
errors may occur because the process has not enabled message reception, the requested type or
size are invalid, or, for conditional receives, a message of the requested type is not on the
queue. [t is also illegal to set the message limit (via msger!) to a value larger than defined by
MAXMXSGDEF in ipcomm.h. From C, a —1 return from any function indicates an error.

ASSEMBLER
(msg = 49.; not in assembler)
(size in r0)
sys msg; function; buf; arg3; type

November 1979 ' Page 3 November 1979

MSG (2) CB—UNIX 2.1 MSG (2)

FILES
/usr/include/sys/ipcomm.h

November 1979 Page 4 November 1979

NICE(2) CB—-UNIX 2.3 NICE(2)

NAME'
nice — set program priority

SYNOPSIS
nice (priority)

DESCRIPTION
The scheduling priority of the process is changed to the argument. Positive priorities get less
service than normal; 0 is default. Only the super-user may specify a negative priority. The
valid range of priority is 20 to —128. The value of 16 is recommended to users who wish to
execute long-running programs without flak from the administration.

The effect of this call is passed to a child process by the fork system call. The effect can be can-
celled by another call to nice with a priority of 0. From assembler, nice returns the old priority
in r0. From C, nice returns a zero if no errors were encountered.

SEE ALSO
nice(1)

DIAGNOSTICS
The error bit (c-bit) is set if the user requests a priority outside the range of 0 to 20 and is not
the super-user. In C, a —1 indicates an error.

ASSEMBLER
(nice = 34.)
(priority in r0Q)
sys nice
(old priority in r0)

December 19, 1979 Page 1 December 19, 1979

OPEN(2) - ; CB—UNIX 2.1 OPEN (2)

NAME

open — open for reading or writing
SYNOPSIS

open (name, mode)

char *name; \ ®
DESCRIPTION

Open opens the file name for reading (if mode is 0), writing (if mode is I) or for both reading

and writing (if mode is 2). Name is the address of a string of ASCII characters representing a

path name, terminated by a null character.

The returned file descriptor should be saved for subsequent calls to read, write, Iseek, close, etc.

Normally a single process may have as many as 20 files opered simultaneously. The file
descriptors returned will be in the range 0 to 19. To cause a file descriptor to be ‘‘auto-closed’
on exec, use ioct!(2).

SEE ALSO
dup(2), creat(2), read(2), write(2), close(2), ioctl(2)

DIAGNOSTICS
The error bit (c-bit) is set if the file does not exist, if one of the necessary directories does not
exist or is unreadable, if the file is not readable (resp. writable), or if 20 files are open. From
C, a —1 value is returned on an error.

ASSEMBLER
(open = 5.)
sys open; name; mode

Page 1 November 1979

PAUSE(2) CB-UNIX 2.1 PAUSE(2)

NAME

pause — stop until signal
SYNOPSIS

pause ()
DESCRIPTION

Pause is used to give up control while waiting for a signal from i//(2) or alarm(2). It only
returns control if a signal is raised and not ignored, and control returns from the signal action
routine.

A pause without an alarm having previously been set will return immediately with a zero value.

SEE ALSO
kill(1), kill(2), alarm(2), signal(2), setjmp(3C)

ASSEMBLER
(pause = 29.)
Sys pause

Page | : November 1979

PIPE(2) CB—-UNIX 2.1 PIPE (2)

NAME
pipe — create a pipe

SYNOPSIS
pipe (fildes)
int fildes[2];

DESCRIPTION
The pipe system call creates an I/0 mechanism called a pipe. The file descriptors returned can
be used in read and write operations. When the pipe is written using the descriptor returned in
rl (resp. fildes[1]), up to 4096 bytes of data are buffered before the writing process is
suspended. A read using the descriptor returned in rO (resp. fildes{0]) will pick up the data.

It is assumed that after the pipe has been set up, two (or more) cooperating processes (created
by subsequent fork calls) will pass data through the pipe with read and write calls.

The shell has a syntax to set up a linear array of processes connected by pipes.

Read calls on an empty pipe (no buffered data) with only one end (all write file descriptors
closed) return an end-of-file. Write calls under similar conditions are ignored.

SEE ALSO
sh(1), read(2), write(2), fork(2)

DIAGNOSTICS
The error bit (c-bit) is set if there are not 2 free file descriptors when the pipe call is made.
From C, a —1 returned value indicates an error. -

ASSEMBLER
(pipe = 42.)

Sys pipe
(read file descriptor in r0)
(write file descriptor in rl1)

Page 1 November 1979

PLOCK(2) CB—UNIX 2.1 PLOCK(2)

NAME
plock — lock process or text in memory

SYNOPSIS
plock (operation)

DESCRIPTION
A process can lock in memory its complete process image or just its text image, and thereby,
have it immune to all routine swapping. The caller must be super-user. The argument operation
specifies:

0 - PUNLOCK - remove locked status on process

1 - PROCLOCK - lock process text & data in memory
2 - TXTLOCK - lock only the text in memory

3. TUNLOCK — remove locked status on text

Locked processes and texts are shuffled down to the lowest possible address in user swappable
memory. Locks are not inherited by children across forks and execs by locked processes are ille-
gal. Locked processes can still be swapped under certain circumstances such as those in the fol-
lowing warning. '

WARNING:
A great deal of swapping, including the swapping of other locked processes, occurs
whenever a process locks its text and/or data; or a locked process grows its data or
stack, exits, or is the last locking process to free a locked text. Consequently,
processes performing locking should possess long term stability. If the application of
locking is to improve real time response, then the careless use of it will do more
harm than good.

FILES
/usr/include/sys/lock.h

DIAGNOSTICS
The error bit (c-bit) is set if the proper lock-unlock sequence is not performed in order. i.e.
locking the text then locking the process before unlocking the text is illegal.
ASSEMBLER
(syscb = 45.; lock = 3.)
(lock in r1)
sys syscb; operation

Page | - November 1979

PROFIL (2) CB—UNIX 2.1 PROFIL (2)

NAME

profil — execution time user profile
SYNOPSIS

profil (buff, bufsiz, offset, scale)

char =buff;

int bufsiz, offset, scale;
DESCRIPTION

Buff points to an area of core whose length (in bytes) is given by bufsiz. After this call, the
user’s program counter (pc) is examined each clock tick (60th second); offser is subtracted from
it, and the result multiplied by scale. If the resulting number corresponds to a word inside bu/ff,
that word is incremented.

The scale is interpreted as an unsigned, fixed-point fraction with binary point at the left:
0177777(8) gives a 1-1 mapping of pc’s to words in buff: 077777(8) maps each pair of instruc-
tion words together. 02(8) maps all instructions onto the beginning of buff (producing a non-
interrupting core clock).

Profiling is turned off by giving a scale of 0 or 1. It is rendered ineffective by giving a bufsiz of
0. Profiling is turned off when an exec is executed, but remains on in child and parent both
after a fork. Profiling may be turned off if an update in byff would cause a memory fault.

SEE ALSO

prof(1), monitor(3C)
ASSEMBLER

(profil = 44.))

sys profil; buff; bufsiz; offset; scale

Page 1 November 1979

PTRACE(2) CB—-UNIX 2.1 PTRACE(2)

NAME

ptrace — process trace

SYNOPSIS

ptrace (request, pid, addr, data)
int request, pid, addr, data;

DESCRIPTION

Page 1

Ptrace provides a means by which a parent process may control the execution of a child process,
and examine and change its core image. Its primary use is for the implementation of break-
point debugging, but it should be adaptable for simulation of non-UNIX environments. There
are four arguments whose interpretation depends on a reguest argument. Generally, pid is the
process ID of the traced process, which must be a child (no more distant descendant) of the
tracing process. A process being traced behaves normally until it encounters some signal
whether internally generated like ‘‘illegal instruction’’ or externally generated like “interrupt.”’
See signal(2) for the list. Then the traced process enters a stopped state and its parent is
notified via wait(2). When the child is in the stopped state, its core image can be examined
and modified using prrace. If desired, another ptrace request can then cause the child.either to
terminate or to continue, possibly ignoring the signal.

The value of the request argument determines the precise action of the call:

0 This request is the only one used by the child process; it declares that the process is to be
traced by its parent. All the other arguments are ignored. Peculiar results will ensue if the
parent does not expect to trace the child.

1,2 The word in the child process’s address space at addr is returned. If I and D space are
separated, request 1 indicates [space, 2 D space. Addr must be even. The child must be
stopped. The input data is ignored.

3 The word of the system’s per-process data area corresponding to addr is returned. Addr
must be even and less than 512. This space contains the registers and other information
about the process; its layout corresponds to the user structure in the system.

4,5 The given data is written at the word in the process’s address space corresponding to addr,
which must be even. No useful value is returned. If [and D space are separated, request
4 indicates I space, 5 D space. Attempts to write in pure procedure fail if another process
is executing the same file.

6 The process’s system data is written, as it is read with request 3. Only a few locations can
be written in this way: the general registers, the floating point status and registers, and cer-
tain bits of the processor status word.

7 The data argument is taken as a signal number and the child’s execution continues as if it
had incurred that signal. Normaily the signal number will be either 0 to indicate that the
signal which caused the stop should be ignored, or that value fetched out of the process’s
image indicating which signal caused the stop. Signal number —1 transmits no signal, but
causes the process to continue, then stop as soon as possible after having executed at least
one instruction; the signal number received by the parent at this stop is SIGTRC.

8 The traced process terminates.

As indicated, these calls (except for request 0) can be used only when the subject process has
stopped. The wait call is used to determine when a process stops; in such a case the ‘‘termina-
tion”’ status returned by wait has the value 0177 to indicate stoppage rather than genuine termi-
nation.

To forestall possible fraud, ptrace inhibits the set-user-id facility on subsequent exec(2) calls. If
a traced process calls exec, it will stop before executing the first instruction of the new image
showing signal SIGTRC.

November 1979

PTRACE(2) CB—-UNIX 2.1 PTRACE (2)

SEE ALSO
adb(1), signal (2), wait(2)

DIAGNOSTICS
The value —1 is returned if request is invalid, pid is not a traceable process, addr is out of
bounds, or data specifies an illegal signal number.

BUGS
The request 0 call should be able to specify signals which are to be treated normally and not
cause a stop. In this way, for example, programs with simulated floating point (which use ‘ille-
gal instruction’’ signals at a very high rate) could be efficiently debugged.

The error indication, —1, is a legitimate function value; errno (see intro(2)) can be used to
disambiguate.

It should be possible to stop a process on occurrence of a system call; in this way a completely
controlied environment could be provided.

ASSEMBLER
(ptrace = 26.)
(data in r0)
sys ptrace; pid; addr; request
(value in r0)

November 1979 Page 2

READ(2) CB—-UNIX 2.1 READ(2)

NAME
read — read from file

SYNOPSIS
read (fildes, buffer, nbytes)
char s+buffer;

DESCRIPTION
A file descriptor is a word returned from a successful open, creat, or pipe call. Buffer is the loca-
tion of nbytes contiguous bytes into which the input will be placed. It is not guaranteed that all
nbytes bytes will be read; for example if the file refers to a typewriter at most one line will be
returned. In any event, the number of characters read is returned (in r0).

If the returned vaiue is 0, then end-of-file has been reached.

SEE ALSO
open(2), dup(2), close(2), creat(2), pipe(2), write(2)

DIAGNOSTICS
As mentioned, 0 is returned when the end of the file has been reached. If the .read was
otherwise unsuccessful the error bit (c-bit) is set. Many conditions can generate an error: phy-
sical 1/0 errors, bad buffer address, preposterous nbyres, file descriptor not that of an input file,
etc. From C, a —1 return indicates an error.

ASSEMBLER
(read = 3.)
(file descriptor in r0)
sys read; buffer; nbytes
(byte count in r0)

Page 1 November 1979

REBOOT(2) CB—UNIX 2.1 REBOOT (2)

NAME
reboot — transfer control to DEC rom and reboot

SYNOPSIS
reboot (unit, name) ’
char *name;

DESCRIPTION

Reboot causes termination of the current system with control being given to the DEC YC rom.
The unit argument is the value that would normally have been placed in the console switches
before starting the rom program manually. For an RP06 disk drive unit 0, for example, the
unit specified would be 070. The name argument is the name of the file to be passed to the
boot routine which is loaded by the rom. This file name is stored in a place known to both the
reboot system call and the boot routine. The file name is limited to 15 characters in length
including a terminating newline which must be supplied.

This system call is limited to the super-user for obvious reasons.

DIAGNOSTICS
Reboot will not return if successful. C-bit is set on error with the error code in r0; from C, —1
return indicates failure.

SEE ALSO
reboot(1M)

ASSEMBLER
(syscb = 45.; reboot = 2.)
(reboot in R1)
(unit in RO)
sys syscb; name;

November 1979 Page 1 November 1979

SEEK:0(2) CB—UNIX 2.1 SEEK:0(2)

NAME '
seek — move read/write pointer
SYNOPSIS
seek (fildes, offset, ptrname)
DESCRIPTION
Seek has been droped in this version of the library. Use iseek(2) instead.
ASSEMBLER
(seek = 19.)

(file descriptor in r0)
sys seek; offset: ptrname

