SEEK:0 2) CB—UNIX 2.1
NAME :
seek — move read/write pointer
SYNOPSIS
seek (fildes, offset, ptrname)
DESCRIPTION
Seek has been droped in this version of the library. Use /seek(2) instead.
ASSEMBLER
(seek = 19.)

(file descriptor in r0)
sys seek; offset: ptrname

Page 1

SEEK:0(2)

November 1979

SEMA (2) CB—-UNIX 2.3 SEMA(2)

NAME

sema, p, v, test, post, block, setsem, rdsem, lock, unlock, tlock, noulk — semaphore opera-
tions :

SYNOPSIS

p (sema)

v (sema)

test (sema)
post (sema)
block (sema)
setsem (sema,value)
rdsem (sema)
lock (sema)
unlock (sema)
tlock (sema)
noutk ()

DESCRIPTION

The indicated function is performed on the specified semaphore. Semaphores are assigned on a
system-wide basis. By convention the file /us}‘(/include/sema.h contains define symbols for
the usage of semaphores. Also by convention, semaphore numbers less than zero are reserved
for system programs such as the line printer spooling system.

The various semaphore operations are defined as follows:

post causes all users doing a block on the specified semaphore to be awakened. As a side
effect, the semaphore is incremented.

block causes the current user to roadblock until a subsequent post on the specified sema-
phore.

D causes the current user to roadblock if the specified semaphore’s value is zero until

it becomes nonzero. If the semaphore’s value is nonzero, the semaphore is decre-
mented and the user is not roadblocked.

v causes the specified semaphore to be incremented.

test causes the specified semaphore to be decremented if the current value is nonzero.
rdsem returns the current value of the specified semaphore.

setsem sets the specified semaphore to the given value.

lock roadblocks if the specified semaphore is nonzero until it becomes zero. Once the

semaphore is zero, the negative of the current process’ pid is stored in the sema-
phore and lock returns a zero.

unlock sets the specified semaphore to zero if its current value is the negative of the current
process’ pid; an error is returned otherwise.

tlock is like Jock except the current process is not roadblocked if the semaphore’s value is
nonzero. Instead, the value is returned.

noulk prevents the system from automatically unlocking any semaphores which may be
locked by the current process at termination time.

In all cases, if the function is successfully performed, the system returns the old semaphore
value (in RO).

Users of semaphores should be wary of the interaction between caught signals and the use of p,
block, and lock. If a signal is caught while waiting for a semaphore, the call to the semaphore
primative will return with a —1 error and the error number of EINTR. The base level routine

February 27, 1981 Page 1 February 27, 1981

SEMA(2) CB—UNIX 2.3 SEMA(2)

should then call the primative again if this is desired.

The use of the various semaphore primatives in an intermixed manner may produce undefined
results. In particular a single semaphore should be used with only one of the following tuples:
block-post, p-v-test, or lock-unlock-tlock. Rdsem may be used on any semaphore at any time.
Setsem should only be used to set a semaphore to an inital value.

The system will only automatically unlock those semaphores which have been locked or tlocked.

A counting semaphore (p-v-fest) may only assume values between zero and 32767. If an
overflow occurs the new value is set to one.

SEE ALSO
sema(1l)

DIAGNOSTICS
From C, a —1 value indicates an error.

ASSEMBLER
(semas = 63.; not in assembler)
(new value in RO)
sys semas; func; sema
(old value in RO)

February 27, 1981 Page 2 February 27, 1981

SETGID(2) CB—UNIX 2.3 SETGID(2)

NAME
setgid — set process group ID
SYNOPSIS
setgid (gid)
DESCRIPTION
The group ID of the current process is set to the argument, gid. Both the effective and the real

group ID are set. This call is only permitted to the super-user, unless the argument is the real
group ID.

SEE ALSO

getgid(2)
DIAGNOSTICS

Error bit (c-bit) is set as indicated; from C, a —1 value indicates an error.
ASSEMBLER

(setgid = 46.)

(group ID in r0)

sys setgid

March 11, 1980 Page 1 March 11, 1980

SETPGRP(2) CB-UNIX 2.1 SETPGRP(2)

NAME

Setpgrp — set process group
SYNOPSIS

setpgrp (newgrp)
DESCRIPTION

The process group of the current process group is set to the argument. The old process group
is returned. If the argument is 0, the current process group is not changed but simply returned.
If the argument is —1, the current process is dissassociated from any process group (i.e., given
a NULL (0) process group).

SEE ALSO
setpgrp(1)
ASSEMBLER
(setpgrp = 39.)
(not in assembler)
(new process group in r0)

Sys setpgrp
(old process group in r0)

Page | November 1979

SETUID(2) CB—UNIX 2.1 SETUID(2)

NAME

setuid — set process user ID
SYNOPSIS

setuid (uid)
DESCRIPTION

The user ID of the current process is set to the argument, uid. Both the effective and the real
user ID are set. This call is only permitted to the super-user, unless the argument is the real
user ID.

SEE ALSO
getuid (2)
DIAGNOSTICS
Error bit (c-bit) is set as indicated; from C, a —1 value indicates an error.

ASSEMBLER
(setuid = 23.)
(user ID in r0)
sys setuid

Page 1 November 1979

SHMEM (2)

NAME
smcreat, §

SYNOPSIS
#include

smcreat (

CB—UNIX 2.3 SHMEM(2)

mopen, smclose, smget, smput — shared memory operations

<sys/shmem.h>

path, access, size);

char =path;
short access;

long size;

sm_des = smopen (path, mode);
smdes_t sm_des;

char =path;

short mode;

smclose (

sm._des);

smdes_t sm_des;

vaddr =

smget (sm_des, mode, offset, size, time_Imt);

caddt_t vaddr;
smdes_t sm_des;
short mode;
long offset;

long size;

short time_lmt;

smput (vaddr)
caddt_t vaddr;

DESCRIPTION

Shared memory is a form of memory which can be attached to a process’s address space, read
or written. and then released, with the contents preserved for later or simultaneous attachment
by another process. Shared memory can be used as multiple access user memory (MAUS), or
as a means of passing large pieces of data from one process to another with only one process
accessing the data at a time. Exactly how it is used is determined by the user processes. Each
piece of shared memory is referenced orginally via the UNIX file system and can also be

accessed a

smcreat

smopen

February 27, 1981

s a file, via the normal open, read, write, Iseek, and close system calls.

Shared memory is created dynamically with the smcreat system call. Smcreat is
analogous to creat except that a size in bytes must be specified at creation time.
Shared memory retains a fixed size during whatever time it exists as a part of the file
system. If size is not a multiple of BSIZE (See /usr/include/sys/param.h) bytes it
is rounded up. Path is a pointer to a normal UNIX pathname. Access specifies in the
normal way (See chmod(2)) who may open or smopen 2 specific piece of shared
memory.

If the specified piece of shared memory already exists and no process has it attached
and this user has the proper permissions, the old shared memory will be recreated to
the new size. All newly created shared memory is initialized to all zeros.

Once a piece of shared memory exists, it can be opened for attachment to a
process’s address space via the smopen system call. Path is again a UNIX pathname
specifying which piece of shared memory. Mode is the normal file system type
mode, 0 for read, 1 for write, 2 for read and write permissions. Write, actually
means read-wrile on most systems, since wrile permissions on memory imply read
permissions. sm_des (shared memory descriptor) is returned upon a successful smo-
pen, and is used when attaching shared memory via the smget system call.

Page 1 February 27, 1981

SHMEM (2)

smclose

smget

February 27, 1981

CB—UNIX 2.3 SHMEM(2)

Smclose releases a specified sm_des. Any sections attached at the time of the smclose
will remain attached, but once detached, will not be accessable again without a new
smopen.

Smget performs the actual attachment of shared memory to the user process’s
address space. Sm._des is a shared memory descriptor previously returned from
smcreat or sm_open. Mode specifies how the user wishes to access the memory once
it is attached. There are three modes as defined in <sys/shmem.h>:

SMREAD
Attach the memory read only.

SMWRITE
Attach the memory for reading and writing. Note that there is no
equivalent of ‘write only’.

SMREADLOCK
Attach the memory for reading only, but only when no one else has it
attached for writing. If someone else has it attached for writing, wait.
Do not allow new requests for writing to succeed. This means that even-
tually the request will succeed. SMREADLOCK guarantees that the data
being read is stable.

SMWRITELOCK

Attach the memory for reading and writing, but only when there is no
one else who has this section attached for writing. If other people have
any portion of this section attached for writing, wait for the time period
specified by time_Imt while they drain away. Do not allow any new people
to attach the requested section for writing so that eventually the smget
will succeed. Using the SMWRITELOCK feature to access shared
memory removes the requirement for any outside locking procedures
such as semaphores. The user is guaranteed that when smger with a
mode of SMWRITELOCK succeeds, that this is the only process writing
that memory at this time. Until an smpwt is done on this section of
memory, it will remain so locked.

The following state table shows the interactions between the current state of a piece
of shared memory and a new request to have it attached with a particular mode via
smget. T means request will be granted immediately. F means requester will have to
wait,

Requested Current
State State
- r w rl wl unattached
r T T T it T
w T T E E T
rl T F T F T
wl T 13 F F T

Offset is an unsigned offset from the beginning of a piece of shared memory to

which a user wishes to attach. It should be some multiple of BSIZE bytes. If it is

not, the smget will fail. Size is the unsigned size of the section of shared memory
that the process wishes to attach. It also should be a muliiple of BSIZE bytes. It
may be rounded up by as much as BSIZE —1 bytes so that the entire section of
shared memory the user requested access to is available. Smiger will fail if the sec-
tion of shared memory requested is not within the limits of the piece of shared

Page 2 February 27, 1981

SHMEM(2)

February 27, 1981

smput

CB—UNIX 2.3 SHMEM(2)

memory as it was created by smcreat. Time_Imt is the amount of time the user is wil-
ling to wait until a particular section of shared memory is free, when trying to do an
smget with a mode of SMWRITELOCK. If time_Jmt is O, the smget will fail immedi-
ately if anyone else has any portion of the requested shared memory attached. If
time_Imt is less than 0, the user is willing to wait indefinately for the section of
shared memory to become free. If time_Imt is positive, then the user is willing to
wait this many seconds for the section of shared memory to become available. If
smget fails because the time_Jmt was exceeded, the error EBUSY will be returned in
errno and vaddr will be set to NULL. Whenever smger succeeds, vaddr will be some
multiple of BSIZE bytes and is the pointer to the section of attached shared
memory.

If sm_des is SMDESNONE (As defined in <sys/shmem.h>). the smger behaves
like 2 memory allocator. An unnamed section of memory, size big, is attached to
the user process. Mode is only meaningful if it is SMWRITELOCK. This mode will
prevent a child process from inheriting the attached section of memory. In other
cases the section of memory is readable and writable. Memory attached in this
fashion is guaranteed to be zeroed. Offser is ignored. Time Jmt behaves in the nor-
mal fashion.

Smput releases an attached section of shared memory. Vaddr must match the value
returned by smget.

A copy of /usr/include/sys/shmem.h is included here for reference.

/* "mode” definitions to be used with "smget". =/
S
#define SMREAD 0
#define SMWRITE 1
#define SMREADLOCK 2
#define SMWRITELOCK 3
/* Shared memory descriptor to use when attaching */
/* unnamed memory. */
#define SMDESNONE (-1)
typedef short smdes_t ;
#ifdef KERNEL
Vi Structure maintaining the state of each page of */
/* shared memory. Ly
struct SM_pgstate
{
daddr_t sm_block ; /* Block for this page
* into the file attached
* as shared memory.
* Are stored in ascending
* order for any file.
*/
struct buf *sm_bufpt ; /* Ptr to buffer header
* for this page.
-
char sm_refent ; /* Count of total users
* attached to this page.
*/
char sm_rirefent ; /* Count of users attached to
* this page as read locked.
*/
Page 3 February 27, 1981

SHMEM(2) CB—UNIX 2.3 SHMEM(2)

char sm_wrefent /* Count of users attached

* to this page for writing.
L]

char sm_wlwant ; /* Number of users wanting page
* write locked.
4
char sm_rlwant ; /* Number of users wanting page
®* read locked.
*/
char sm_wwant ; /* Count of users wanting page
* for writing.
*
short sm_flags ;
struct SM_pgstate *sm._next ; /* Pointer to next page’s
* control structure.
*/
i
e Definitions for "sm_flags". =/
#define IS OCCUPIED 1
#define IS_WRITELOCKED 2
#define IS READLOCKED 4
#define WL_REQUEST 10
define RL_REQUEST 20
#define W_REQUEST 40

struct SM_pgptrs

struct SM_pgstate *s_current ;
struct SM_pgstate *s_previous ;

IK
endif
FILES
/dev/shmem/*

SHARED MEMORY RULES
1) Shared memory descriptors are inherited across forks and executes.

2) Sections of attached shared memory are inherited across forks if they were not opened
SMWRITELOCK. Writelocked sections are retained by the parent, but closed to the
child, keeping them writelocked.

3) Attached sections of shared memory are not inherited across exec’s.

4) If a break system call tries to expand memory into an attached section of shared memory,
it will fail.

5) If some process tries to gpen a shared memory file while another process is waiting for an
smget with SMWRITELOCK to succeed, the open will fail.

SEE ALSO
break(2), close(2), creat(2), open(2)

DIAGNOSTICS
From assembly code, the carry bit is set in the case of errors and errno set with an indication of

the specific error. From C a —1 is returned from smcreat, smclose, smopen, and smput, and a
NULL from smget.

IMPLEMENTATION CONSIDERATIONS
It is envisioned that a shared memory file will be a special file type. It will be implemented
only under version 7 or later file systems. Each section of shared memaory will require two
inodes, a visible inode referenced in the UNIX file system, and an invisible inode, used only by

February 27, 1981 Page 4 February 27, 1981

SHMEM(2) CB—UNIX 2.3 SHMEM(2)

the shared memory routines to access the data when it is on the disk. This implementation will
require that check understand this new file type and not remove the invisible inode during a
check.

Tt should be noted that the implementation of smget and smput interact very nicely with the
MSG implementation proposed by Dale Delager. When passing large nacopy messages,
memory must first be allocated and the final receiver must return it to the operating system.
Smget and smput nicely serve the purpose of the routines memget and memfree.

When new shared memory is created initially, a control block will be allocated at the same time.
In the control block will be an SM_control structure for each page of this section of shared
memory. The structure contains two counts, the count of the total number of users attached to
this page, and the number of users attached to this page for writing. It also contains five flags,
IS WRITELOCKED, meaning that the page is currently writelocked, IS READLOCKED,
meaning that the page is currently readlocked, WL_REQUEST, meaning that someone is
requesting writelock permissions for this page, RL_REQUEST, meaning that someone is
requesting readlock permission for this page, and W_REQUEST, meaning that someone is
requesting write permission for this page. When a process requests a page for readlocked
access, each page will be locked starting from the beginning, if that page has a 0 reference
count for writers. If the refenerce count is something other than 0, the process will set the
RL_REQUEST flag and sleep on the page until it is awakened and finds the writing reference
count 0. When a process requests a page for writelocked access, each page will be locked start-
ing from the beginning, if that page has a 0 reference count for writers and has the
IS_ READLOCKED and IS_WRITELOCKED flags off. If either condition isn’t met, the pro-
cess will sleep on the page until it awakens to find both conditions satisfied. If someone is
requesting read access, they always succeed. If someone is requesting write access, they will
succeed if the page isn’t IS WRITELOCKED or IS READLOCKED. If they can’t attach
immediately they will set the W_REQUEST and sleep on the page until both conditions are
satisfied before succeeding. In all cases, if the time_Imt expires during the wait for the pages to
become available, the request will fail.

February 27, 1981 Page 5 February 27, 1981

SIGNAL(2) CB—UNIX 2.3 SIGNAL(2)

NAME
signal — catch or ignore signals

SYNOPSIS
#include <<signal.h>

int (*signal (sig, func))()
int sig;
(#func)();

DESCRIPTION
A signal is generated by some abnormal event, initiated either by a user at a typewriter (quit,
interrupt), by a program error (bus error, etc.), or by request of another program (kill). Nor-
mally, all signals (except death of a child and power fail) cause termination of the receiving
process, but a signal call allows them either to be ignored or to cause an interrupt to a specified
location. Here is the list of signals:

SIGHUP 1 hangup

SIGINT 2 interrupt

SIGQUIT 3= quit

SIGILL 4+ illegal instruction (not reset when caught)
SIGTRAP 5% trace trap (not reset when caught)
SIGIOT 6% 10T instruction

SIGEMT 7+ EMT instruction

SIGFPE 8+ floating point exception

SIGKILL 9 kill (cannot be caught or ignored)
SIGBUS 10+% bus error

SIGSEGYV 11+ segmentation violation

SIGSYS 12* bad argument to system call
SIGPIPE 13 write on a pipe with no one to read it

SIGALRM 14 alarm clock

SIGTERM 15 catchable software termination signal
16 unassigned
17 unassigned

SIGCLD 18 death of a child

SIGPWR 19 power fail

The starred (*) signals in the list above cause a core image if not caught or ignored.

If func is SIG_DFL, the default action for signal sig is reinstated; this default is termination,
sometimes with a core image. If func is SIG_IGN, the signal is ignored. Otherwise when the
signal occurs func will be called with the signal number as argument. A return from the func-
tion will continue the process at the point it was interrupted. Except as indicated, a signal is
reset to SIG_DFL after being caught. Thus if it is desired to catch every such signal, the catch-
ing routine must issue another signal call.

When a caught signal occurs during certain system calls, the call terminates prematurely. In
particular this can occur during a read or write(2) on a slow device (like a typewriter; but not a
file); and during pause or wait(2). When such a signal occurs, the saved user status is arranged
in such a way that when return from the signal-catching takes place, it will appear that the sys-
tem call returned an error status. The user’s program may then, if it wishes, re-execute the
call.

The value of signal is the previous (or initial) value of func for the particular signal.
After a fork(2) the child inherits all signals. Exec(2) resets all caught signals to default action.

Users should not use the signal numbers directly; instead, they should include the file
/usr/include/signal.h as indicated above.

February 27, 1981 Page 1 February 27, 1981

SIGNAL(2) CB—-UNIX 2.3 SIGNAL(2)

The default action for the death of a child signal is to ignore the signal. If label is odd, the sig-
nal is ignored and terminated child processes are automatically removed from the system —
eliminating the necessity of doing a wair(2) for the terminated children.

For the power fail signal, the default action is to ignore it.
SEE ALSO
kil(1), kill(2), ptrace(2), setjmp(3C)

DIAGNOSTICS
The value —1 is returned if the given signal is out of range.

BUGS
If a repeated signal arrives before the last one can be reset, there is no chance to catch it.

ASSEMBLER
(signal = 48.)
sys signal; sig; label
(old value in r0)
If label is 0, default action is reinstated. If /abel is odd, the signal is ignored. Any other even
label specifies an address in the process where an interrupt is simulated. An RTI or RTT
instruction will return from the interrupt.

February 27, 1981 Page 2 February 27, 1981

SPROFIL (2) CB—UNIX 2.1 SPROFIL (2)

NAME
sprofil — turn on/off system profiling

SYNOPSIS
#include <sys/sprof.h>

int sprofil (spcnt, numents, lowpe, intsize)
struct SPCNT spcent;

unsigned int numcnts;

caddr_t lowpe;

unsigned int intsize;

DESCRIPTION 7.7
Calling Spr@’with spent non-zero will initiate system profiling. If any other process is profiling,
EBUSY is immediately returned. If intsize is 0, then the system will profile system routines,
reserving a counter for numents global external text symbols. The (sorted) starting addresses
for the system routines are provided by the user (usually from /unix).

If intsize is non-zero, the system will reserve a counter for every intsize group of bytes, starting
at byte address lowpc , for a total of numcnts intervals.

If the size of the spent structure would overflow one PDP11/70 memory page (8192 bytes),
then EINVAL is returned. Otherwise, the user’s data space is locked in memory and the
memory management information for the spent structure is saved in the kernel’s sysprof struc-
ture.

If an independent clock is used (either a DEC KW11-K or a Digital Pathways TCU100 may be
used), then that clock is started. When it interrupts (should be at level 7), or when the system
clock routine is called, if no independent clock is used, the counter for the interrupted routine
is incremented by 1. If the system was in user or idle mode, that is recorded instead.

The system increments the proper counter in user D space by temporarily changing kernel D
space register 5 to point 0 the user page with the table of counters (hence the one page limit
for the size of the SPCNT structure).

System profiling is stopped by sending a 0 in argument one. Normally, a user would do:

sprofil {(spent, numents, lowpc, intsize); .
sleep (seconds);
sprofil (0, 0, 0, 0);

and then report the resuits in some tabular form (see sprof(1M)).
The file <sys/sprof.h> including the prototype SPCNT structure, is as follows:

/” @ (#)sprof.h 3.2 */

/‘
»
* Used by system profiling routines(sprofil.sincupc and sprof)
.

-

*/

#ifdef KERNEL

struct pereg |
char *par;
char *pdr;

|2

struct sysprof |

November 1979 Page | November 1979

SPROFIL (2) CB—-UNIX 2.1 SPROFIL (2)

struct SPCNT *base;

caddr_t lowpc, /* low pc word for i option */

unsigned int numents; /* number of counters in union array */
unsigned int intsize; /* size of i intervals or O for r opt */

int pid;

Struct pgreg newpg.
struct pgreg oldpg;
b

#endif
struct NHIT {
caddr_t niloc;
spent_t nhits;
15
struct SPCNT |
long b_urhits;
long b_syhits;
long b_idhits;
union {
/'
* "allocate” maximum possible size of counter buffers
. (they must fit entirely into one page)
*/
struct NHIT ropt{(8192 - 3”sizeof(long))/sizeof (struct NHIT)];
spent_t iopt[(8192 - 3*sizeof(long))/sizeof (spent_t)];
} u_ct;
I
#ifdef IPROFCLK

/* independent profile clock kwll-k (A clock) */

#define KW11K (struct kwllka *)0170404
struct kwllka {
int kwllks;
int kwllkb;
J:
#else
#ifdef IPROFCLB

/* independent profile clock TCU-100 (battery clock) */

#define TCU100 (int *)0160774
#define TCURATE -48

7* rate of -33 shouid be 62.06/sec, is 120/sec for our clock
-45 45.6 70.6
-64 31 42.6
-48 42.6 64
our clock may be dumb, but at least it’s consistent
*/
#endif
#endif
Notice that only the kernel gets the sysprof definition; the user can use the SPCNT structure
definition.
SEE ALSO
sprof(1)

November 1979 Page 2 November 1979

Y

SPROFIL (2) CB—UNIX 2.1 SPROFIL (2)

WARNINGS
If the data space in the kernel gets too big, the kernel D-space register 5 trick may not work.

If the system clock is used, any system routine in sync with the clock may appear invisible to
system profiling.

ASSEMBLER
(syscb = 45. ; sprofil = 4.)
(struct spent in r0; a 4 in 1)
sys sprofil; numcnts; lowpc; intsize;

November 1979 Page 3 November 1979

STAT(2)

NAME

stat, fstat — get file status

SYNOPSIS

DESCRIPTION

#include <sys/types.h>
#include <sys/stat.h>

stat (name, buf)

char *name;

struct stat *buf;

fstat (fildes, buf)
struct stat shuf;

CB—-UNIX 2.1

STAT(2)

Stat obtains detailed information about a named file. Fstat obtains the same information about
an open file known by the file descriptor from a successful open, creat, dup or pipe(2) call.

Name points to a null-terminated string naming a file; bufis the address of a buffer into which
information is placed concerning the file. It is unnecessary to have any permissions at all with
respect to the file, but all directories leading to the file must be readable. The structure pointed
to by buf has the following structure. The defined types, ino_t, off ¢, time_t, name various width
integer values; dev_t encodes major and minor device numbers; their exact definitions are in the
include file <sys/types.h> (see types(7)).

/*
struct

{

I

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

@ (#)stat.h

stat

dev_t
ino_t
int

int

int

int
dev_t
off t
time_t
time _t
time_t

S_IFMT

S_ISUID
S_ISGID
S_ISVTX
S_IREAD
S_IWRITE
S_IEXEC

3.1

st_dev;
st_ino;
st_mode;
st_nlink;
st_uid;
st_gid;
st_rdev;
st_size;
st_atime;
st_mtime;
st_ctime;

0170000
S_IFDIR
S_IFCHR
S_IFBLK
S_IFREG
S_IFMPC
S_IFMPB
0004000
0002000
0001000
0000400
0000200
0000100

*/

0040000
0020000
0060000
0100000
0030000
0070000

/* type of file */

/* directory */

/* character special */ -

/* block special */

/* regular */

/* multiplexed char special */

/* multipiexed block speciai */

/* set user id on execution */

/* set group id on execution */

/* save swapped text even after use */
/* read permission, owner */

/* write permission, owner */

/* execute/search permission, owner */

When fildes is associated with a pipe, fstat reports an ordinary file with an i-node number, res-
tricted permissions, and a not necessarily meaningful length.

SEE ALSO
1s(1), fs(5), types(7)

November 1979

STAT (2) CB—UNIX 2.1 STAT(2)

DIAGNOSTICS
Zero is returned if a status is available; —1 if the file cannot be found.

ASSEMBLER
(stat = 18.)
sys stat; name; buf
(fstat = 28.)
(file descriptor in r0)
sys fstat; buf

November 1979 Page 2

STAT:0(2)

NAME

CB—-UNIX 2.1

stat — get file status

SYNOPSIS

stat (name, buf)

char *name;

struct inode *buf;

DESCRIPTION

STAT:0(2)

Name points to a null-terminated string naming a file; bufis the address of a 36(10) byte buffer
into which information is placed concerning the file. It is unnecessary to have any permissions
at all with respect to the file, but all directories leading to the file must be readable. After sar,
bufhas the following structure (starting offset given in bytes):

struct {

IS

char
char
int
int
char
char
char
char
int
int
int
int

minor; /* +0: minor device of i-node */
major; /* +1: major device */

inumber; /* +2*

flags; /* +4: see below */

nlinks; /* +6: number of links to file */
uid; /* +7: user ID of owner */

gid; /* +8: group ID of owner */
size0; /* +9: high byte of 24-bit size */
sizel; /* +10: low word of 24-bit size */
addr(8];/* +12: block numbers or device number */
actime[2]; /* +28: time of last access */

modtime{2}; /* +32: time of last modification */

The flags are as follows:

100000
060000

010000
004000
002000
000400
000200
000100
000070
000007

SEE ALSO

i-node is allocated
2-bit file type:
000000 plain file
040000 directory
020000 character-type special file
060000 block-type special file.
large file
set user-ID on execution
set group-ID on execution
read (owner)
. write (owner)
execute (owner)
read, write, execute (group)
read, write, execute (others)

Is(1), fstat(2), fs(5)

DIAGNOSTICS

Error bit (c-bit) is set if the file cannot be found. From C, a —1 return indicates an error.

November 1979

STIME (2) CB—-UNIX 2.1 STIME(2) -

NAME
stime — set time

SYNOPSIS
stime (tbuf)
int tbufi2l];

DESCRIPTION
Stime sets the system’s idea of the time and date. Time is measured in seconds from 0000
GMT Jan 1 1970. Only the super-user may use this call. Setting the time and date causes any
sleeping or paused processes to be awakened (programs using alarm and the C interface to sleep
are not disturbed).

SEE ALSO
date (1), pause(2), sleep(2), time(2), ctime(3C)

DIAGNOSTICS
Error bit (c-bit) set if user is not the super-user. From C, a —1 indicates an error.

ASSEMBLER
(stime = 25.)
(time in r0-r1)
sys stime

Page 1 November 1979

STTY:0(2)

NAME

CB—-UNIX 2.1 STTY:0(2)

stty, gtty — set and retrieve terminal modes

SYNOPSIS

#include < sys/sgtty.h>

stty (fildes, arg)
struct SGBUF =arg;

gtty (fildes, arg)
struct SGBUF =arg;

DESCRIPTION

Sty and gy are used to set and get various characteristics of a character device referred to by
fildes. Fildes usually refers to a typewriter line but may also refer to certain special devices such
as named pipes. The second argument, arg, shouid be a pointer to the SGTTY structure which
is defined in the include file <sys/sgtty.h> . A copy of this header file is included here for

reference:

/‘

/.

@ (#)sgtty.h 3.2 T4

* stty and gtty structure layouts
»

* All structures are 6 bytes.

* For each given command, doing a stty
* sets the information into the operating
* system. Doing a gtty retrieves it

*/

/t

* Command 0 -- set modes and speeds.

.

Wait for output to drain and flush any input.

* Command | -- set modes and speeds.

*/

#define
#define
struct SGBUF {

h

/I

* Modes

*/
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

Page 1

Don’t wait or flush.

STTY_MODES 0

STTY_NFMODES 1

char sm_ispeed; /* Input speed */

char sm_ospeed; /* Qutput speed, data and stop bits */

char sm_cmd; /* Command = Oor | */

char sm_fill;

int sm_modes; /* See below */

NCDELAY 0000001 /* no carriage return delay */
XTABS 0000002 /* map tabs to spaces on output */
LCASE 0000004 /* upper case only terminal */
ECHO 0000010 /* echo all received chars */
CRMOD 0000020 /* map CR->LF:echo CR or LF as CR-LF*/
RAW 0000040 /* raw character input */

oDDP 0000100 /* odd parity rcvd/xmtd */
EVENP 0000200 /* even parity rcvd/xmtd */
ANYP 0000300 /* any parity mask */

HDPLX 0000400 /* Half duplex line */

NOHUP 0001000 /* don’t drop DTR on last close */

November 1979

STTY:0(2)

#define XCLUDE
#define NOSLEEP
#define NTDELAY
#define NLDELAY
#define TANDEM
#define STDTTY
/‘

* Speeds

*/

#define BO
#define B50
#define B75
#define B110
#define B134
#define B150
#define B200
#define B300
#define B600
#define B1200
#define B1800
#define B2400
#define B4800
#define B9600
#define EXTA
#define EXTB

/‘

* Character length and stop bits.

0002000
0004000
0010000
0020000
0040000
0100000

AV I~ I W RN N OV I S I e)

e e e e i o
o= O

CB—UNIX 2.1

* Character length does not include parity or stop bits.

* Ored with sm_ospeeed.
=)

#define SETSTOP
#define ONESTOP
#define TWOSTOP
#define BITSS
#define BITSé6
#define BITS7
#define BITSS8
#define SLBITS

/'

* Command 2 -- set line
* discipline of a line

*/
#define STTY_LTYPE
/.

* standard line discipline

*

#define STDLTYPE
struct |
int
char
char
int
b
/l

0200
0000
0100
0000
0020
0040
0060
0160

0

si_fiil;
sl_cmd:
si_ltype;
sl_fil2;

* line disciplines 1 and 2 reserved for

* project specific fine disciplines
*/

November 1979

STTY:0(2)

/* disallow future opens */

/* dont sleep if nothing is ready */
/* no tab delay flag */

/* no newline delay flag */

/* xon/xoff enabled */

/® non-std tty escapes and kiils */

/* set to change stop or length bits */

/* 1.5 stop bits at 75 baud */

/* Mask of stop and length bits */

/* Command = 2 */

/* Line discipiine number = 0 */

Page 2

STTY:0(2)

#define PRJILTYPE 1

#define PRI2LTYPE 2

/t

* transparent line discipline

*/

#define TRSLTYPE 3

struct {
char ts_quanta;
char ts_fill;
char ts_cmd;
char ts_ltype;
char ts_brk0;
char ts_brkl;

L

/l

* Half Duplex line discipline

*/

#define HFLTYPE 4

struct |
int st_fill;
char si_cmd;
char si_ltype;
int sl_fil2;

B

/.

* Line disciplines 5 through 9 reserved for
* future common line disciplines

=
#define RSVSLTYPE 5
#define RSV6LTYPE 6
#define RSV7LTYPE 7
#define RSVBLTYPE 8
#define RSVSLTYPE 9
/‘
* Command 3 -- set terminal type
*/
#define STTY_TERM 3
struct |
char st_flgs;
char st_fill;
char st_cmd;
char st_term:
int st_fil2;
R
/‘
* Terminal types
*/
#define TERM_NONE 0
#define TERM_TEC l
#define TERM_V6L 2
#define TERM_V10 3
#define TERM_TEX 4
#define TERM_D40 5
#define TERM_H45 6
#define TERM_D42 7
/t

* Terminal flags

Page 3

CB—UNIX 2.1

STTY:0(2)

/* Sleep quanta */

/* Command = 2 */
/* Line discipline number = 3 */
/* First break character */
/* Second break character */

/* Command = 2 */
/* Line discipline number = 4 */

/* terminal flags (see beiow) */

/®* Command = 3 */
/* Terminal type */

/*uy */

/* TEC Scope */

/* DEC VTél */

/* DEC VT100*/

/* Tektronix 4023 */

/* TTY Mod 40/1 */

/* Hewlitt-Packard 45 */
/* TTY Mod 40/2B */

November 1979

STTY:0(2) CB—UNIX 2.1 STTY:0(2)

*/
#define TM_NONE 0 /* use default flags */
#define TM_SNL 1 /* special newline flag */
#define TM_ANL 2 /* auto newline on column 80 */
#define TM_LCF 4 /* last col of last row special */
#define TM_CECHO 010 /* echo terminal cursor control */
#aefine TM_CINVIS 020 /* do not send esc sequences to user */
#define TM_SET 0200 /* must be on to set/reset flags */
/l
* Command 4 -- set variable portion
* of crt screen
*/
#define STTY_SCREEN 4
struct |
char SS_CTOW; /* cursor’s row */
/* ignored on sty */
char ss_fill;
char ss_cmd; /* Command = 4 */
char SS_Vrow, /* variable row */
int ss_fil2;
i3
/.
* Command 0377 -- enable spy
'/
#define STTY_SPY 0377
struct {
int sy_fill;
char sy_cmd: /* Command = 0377 */
char sy_scemd; /* 0= >delete spy. 1 = >initiate spy */
int sy_fii2;
b
/‘
* sty info for named pipes ONLY
s
#define STTY_NPIPE 0376
struct |
int sp_rflg; /* read flag; 0 = > nosleep */
char sp_cmd; /* Command = 0376 */
char sp_fill;
int sp_wflg; /* write flag; 0 = > nosleep */

15

Notice that the format of the SGTTY structure may be different for various s/ gy commands.
The only byte which is always used is the command byte. This byte appears in all the structure
definitions and must be filled in by the user before utilizing the sy

or gry system calls. The user should declare any sy or gry structures using the structure tag-
name SGBUF. Note, however, that references to the structure may be made using the SGBUF
structure or any of the untagged structures defined above.

If the command byte is STTY_MODES or STTY_NFMODES the system call will set or get
the input speed, output speed, number of data and stop bits, and the teletype modes. If an
attempt is made to change the speed of a nonprogrammabie device (e.g., DJ-11) or change the
speed to a unsupported speed (e.g., B4800 on a DC-11) the present speed is left unchanged.

Certain modes require further explaination:

November 1979 Page 4

STTY:0(2) CB—-UNIX 2.1 STTY:0(2)

LCASE Map upper case to lower case on input; map lower case to uppercase on output.
Map | to \!; “to\; { to \(; } to \); ~to \"; and map \<C> to upper case input
where <C> is any upper case character.

RAW In raw mode, every character is passed immediately to the program without waiting
for a full line to be typed. No input characters have special meaning. (e.g., The
interrupt character (DEL) will not cause the program to be interrupted but will be
sent to the program as a character.) LCASE and CRMOD will still cause input map-
ping. Output character processing is unaffected. If the transmitter has been stopped
by the ESC key, setting RAW will release it. Note, however, that this can only be
effective if the STTY_NFMODES command is utilized. Otherwise the program will
wait for the ESC key to be depressed again. Input and output data width is eight
bits, but the eighth bit may be a parity bit depending upon the setting of ODDP and
EVENP.

ODD, EVENP
For the standard line discipline a character will be rejected unless its parity matches
that expected. If both bits are set either parity is accepted and even. parity is
transmitted. If both bits are set and RAW is set the parity is visible to and supplied
by the user on input and output. If neither bit is set no characters are accepted and
even parity is transmitted.

HDPLX For those communications controllers with the capability, disable reception during
transmission.

XCLUDE When set, no one may open the line. Cleared upon the last close.

NOSLEEP
Return a zero if a read is performed and no characters are present. Don’t wait to
flush output on close or stry. Don’t wait for carrier in the first read or write after an
open if carrier is not up. Normally a process will block when waiting for carrier to
come up after an open. This roadblock will take place in the first read or write not
the open.

STDTTY Change the erase character from # to _ and the delete line character from @ to S.
In addition to CR and LF, wake up on / and !, and generate an interrupt upon
reception of & or DEL.

It is also possible for the user to set the number of data and stop bits if the defaults are not
satisfactory. The default is TWOSTOP at B75 and B110, ONESTOP otherwise; and BITS5
for B75, BITS7 plus one even parity bit otherwise. In order to set these bits the SETSTOP bit
must also be set.

Normally a sty will wait for output to flush before doing anything. This can be circumvented
by using the command STTY_NFMODES.

The STTY_LTYPE command may be used to change the line discipline (protocol) used on a
line. The normal CB-UNIX line discipline is STDLTYPE. Also commonly supported is the
half duplex line discipline HFLTYPE, and the transparent line discipline TRSLTYPE.
Different line disciplines expect different format in the st/ gy structure. STLDTYPE and
HFLTYPE require no additional information.

TRSLTYPE is a line discipline that allows the user full eight bit transparency on input and out-
put with or without parity. For this line discipline a write will perform no mapping. A read will
return upon the occurrence of the first of three conditions as specified by the user:

1) The requested number of characters have arrived.
2) The number of seconds, rs_guania, has elapsed.

Page 5 November 1979 -~

STTY:0(2) CB—UNIX 2.1 STTY:0(2)

3) A break éharacter has arrived.

If 1s_quana is zero timing is disabled, otherwise rs_quanta is the maximum wait time in
seconds. If 7s_brk0 and 1s_érk! are both zero no break characters will awaken the process. If
ts_brk! is 0377 then rs_brk0 is taken as a single break character. Otherwise both break charac-
ters are assumed valid. NCDELAY, XTABS, LCASE, ECHO, CRMOD, RAW, NTDELAY,
NLDELAY, and STDTTY have no meaning for this line discipline.

The STTY_TERM command is used to specify the type of CRT connected to a line.
TERM_NONE is the standard, non-CRT, type. If a type other than TERM_NONE is
specified input and output mapping will occur for the CRT language defined in the header file
<ecrtetl.bh>. In this case the ESC character takes on special meaning, escaping the subsequent
characters on input and output. The terminal flags s/_flag and modes si_modes are given a
default set of values when a terminal type is set. The modes may be subsequently changed
with a STTY_MODES command. The flags may be changed by setting the TM_SET bit when
changing the terminal type and specifying the flag bits. The flag bits require further
clarification:

TM_SNL Handle new lines specially if the terminal driver is so equipped.
TM_ANL Provide a carriage return and newline when writing beyond column eighty.

TM_LCF Immediately before placing a character in the last column and last row, delete the
top line, print the character in the last column of the now second to last row, and
then move the cursor to column one of the new last line. This function is required
for terminal that move the cursor to ‘‘bad’’ places when printing in the last position.

TM_CECHO
Echo the control sequences such as cursor up when received.

TM_CINVIS
Do not pass the cursor control characters to the user program on input.

The STTY_SCREEN command is also used to set or get information about CRT terminals. It
is used to set or get the variable row for split screen operation and to get the current row
number of the cursor.

The STTY_SPY command will cause any output directed to the terminal specified by fildes to
be copied to the controlling terminal of the program performing the siy. Only one spy opera-
tion may be active in the entire system at any time. The spy continues until explicitly turned
off. Currently spy is only effective on lines using the STDLTYPE line discipline.

Finally, the STTY_NPIPE command can be used on named pipes to prevent reads or writes to
named pipes from roadblocking. If sp_rflg is nonzero then a reader of the named pipe will road-
block when a read is performed with no data in the pipe, otherwise a zero is returned immedi-
ately. Similarly if sp_wflg is nonzero a write will roadbiock if the pipe is full. When a named
pipe is first opened sp_rflg is set to one and sp_wfg is zero.

Sty has been replaced by ioct/(2) in the new implementation of the library.

SEE ALSO

stty(1), ioctl(2)
ASSEMBLER

(stty = 31.)

(file descriptor in r0)
Sys stty; arg

(gtty = 32.)
(file descriptor in r0)
sys gtty; arg

November 1979 Page 6

SYNC(2) CB—-UNIX 2.1 SYNC(2)

NAME
sync — update super-block

SYNOPSIS
sync ()

DESCRIPTION
Sync causes all information in memory that should be on disk to be written out. This includes
modified super blocks, modified i-nodes, and delayed block I/0.

It should be used by programs which examine a file system, for example check(1), df(1), etc.,.

SEE ALSO
sync(1), update(1)

ASSEMBLER
(sync = 36.; not in assembler)
Sys sync

Page 1 - November 1979

TELL:0(2) CB—UNIX 2.1

NAME
tell — get file offset

SYNOPSIS
long tell (file)
int file;

DESCRIPTION

TELL:0(2)

Tell returns the current read/write pointer associated with the open file whose descriptor is

specified as argument.
Tell is obsolete — use /seek(2) instead.

SEE ALSO

Iseek(2)
DIAGNOSTICS

C-bit set or —1 returned for an unknown file descriptor.
ASSEMBLER

(tell = 40.)

(file descriptor in r0)

Sys tell

(offset in r0-r1)

Page |

November 1979

-

RS

TIME (2) CB-UNIX 2.1 TIME (2)

NAME
time — get date and time

SYNOPSIS
time (tvec)
int tvecl2l;

DESCRIPTION
Time returns the time since 00:00:00 GMT, Jan. 1, 1970, measured in seconds. From as, the
high order word is in the r0 register and the low order is in rl. From C, the user-supplied vec-
tor is filled in.

SEE ALSO
date(1), stime(2), ctime(3)

ASSEMBLER

(time = 13.)
sys time (time in r0, rl)

November 1979 Page 1 November 1979

A
~

TIMES (2) CB—UNIX 2.1 TIMES (2)

NAME
times — get process times

SYNOPSIS
long times (buffer)
struct tbuffer sbuffer;

DESCRIPTION
Times fills the structure addressed by bufr with time-accounting information for the current

process and for the terminated child processes of the current process. All times are in 1/60
seconds.

After the call, the buffer will appear as foliows:

struct tbuffer {
long proc_user_time;
long proc_system_time;
long child_user_time;
long child_system_time;

B
The time for a child is the sum of its process time and its children’s times.

The value returned by times is the elapsed time, in 60ths of a second, since a point in the past.
This point does not vary from one invocation of fimes to another, but is otherwise arbitrary, so
that while the value returned by a single call to times is not meaningful in itself, the difference
between two calls can be used for accurate calculation of elapsed time.

SEE ALSO

time(1), time(2)
ASSEMBLER

(times = 43.)

sys times; buffer
(elapsed time in r0-r1)

November 1979 Page | ' November 1979

UCORE(2) CB—UNIX 2.3 UCORE(2)

NAME
ucore — enable/disable unique core dumping feature.

SYNOPSIS
int ucore (mode)
int mode ;

DESCRIPTION
Ucore turns on the unique core dumping feature if mode is non-zero. If mode is zero, the
feature is disable. This is the default condition. The previous state is returned by ucore. When
the feature is disabled, cores drop in core, while when it is enabled, they drop in core.nnnnn,
where nnnnn is the process id of the process which is dying.

SEE ALSO
ucore(1)

ASSEMBLER
(syscb = 45. ; ucore = 5.)
(ucore in R1)
sys sysch; mode
(RO = previous state)

February 24, 1980 Page 1 February 24, 1580

UMASK (2) CB—-UNIX 2.1 UMASK(2)

NAME
umask — set and get creation mask

SYNOPSIS
umask (mask)

DESCRIPTION
Umask sets the process inode creation mask to mask and returns the previous value of mask.
The creation mask indicates automatic restrictions placed on the access permissions (read,
write, execute) at the time of file creation (initial crear and mknod), that is, each bit set in the
mask clears the corresponding permission mode bit.
For example, a mask of 0 would leave the modes unaltered. A mask of 022 would remove write
permission for the group and others even if specified in the creat or mknod system call. A mask
value of 077 would remove all group and others permissions.

SEE ALSO ‘
mkdir(1), sh(1), mknod(1, 2), creat(2), chmod(2)

ASSEMBLER

(syscb = 45.; umask = 1)
(new mask in r0)

(umask in rt)

sys sysch; ..; ..

(old mask in r0)

Page | November 1979

UMOUNT (2) CB—UNIX 2.1 UMOUNT(2)

NAME
umount — dismount file system

SYNOPSIS
umount (special)
char »special;

DESCRIPTION
Umount announces to the system that special file special is no longer to contain a removable file
system. A closeis issued to the pertinent device driver. The file associated with the special file
reverts to its ordinary interpretation; see mount(2). Only the super-user may unmount a file
system.

SEE ALSO
umount (1), mount(2)

DIAGNOSTICS
Error bit (c-bit) set if no file system was mounted on the special file, if there are still active
files on the mounted file system, or if the user is not super-user. From C, a —1 return indi-
cates an error.

ASSEMBLER
(umount = 22.)
sys umount; special

Page | November 1979

%

UNAME (2) CB—-UNIX 2.1 UNAME(2)

NAME
uname — get name of current UNIX system

SYNOPSIS
#include <sys/utsname.h>

int uname (name)
char *name;

DESCRIPTION
Uname stores in the structure pointed to by name information identifying the current UNIX

system.
Uname uses the structure defined in <sys/utsname.h>:

/™ @ (#)/usr/src/ucb/sys/utsname.h 3.1 */
struct utsname |

char sysname[9};

char nodename (91,

char release (9],

char version[91];

b

extiern siruct utsname utsname,

Uname returns in sysname a null-terminated character name of the current UNIX system. Simi-
larly, nodename may contain the name that the system is known by on a communications net-
work. Release and version further identify the operating system.

SEE ALSO
uname(1)

DIAGNOSTICS
The error bit (c-bit) is set if name can not be written. From C, a — 1 return indicates an error.

ASSEMBLER
(utssys = 37.; uname = 0)
(pointer to name in r0)
Sys utssys; uname

Page 1 November 1979

UNLINK(2) CB—UNIX 2.1 UNLINK (2)

NAME
unlink — remove directory entry

SYNOPSIS
int unlink (name)
char *name;

DESCRIPTION
Name points to a null-terminated string. Unlink removes the entry for the file pointed to by
name from its directory. If this entry was the last link to the file, the contents of the file are
freed and the file is destroyed. If, however, the file was open in any process, the actual des-
truction is delayed until it is closed, even though the directory entry has disappeared.

SEE ALSO
rm(1), link(2)

DIAGNOSTICS
Zero is normally returned; —1 indicates that the file does not exist, that its directory cannot be
written, or that the file contains pure procedure text that is currently in use. Write permission
is not required on the file itself. Only the super-user may unlink a directory.

ASSEMBLER
(unlink = 10.)
sys unlink; name

Page 1 November 1979

UTIME (2) CB—-UNIX 2.1 ' UTIME(2)

NAME
utime — update times in file

SYNOPSIS
int utime (name, times)
char *name;
struct utimbuf stimes;
DESCRIPTION
Utime is used to set both the access and modification times of a file. Name points to a null-
terminated string naming a file, and times points to a structure containing two long integer time

values:
struct utimbuf |
long int actime; /* access time */
long int modtime; /+ modification time ¢/

Only the owner of the file and the super-user may issue this call in this way. -

Another way to use utime is (0 set rimes to NULL:. in this case, the access and modification
times of the file are set to the current time, and the user need oaly have write access to the file.

SEE ALSO
stat(2)

DIAGNOSTICS
The error bit (c-bit) is set if name does not exist, if permission is denied, or if the file system is
read-only. From C, a —1 return indicates an error.
ASSEMBLER
(utime = 30.)
sys utime; file; timep

Page | November [979

WAIT(2) CB—-UNIX 2.1 WAIT (2)

NAME

wait — wait for process to die

SYNOPSIS

wait (&status)
struct { char lobyte; char hibyte; } status;

DESCRIPTION

Wair causes its caller to delay until one of its child processes terminates. If any child has died
since the last wait, return is immediate; if there are no children, return is immediate with the
error bit set (resp. with a value of —1 returned). In the case of several children several wait
calls are needed to learn of all the deaths.

If no error is indicated on return, the rl high byte, i.e. status.hibyte, contains the low byte of the
child process r0, i.e. the argument of exit, when it terminated. The rl low byte, i.e.
status.lobyte, contains the termination status of the process. See signal/(2) for a list of termina-
tion statuses (signals); 0 status indicates normal termination. If the 0200 bit of the termination
status is set, a core image of the process was produced by the system. Status 0177 is returned
for a stopped process which has not terminated and can be restarted (see prrace(2)).

On return, r0 contains the process ID of the dead child. From C, the process ID of the child is
the returned value.

SEE ALSO

exit(2), fork(2), signal(2)

DIAGNOSTICS

The error bit (c-bit) on if no children not previously waited for. From C, a returned value of
—1 indicates an error.

ASSEMBLER

Page 1

(wait = 7.)

sys wait
(process id in r0)
(status in rl)

November 1979

WRITE(2) CB—-UNIX 2.1 WRITE (2)

NAME
write — write on a file

SYNOPSIS
write (fildes, buffer, nbytes)
~ char sbuffer;

DESCRIPTION
A file descriptor is a word returned from a successful open, creat, dup, or pipe call.

Buffer is the address of nbytes contiguous bytes which are written on the output file. The
number of characters actually written is returned (in r0). It should be regarded as an error if
this is not the same as requested.

Writes which are multiples of 512 characters long and begin on a 512-byte boundary are more
efficient than any others.

SEE ALSO
creat(2), open (2), pipe(2), read(2)

DIAGNOSTICS
The error bit (c-bit) is set on an error: bad descriptor, buffer address, or count; physical [/O
errors. From C, a returned value of —1 indicates an error.

ASSEMBLER
(write = 4.)
(file descriptor in r0)
sys write; buffer; nbytes
(byte count in r0)

Page 1 November 1979

—

