ATOTIM(3L) SCCS July 18, 1979 ATOTIM(3L)

NAME
atotim - Convert an ASCII time string to seconds.
SYNOPSIS
atotim (tptr,tsec)
char *tpti;
long *tsec;
DESCRIPTION
This routine takes an ASCII representation of time with format
"mmddhhnnyy" from tptr and converts it to seconds since 00:00:00
GMT, Jan. 1, 1870 and stores it in tsec.
mm - 2 digit month 01 to 12
dd - 2 digit day 01 to 31
hh - 2 digit hour 00 to 23
nn - 2 digit minutes OO0 to 58
yy - 2 digit year.
If successful a zero is returned, otherwise, =1 is returned.
LIBRARY
/lib/libl.a
SEE ALSO
time(2),ctime(3),timtoa(3L)
DIAGNOSTICS

A -1 is returned if an error is found.

BINARY(3L) SCCS Aug 21 1975 BINARY(3L)

NAME
binary -- convert to binary
SYNOPSIS
binary(radix)
int radix;
DESCRIPTION
This subroutine converts data consisting of ASCII characters to
its binary value and stores the binary value in a two-word exter-
nal array, WORD. WORD[1] contains the low-order bits. The ad-
dress of WORD is returned to the calling program, unless an error
is encountered. In this case, appropriate error information 1is
returned in the external variables, E_SPCL, E TYPE, E CODE,
E_NUM, and E_MSG, and a 0 is returned by this subroutine.
BINARY has one argument, radix, which specifies the radix or base
of the data to be converted from ASCII to binary. A radix of 32
uses base 16 but ASCII conversion is done for a 101 ESS. The
data to be converted is passed to this subroutine via the exter-
nal variable, VALSTR.
The global variables used are:
char =E_SPCL;
char *E _TYPE;
char *E_CODE;
char *E_NUM;
char *E_MSG;
char VALSTR[33];
int WORD[2];
The error information returned is:
E_SPCL= "?7D";
E TYPE= ™ ";
E CODE= "LIB";
E-N‘UM= " 002" ;
E_MSG= "INVALID BASE.";
LIBRARY
/1lib/libl.a
SEE ALSO
dp_add(3), dp_mul(3), binasc(3)
DIAGNOSTICS

A 0 is returned if @A 0 is returned if radix is not between one
and eleven, or sixteen, or thirty-two

BANNER (3L) CB-UNIX (SCCS May 19, 1981) BANNER (3L)

AME
banner - prepare the requested banner and copy to the indicated
buffer.

-~ QYNOPSIS :
#include <banner.h>

banner (bufnam, lnlen, charsiz, banstr)
char *bufnam;

int lnlen;

int charsiz;

char *banstr;

ESCRIPTION _
Banner prepares the requested banner string, centers it in a line
of the requested 1length, and copies it to the specified output
buffer. Line lengths up to LL 132 (132 character line) are sup-
ported and two character sizes are supported by this subroutine.
The supported character sizes are DOT55 (5x5 character matrices)
and DOT59 (5x9 character matrices).

The character size DOT55 only supports the upper case alphabetic
characters A - Z and the numerals 0 - 9. Lower case alphabetic
characters are mapped to the corresponding upper case character,
while all other characters except spaces and newlines are
ignored. The character size DOT59 supports all ASCII characters
between space (040) and ~ (0176); newlines are also supported.

If an error is detected, banner returns the value ERR_RTN; oth-
erwise, the value NORM RTN is returned.

The argument bufnam is the address of a character output buffer
into which the banner is to be copied. Banner assumes that this
buffer is large enough to hold the -entire banner. The wuser
should be aware that each banner character requires eight bytes
per line (banner character plus surrounding white space) and
either five or nine 1lines depending upon the character size

— selected. These things should be taken into consideration when
determining the size of the output buffer. '

The argument lnlen identifies the maximum length of the printed
line. Line lengths greater than zero and less than or equal to
LL 132 are permitted.

The argument charsiz identifies the character size that is to be

generated. Two character sizes are presently supported, DOT55
and DOT59.

The argument banstr is the address of a string containing the

banner that 1Is to be generated. This string may contain new-
- lines. Examples of acceptable banner strings are:

(last mod. 7/29/82) Page 1 _ (last mod. 7/29/82)

e

BANNE

<ILES

R(3L) CB-UNIX (SCCS May 19, 1981) BANNER (3L)

L] abC“

"\n\nabc\n\n"

"\n\nThis is a banner string\n\n"
"\n\nSPA\n\nANALYSIS\n\nREPORT\n\n"

]

/usr/include/banner.h which contains the define variables DOT55,
DOT59, LL_80, LL_132, ERR_RTN, and NORM_RTN,

LIBRARY

“TSEE A

DIAGN

/1lib/1libl.a

LSO
e _output (3L)

OSTICS

If this subroutine detects an error, an Output Message (OM) is
generated by one of the standard OM generation subroutines, but
not printed. The value ERR RTN is returned to the calling rou-
tine. If the calling routine wishes to print the stored OM, it
may call one of the standard OM outputting subroutines, such as

e output (3L).

BUGS

(last

mod. 7/29/82) ' Page 2 (last mod. 7/29/82)

p—

BINASC(3L) SCCS Jul 22 1975 BINASC(3L)

NAME
binasc -- binary to ascii conversion
SYNOPS IS
binasc(radix)
int radix;
DESCRIPTION
This subroutine converts a binary number contained in the exter-~
nal variable, WORD, to an ASCII string. The ASCII string is ter-
minated with a null byte and stored right-justified in the exter-
nal variable, STRING. The starting address of the ASCII string
within STRING is returned by this routine, unless an error is
detected. In this case, appropriate error information is re-
turned in the external variables, E_SPCL, E_TYPE, E CODE, E_NUM,
and E_MSG, and a O is returned by this subroutine.
BINASC has one argument, radix, which specifies the radix or base
to which the binary number is to be converted. RadixX must be a
number between one and eleven, sixteen or thirty-two (thirty-two
means use a radix of 16 for a 101 ESS).
The global variables used are:
char *E_SPCL;
char *E_TYPE;
char *E_CODE;
char *E_NUM;
char *E_MSG;
char STRING[33];
int WORD[2];
The error information returned is:
E_SPCL= "7D";
E TYPE= " ";
E CODE= "LIB";
E_NUM= vo02";
E_MSG= "INVALID BASE.";
LIBRARY
/1lib/1ibl.a
SEE ALSO
binary(3)
DIAGNOSTICS

A 0 is returned if radix is not between one and eleven, oOr six-
teen, or thirty-two.

BIT(3L) SCCs Jul 22 1975 BIT(3L)

NAME
bit -- bit extraction

SYNOPS1IS
bit(hi,lo)
int hi, lo;

DESCRIPTION
This subroutine returns a binary number that is the Dbit extrac-
tion of a specified field within a 32-bit binary number contained
in the external variable, WORD. The bits in WCORD are numbered O
to 31 going from right to left.
This subroutine has two arguments, hi and 1o, which specify the
field to be extracted. Hi is the number of the left-most bit to
be extracted, while lo is the number of the right-most bit to be
extracted. Hi minus lo must be less than sixteen.
The global variables used are:

int WORD[2];

LIBRARY
/1lib/libl.a

SEE ALSO
1bit(3L)

BUGS

No checks are made on the reasonableness of the hi and lo and no
error conditions are returned. If (hi - lo) is greater than 15,
then 16 bits are returned; if (hi - lo) is less than O, then 0 is
returned.

BOPNCLOS(3L) SCCs July 19, 1878 BOPNCLOS(3L)

NAME
bopnclos - Buffered open and close.
SYNOPSIS
bopnclos (filename,mode) /*Open file with given mode.x/
char *filename;
int mode;
bopnclos {(fildes,-1) /*File descriptor may be closed
int fildes; if needed.x*/
bopnclos (fildes,-2) /*File descriptor may be truly
int fildes; closed if previously marked as
not needed.=*/
bopnclos (-2,-2) /*All file descriptors not needed
should be closed.x/
DESCRIPTION
NOTE: When dealing with new programs consider Standard 1I/0
first.

This routine maintains a list of up to 15 open files. If the
external variable BOCLOS MAX is set to a number between 1 and 15
then BOCLOS_MAX descriptors will Dbe kept open. Otherwise 10
descriptors are kept open.

To "open" a file a bopnclos (filename,mode) call is made. If a
file 1is already opened with the name exactly matching filename
and with a matching mode the descriptor is returned and the file
is marked in use. Otherwise, if the routine has not used up all
the descriptors allowed to it by BOCLOS MAX the file is truly
opened and its name and mode recorded. If the file is not al-
ready opened and there are no spare descriptors then a file
"closed" by bopnclos (fildes,-1) is truly closed to free up the
descriptor. Of all the "closed" files the one 1least recently
"opened" is chosen.

When the routine is called with bopnclos (fildes,-1) to "close" a
file, 4its entry is found in the local table and it is marked as
available for closing if its descriptor is needed.

Wnen the routine is called with bopnclos (fildes,-2) the fildes,
if it is marked available, is truly closed. Otherwise a -1 is
returned.

Bopnclos (-2,-2) forces a close of all the file descriptors
marked available. If no file was marked available a =1 is re-
turned and errno is clear. Otherwise the logical or of all the
returns for the close system calls is returned and errno is as
the system leaves it. This is useful when you know you no longer
need those files or when you unlink the original file and want to
open another file by the same name.

BOPNCLOS(3L) SCCs July 19, 1878 BOPNCLOS(3L)

This routine can be used to save disk accesses for opening and
closing files frequently accessed Dby a running process. Note
that it must be used with extreme caution since it can cause the
user to run out of descriptors if proper care was not exercised.
Its use should also be coordinated with the system gnomes since
it potentially makes use of a large percentage of the total
number of descriptors that the system may have open at one time.

LIBRARY

/lib/libl.a

SEE ALSO

bread(3L),bwrite(3L),open(2),close(2),fopen(3)

DIAGNOSTICS

BUGS

A -1 is returned when asked to truly close a file descriptor not
marked available for cleosing or when a file name of more than 29
characters is passed to it. Otherwise the return of the
corresponding system call (open or close) is returned.

File names of more than 29 characters do not fit in its internal
buffers.

BREAD(3L) SCCs

July 18, 1879

BREAD(3L)

NAME
bread - Buffered reads.
SYNOPSIS
#include <bread.h>
bread (brbuf,ubuf,n)
char *ubuf; /*Buffer where user wants to read into.=x/
struct BREAD *brbuf; /*Buffer used by bread.x/
int n; /*Number of bytes to be read.x*/
bropen (filename,brbuf,size)
char *filename; /*File to be opened.x/
struct BREAD *brbuf; /*Buffer set up by bropen.x/
int size; /*Size of area in brbuf actually
used for character buffering.x/
brsetup (brbuf, fdes,size)
struct BREAD *brbuf; /*Buffer to be set up.=x/
int fdes; /*File descriptor of file to be
buffer read.=x/
int size; . /*Size of area in brbuf actually
used for character buffering.=x/
brlseek (brbuf,offset,ptrname)
struct BREAD *brbuf; /*Buffer describing file on which
seek is to be done.=x/
long offset; /*Same as in lseek sys call.x/
int ptrname; /*Same as in lseek sys call.x/
long brtell (brbuf)
struct BREAD *brbuf;
brclose (brbuf)
struct BREAD *brbuf;
DESCRIPTION
NOTE: When dealing with new programs consider Standard 1/0
e first.
Bread performs buffered reads on the file described by brbuf.

Brbuf has the following format:

struct BREAD{
int br_fildes;
char =*br_next;
- char *br_ last;
int br bufsize;

/*See bread.h filex/

Read descriptor of file.

Next valid character in buffer.
Last valid character in buffer.
Size of br_buffer passed by
user in bytes.

char br_buffer[BR_BUFFER_SIZ]; Actual character buffer.

(size defined by user)

BREAD(3L) SCCs July 18, 1979 BREAD(3L)

FILES

}:

When bread is called, if there are less than n characters in
br buffer, these characters are passed to the user then a read of
a puffer full is done. If the read is not successful the charac-
ters passed to the user are retrieved back to br_buffer and -1 is
returned. This is useful when a read (say from a pipe) may Dbe
interrupted by a signal. In order to do the retrieval n is res-
tricted to be less than the size of br_buffer as specified by the
user. If it is not, a -2 is returned. If successful, bread re-
turns the number of characters actually passed to the user's
buffer. This may be less than n if an end of file is reached.

Bropen opens filename for reading and saves its descriptor in
brbuf. It also saves the size of the area in brbuf actually used
for buffered characters. This allows the user to specify the
size most suitable for the application (usually 512). Other
variables in brbuf are set up properly for use with Dbread. G
pen returns the return from the open system call.

Brsetup sets up. Brbuf the same as bropen but instead of opening
the file it gets passed the descriptor of a file that is already
opened for reading or reading and writing. It returns the
descriptor.

Brlseek permits the user to do a lseek on a file that is being
read with bread. It discards any characters that may be buffered
in br_buffer and then does the requested seek. Note that the
seek is done to the actual place requested and therefore some ef-
ficiency may be lost when seeking on a disk file to a non multi-
ple of 512 when the size of br_buffer has been specified to be
512; when the next bread occurs 512 Dbytes will be read into
br buffer but they will overlap two physical blocks and therefore
causes two disk accesses. Brlseek returns the result of the
lseek.) 2

Brtell returns tc the user the position in the file described by
brbuf of the next character that can be read using bread. The
actual character may be still in the file (if br_buffer is empty)
or in br_buffer. A -1 is returned when the tell system call re-
turns -1.

Brclose closes the file described by descriptor in br_fildes,
lcads -1 into br_fildes and discards any characters in br_buffer.
It returns the result of the close system call.

/usr/include/bread.h

LIBRARY

/1ib/libl.a

BREAD(3L) SCCs July 18, 1979 BREAD(3L)

SEE ALSO
open(2),close(2),1seek(2),bopnclos(3L),bwrite(3L),fread(3)
DIAGNOSTICS -
bread - returns -1 if read sys call returns -1.
returns -2 if trying to read more than the number of
characters that fit into br_buffer.
brcpen - returns result of open sys call.
brlseek - returns result of lseek sys call.
brtell - returns -1 if tell sys call fails.
prclose - returns result of close sys call.

BREBKS(3L) SCCS Aug 20, 1979 BREAKS(3L)

NAME
breaks =-- look for first char in pattern

SYNOPSIS
breaks(s1,s2)
char *s1, *s2;

DESCRIPTION
breaks returns an integer indicating the success or failure of
the pattern match. If the value returned is an array index the
match was a success. If the value returned is -1 the match was a
failure. This function indicates success if a character in the
pattern string is found in the searched string.
s1 the searched character string.
s2 a string of characters used as a pattern.
The pattern, s2, can be any null terminated string of characters.
Repeated characters in s2 are ignored. The pattern string "Mis~
sissippi" is equivalent to the pattern string "iMps".
This function is implemented with a table driven pattern matcher.
The empty string is defined as a string whose first character is
the null character.
If either or both of the strings is empty the value returned will
be -1.
If a character of the string s2 is found in the string si, the
array index of the character position in sl will be returned.
If the entire string sl is searched and no character in s2 is
found in sl, the value returned will be -1.

LIBRARY

/1ib/1ib3.a

BWRITE(3L) SCCs July 16, 1979 BWRITE(3L)

NAME
bwrite - Buffered writes.

SYNOPS1S
#include <bwrite.h>

bwrite (bwbuf,ubuf,n)

struct BWRITE *bwbuf; /*Buffer maintained by bwrite.=x/
char *ubuf; /*Pointer to point byte user

wants to write.=x/
int n; /=Number of bytes to be written.=x/.

bwopen (filename,bwbuf,size)

char *filenm; /*File to be opened.x/
struct BWRITE *bwbuf; /*Buffer set up by bwopen.x/
int size; /*Size of area in bwbuf actually

used for character buffering.=x/

bwsetup (bwbuf,outdes,size)
struct BWRITE *bwbuf; /*Buffer to be used by bwrite.x/
int outdes; /*Descriptor of file to be written.x/
int size; /*Size of area in bwbuf actually
used for character buffering.x/

bwflush (bwbuf)
struct BWRITE *bwbuf; /*Buffer in use by bwrite.x/

bwclose (bwbuf)
struct BWRITE *bwbuf; /*Buffer used by bwrite.=x/

DESCRIPTION

NOTE: When dealing with new programs consider standard 1I/0
first.

Bwrite performs buffered writes on the file described by bwbuf.
Bwbuf has the following format:

struct BWRITE{ /*See bwrite.h filex/

int bw_des; Write descriptor of file.

char *bw_nxtc; Position at which next character
will be stored.

char =bw_1stc; Points to end of bw_buf.

char bw_buf[BW _BUFFER_SIZ]; Actual character buffer
(defined by user).

};

When bwrite is called it copies n characters from ubuf to the ap-
propriate location in bw_buf one by one. If bw buf is filled at
any time bwrite writes out a buffer full to the file specified by
bw_des, resets the internal pbuffer pointer and continues copying
characters from ubuf to bw_buf. If successful bwrite returns n.
If on coming in it finds an obviously wrong bwbuf it clears errno
(see INTRO 2) and returns a -1. If an attempted write of a

BWRITE(3L) SCCS July 16, 1979 BWRITE(3L)

buffer full fails a -1 is returned and errno is as left by the
write system call. Note that if a write fails it is not obvious
to the user what data got actually written and what data is still
in bw_buf. Also note that a bwflush or bwclose must always be
done at the end of all the bwrites for a given bwbuf.

Bwcpen opens filename for writing and saves its descriptor in
bwbuf. It also saves in bwbuf the size of the area actually used
for buffered characters. This allows the user to specify the
size most suitable for the application (usuwally 512). The other
variables in bwbuf are set up properly for use with Dbwrite.
Bwrite returns the return of the open system call.

Bwsetup sets up bwbuf the same as bwopen but instead of opening
the file it gets passed the descriptor of a file that is already
opened for writing or reading and writing. It returns the
descriptor.

Bwflush may be called at any time to force a write of any charac-
ters buffered in bwbuf. If successful bwflush returns 0. If it
finds an obviously wrong bwbuf it clears errno (see INTRO 2) and
returns -1. If the write of residual characters fails it returns
-1 and errno is as left by the write system call.

Bwclose writes out any characters that may be left in bw_buf and
closes the file descriptor. If bwbuf is obviously wrong it
clears errno (see INTRO 2) and returns -1. If the write of resi-
dual characters fails it returns -1 and errno is as left by write
system call. Otherwise it returns the return of the close system
call.

FILES
/usr/include/bwrite.h

LIBRARY
/lib/libl.a

SEE ALSO
open(2),close(2),write(2),intro(2),popnclos(3L),bread(3L),fwrite(3)

DIAGNOSTICS

CA_FUNCS(3L) SCCSs oo @5, AEE CA_FUNCS(3L)

NAME
ca_funcs -- Initialize array of supported Common Analysis func-
tions

SYNOPSIS
#include <ca_funcs.h>

DESCRIPTION
List of standard Common Analyses functions
referenced by commeon header file
ca funcs.h
char =*ca funcs{] {
"spa" R
Ileca" v
"trk" P
" Sda“ c
"ncan -
"ppall 5
0

BE

LIBRARY
/1ib/1libl.a

CHLNAMS(3L) SCCs Jun 26, 1979 CHLNAMS(3L)

NAME

chinams =-- array of channel names
SYNOPSIS

#include <chinams.h>
DESCRIPTION

source:

char =chlnams[] {

"mtc" o
"gmto! ,
"trk" 5
"misc" ,
0

};

LIBRARY
/1ib/libl.a

CLLIOFC(3L) SCCSs February, 1980 CLLIOFC(3L)

NAME
clliofc - translate CLLI code to office name.
SYNOPSIS
#include "ofcclli.h®
ofcid = clliofc(ofcp, cllip, flag)
char *ofcp; /* office name string =/
char *cllip; /* CLLI name string =/
int flag; /* keep file open flag x/
int ofcid; /* office id =/
DESCRIPTION
Clliofc translates a standard Common Language Location Identifi-
cation (CLLI) into a valid office name on the system. It assumes
the CLLI is pointed to by cllip and is always CLLINAMSIZ charac-
ters 1long. The CLLI need not be null-terminated. Clliofc looks
up the CLLI in the file /sccetc/ofcclli and copies the
corresponding office name to the string pointed to by ofcp, then
null-terminates it. The office name string must be at least
OFCNAMSIZ+1 characters long. In addition, the subroutine returns
the office’'s office id (values O to MAXOID-1) as the returned
value (but see DIAGNOSTICS below).
The flag argument is used to tell the subroutine whether to leave
the file descriptor open for the /sccetc/ofcclli file before re-
turning. Flag = O means close the file descriptor; flag = 1
means leave it open. Programs which expect to call clliofc a lot
may want to leave the file descriptor open, so that the
subroutine does not have to re-open the file each time; other
programs which use the subroutine only once or who are more con-
cerned about file descriptor usage may want to close the file
descriptor.
The /sccetc/ofcclli file is maintained by the commands RC:CLLI
and VRFY:CLLI.
FILES
/sccetc/ofcclli
LIBRARY
/1lib/1libl.a
SEE ALSO
dlteclli(3L), ofcclli(3L)
DIAGNOSTICS

Ofcid will have the following values in error cases:
-1 if system error occurred (open or read failure);
standard SCCS errors are printed in this case.
-2 1f subroutine could not find CLLI in the /sccetc/ofcclli
file.

CLRBUF(3L) SCCs aAug 20, 1979 CLRBUF(3L)

NAME
clrbuf -- clear and audit pattern buffer

SYNOPSIS
clrbuf()

DESCRIPTION
clrbuf returns an integer with a value of zero or -l. If the
buffer contains only null characters clrbuf returns a zero. If
the buffer contains one or more character which are not null,
clrbuf returns a -1.
clrbuf has no arguments. It operates on the buffer used Dby the
pattern building character routines. The name of the buffer is
_BUF . _BUF is a 256 byte character array which should nor-
mally contain only null characters.
clrbuf provides a means of clearing any garbage that might be in
the pattern buffer and provides an audit on the pattern buffer.
If clrbuf ever returns a -1, there has been a program error. Ei-
ther one of the character programs has failed or a user program
has written into the pattern buffer. This subroutine is normally
used only during debugging a program.

LIBRARY

/1lib/1ib3.a

CMD(3L) SCCS Jun 26, 1878 CMD(3L)

NAME
cmd -- analize syntax of SCC command line

SYNOPSIS
cmd(cmdstr, ptrlst) char *cmdstr; char **ptrist;

DESCRIPTION
The input to cmd is the sccsh command line pointed to by cmdstr,
and the output is a list of pointers, ptrlst, to each argument in
the command string. How cmd parses any given command is easily
tested by the utility args(lL).

LIBRARY
/1ib/libl.a

DIAGNOSTICS

COMPAR(3L) SCCS Jan 28 1976 COMPAR(3L)

NAME
compar -- compare two character strings
SYNOPSIS
compar(stri,str2,len) char *stri, *str2; int len;
DESCRIPTION
This subroutine compares two given strings, character by charac-
ter, for a specified length and returns the following values:
if stri < str2 -- return negative integer
if strl = str2 =-- return zero
if strl > str2 -- return positive integer
Compar has three arguments, strl, str2, and len. The addresses cof
the two strings are passed as strl and str2, while len is the
number of bytes to be compared.
LIBRARY
/1ib/1ibl.a
SEE ALSO

strncmp(3)

COMPB(3L) SCCsS Jun 26, 1979 COMPB(3L)

NAME
compb -- compare input character string with a constant character
string
SYNOPSIS
jsr r5,compb;name
DESCRIPTION
Enter with rO0 set tc point to input string.
Name is the address of the constant data--this string
must be terminated with null byte.
On exit, c bit is set for failure, clear for success.
LIBRARY

/1ib/1ibl.a

CPUTM(3L) SCCSs Jun 26, 1979 CPUTM(3L)

NAME
cputm, cputm60 - return total child cpu time

SYNOPSIS
cputm()

long cputmboO ()

DESCRIPTION
cputm return total child cpu time (sys + usr) since last call
(in seconds); the first call returns garbage.
cputmé0 return total child cpu time (sys + usr) since last call
(in 1/60 seconds); the first call returns garbage.

LIBRARY
/lib/libl.a

CPYFLD(3L) SCCs April 14 1978 CPYFLD(3L)

NAME

cpyfld -- locate a specified field within a specified 1line of
ASCII data and copy to a specified character buffer

SYNOPSIS

cpyfld(line,field,skip,length, from,to)
int line, field, skip, length;

struct GMBUF *from;

char *to;

DESCRIPTION

Cpyfld extracts a specified field or subfield from a data buffer,
copies the contents of this field to a specified character
buffer, and appends a null byte to the end of the character
buffer. If an error is detected, cpyfld returns a value that is
less than zero, as discussed below; otherwise, it returns the
number of characters that have been copied to the character
buffer, but not including the null byte. Calling programs should
always check the number of characters copied to the character
buffer to insure that a valid field or subfield has been exXtract-
ed.

Cpyfld calls the library subroutine getfld(gg) to 1locate the
specified field. Getfld breaks the specified line of input data
into its respective fields, starting with field O. Once the
specified field has been located, the field, or a subfield within
the field, is copied to the character buffer. Field separation
characters are one or more tabs and/or blanks, a newline, an oc-
tal 212, or a null byte.

The ASCII data buffer, which is a structure of type GMBUF, is de-
clared and allocated by the calling routine. Before calling this
subroutine, the calling routine must fill the ASCII data buffer
via the subroutine gtmsg(3L) or some other routine which performs
a similar function.

For the argument descriptions that follow, the wvalue nchar
represents the total number of characters contained in the speci-
fied field in the data buffer.

The argument line is the number of the line in which the request-
ed field is located. The range of values for line are:

0 <= line < GM_MAX LNS
where GM MAX LNS is defined in the header file, gtmhdr.h.

The argument field is the number of the field that is to Dbe 1lo-
cated. The range of values for field are:

0 <= field < max. fields for specified line

CPYFLD(3L) SCCS April 14 197% CPYFLD(3L)

The argument skip is the number of characters at the beginning of
the field that are to be skipped before the specified subfield is
copied to the specified character buffer. If the value of skip
is 0O, then no characters are skipped and copying begins with the
first character in the field. The range of values for skip are:

0 <= skip < nchar

The argument length is the number of characters that are to be
copied from the field to the character buffer. If the value of
length is less than 0, then an error value 1is returned, as
descripbed below. If the value of length is 0, then all charac-
ters from skip to the end of the field are copied to the charac-
ter Dbuffer. If the value of length is greater than 0, then the
number of characters copied to the character buffer is length or
(nchar - skip), whichever is smaller.

The argument from is the address of a data buffer in which the
requested line and field can be found. The data buffer must have
a format that is identical to that required by the gtmsg(3L)
subroutine.

The argument to is the address of the character buffer to which
the specified field or subfield is to be copied. This address
must be nonzero.

FILES
/usr/include/gtmhdr.h which contains the definitions for GMBUF,
GM_MAX_LNS, CFR_LEN, CFR_SKIP, CFR_TO, CFR_FLD, CFR_LN.

LIBRARY
/1lib/lipl.a

SEE ALSO
getfld(3L), gtmsg(3L)

DIAGNOSTICS
The error codes returned by this subroutine are:

CFR_LEN The argument length is less than zero.

CFR_SKIP The argument skip is less than zero or greater than the
numpber of characters in the field.

CFR_TO The argument to contains an invalid address for the
character buffer. :

CFR_FLD The argument field is out of range.

CFR_LN The argument line is out of range.

CRCBUF (3L) SCCS Jun 26, 1979 CRCBUF (3L)

NAME
crcbuf -- get CRC16 checksum

SYNOPSIS
unsigned crcbuf(bufp, nchar, oldcrc)
char *buff;
unsigned nchar, oldcrec;

DESCRIPTION
Crcbuf returns the CRC16 checksum of the nchar characters pointed
to by bufp. Oldcrc represents the checksum of some other array of
characters which should be taken into account in the calculation
of the checksum for these characters. 0Oldcrc should be 0O if no
such array exists.

L IBRARY

/lib/libil.a

DATCHK(3L) SCCS Jul 22 1975 DATCHK(3L)

NAME

datchk -- check data validity
SYNOPSIS

datchk(nchar,base) int nchar,base;
DESCRIPTION

This subroutine checks the validity of the data that is passed to
it in the external variable INPUT. If the data is valid, it is
returned in the external variable, VALSTR, and the subroutine re-
turns a 1. The data in VALSTR is right-justified in a field hav-
ing a specified length, padded on the left with blanks, and ter-
minated with a null byte. If the data is not valid, appropriate
error information is returned in the external variables, E_SPCL,
E TYPE, E _CODE, E _NUM, and E_MSG, and a O is returned by this
subroutine.

DATCHK has two arguments, nchar and base. Nchar specifies the
length of the string in which the validated data is placed. Base
specifies the base or radix of the input data contained in INPUT.
These arguments are used to determine the validity of the input
data. The validity checks made by this program are:

a. determine if base is between one and eleven, or sixteen,
or thirty_two (means use base sixteen for a 101 ESS).

b. determine if INPUT contains more than nchar characters.

c. determine if INPUT contains a character that is not wvalid
for the base specified.

The global variables used are:

‘char *E_SPCL;

char *E_TYPE;

char *E_CODE;

char *E_NUM;

char *E_MSG;

char =INPUT;

char VALSTR[33];

The error information returned is:
E SPCL= "7D";

E TYPE= " *#;
E_CODE= "LIB";
E_NUM= "002";
E_MSG= "INVALID BASE."; or
E_SPCL= "?D";
E TYPE= " »;
E_CODE= “LIB";
E_NUM= "003";

E _MSG= "TOO MANY CHARACTERS IN DATA."; or

DATCHK(3L)

E_SPCL=
E_TYPE=
E_CODE=
E_NUM=
E_MSG=
LIBRARY
/1ib/1ibl.a
SEE ALSO
DIAGNOSTICS

SCCS Jul 22 1975

wopy;
" ",
"LLIB";
"004";
"INVALID CHARACTER IN DATA.";

Value for base must between one and eleven,
thirty-two for a 101 ESS.

or

DATCHK(3L)

sixteen,

or

DD_CHECK(3L) SCCS Feb 25, 1979 DD_CHECK(3L)

NAME
dd_check -- check process ID
SYNOPSIS
dd_check(procid)
int procid;
DESCRIPTION
This subroutine checks existence of a process ceorresponding to a
given process ID. It does this by attempting to send a
SIGFPT signal to the process with the PID in question (this
subroutine is intended to be used with programs which use the
dd_ifree and dd_wnfree subroutines. These programs ignore
SIGFPT). This subroutine actually executes another program
which runs as root, because only programs which run as root can
send signals to unrelated processes.
This subroutine returns one of the following values to the cal-
ling program:
-2 system error occurred.
-1 process with the given PID does not exist.
0 process with the given PID does exist.
Arguments:
procid is the process id of a process whose
existence is to be checked.
LIBRARY

/1ib/libl.a

DD_FREUP(3L) SCCs July 26, 1979 DD_FREUP(3L)

NAME
dd_freup - release access to data distributor control file

SYNOPS1S
dd_freup(oid)
int oid;

dd_wakup (ptr)
char *ptr;

DESCRIPTION
dd freup

This subroutine is intended to be used by programs which access
the .ddcntl files. This subroutine, when called, will check a
file (protect file) which contains an access slot for each of-
fice. Each access slot is either empty, in which case no process
is currently accessing the .ddcntl file for that office, or the
access slot contains the process ID of the process currently hav-
ing access to the ddcntl file for that office.

The argument o0id is the office ID of the office to be acessed.

This subroutine, when called, will check to see if the process ID
in the access slot of the office of interest matches the process
ID of the calling process. If it does, it will remove the pro-
cess ID from the access slot and zero the access slot, indicating
that the calling process no longer has access to that particular
.ddcntl file. It will then post a semaphore, causing any process
which has been waiting for access to be awakened. This
subroutine should thus be called only after a program has fin-
ished with the .ddcntl file for an office.

Subroutine dd freup returns one of the following wvalues to the
calling program:

-5 Bad Protect file.

-4 Protection file semaphore permanently locked.
-3 System error occurred.

-2 Illegal office ID passed to this subroutine.

-1 This process ID was not 1in the office slot £for the
desired office; access slot not zeroed.

0 Free up worked O.K.

The Protect file is a temporary file and is rebuilt, by the first
call to the subroutine dd wnfree or subroutine dd ifree, each
time the system is rebooted.

DD_FREUP(3L) Sccs July 26, 1979 DD_FREUP(3L)

dd wakup

This routine will execute the program which sends a signal to a
process. The program tec be executed runs as super—-user and can
therefore send a signal to any process.

The argument ptr is a pointer to a string which is the process ID
of the process to be awakened.

The return value indicates the success of the signal attempt:

0 -- process sucessfully signalled —
-1 -- process to be awakened did not exist
-2 —-- another type of error ocurred
LIBRARY
/lib/1libl.a
SEE ALSO

dd_ifree(3L) dd wnfree(3L)

DD_IFREE(3L) SCCs July 26, 1879 . DD_IFREE(3L)

NAME

ad_ifree - test for access to data distributor control file

SYNOPSIS

dd_ifree(oid)
int oid;

DESCRIPTION

This subroutine is intended to be used by programs which access
the ddcntl files. This subroutine, when called, will check a
file (protect file) which contains an access slot for each of-
fice. Each access slot is either empty, in which case no process
is currently accessing the .ddcntl file for that office, or the
access slot contains the process ID of the process currently
having access to the .ddcntl file for that office.

If the access slot for the office of interest is empty, this
subroutine places the process ID of the calling process in that
access slot and returns. However, if the access slot, for the
office of interest, is not empty then another process is current-
ly accessing the desired ddcntl file. In that case, the
subroutine will check to see if the process, corresponding to the
process ID in the access slot, still exists. If it does not,
this subroutine places the process ID of the calling process in
the access slot of the office of interest and returns. However,
if the process does exist, this subroutine would not go any
further and return.

Any program which uses this subroutine should not use the SIGFPT
signal (currently number 8). This signal is used by this
subroutine to check the existence of processes which are current-
ly accessing the ddecntl files. Signal handling for SIGFPT is set
up automatically by this subrocutine. Also, since this subroutine
sets up and catches alarm system calls, the programs which use
the Locking Mechanism should not use an alarm call which might
interfere with this subroutine's operation.

Subroutine dd ifree returns one of the following values to the
calling program:

-5 Bad Protection file.

-4 Protection file semaphore permanently locked.
-3 System error occurred.

=2 Illegal office ID passed to this subroutine.
-1 Access to .ddcntl file not gained.

0 Access to .ddcntl file granted.

DD_IFREE(3L) SCCS July 26, 1979 . DD_IFREE(3L)

The Prbtect file is a temporary file and is rebuilt, by the first
call to subroutine dd wnfree or subroutine dd ifree, each time
the system is rebooted.

LIBRARY
/lib/libl.a

SEE ALSO
dd_wnfree(3L), d&d_freup(3L), dd check(3L)

DD_LOOK(3L) SCCS Apr 15, 1880 DD_LOOK(3L)

NAME
dd _look =-- send wakup signal to a process

SYNOPSIS
/prog/dd_look pid

DESCRIPTION
This program will send a wake up signal to the named process in
order to check its existence. It is intended to be used by pro-
grams which access the .ddcntl file associated with Data Distri-
buter program for Common Analysis. The argument pid is the pro-
cess ID of the process ID of the process to be awakened.

This subroutine must run as root so it can send a signal to any
other process.

The exit status of this program defines the success of the sig-
nalling attempt:

-2 some problem occurred.
-1 process to be awakened does not exist.
0 process to be awakened does exist.

LIBRARY
/1lib/1libl.a

DD_WNFREE(3L) SCCs July 26, 1979 DD_WNFREE(3L)

NAME

dd_wnfree - wait for access to data distributor control file

SYNOPSIS

dd_wnfree(oid)
int oid;

dd_snatch()

DESCRIPTION

dd wnfree

This subroutine is intended to be used by programs which access
the .ddcntl files. This subroutine, when called, will check a
file (protect file) which contains an access slot for each of-
fice. Each access slot is either empty, in which case no process
is currently accessing the .ddcntl file for that office, or the
access slot contains the process ID of the process currently hav-
ing access to the .ddcntl file for that office.

The argument 0id is the office ID of the office to be accessed.

This subroutine will return only when it has gained access to the

ddcntl file for the office of interest or when an interrupt or

system error occurs. If necessary this subroutine causes the
calling process to go to sleep until it gains access. If the
subroutine does gain access to the desired .ddcntl file, this
subroutine will place the process ID of the calling process in
the access slot for the office of interest.

Any program which uses this subroutine whould not use the SIGFPT
signal (currently number 8). This signal is used by this
subroutine to check the existence of processes which are current-
ly accessing the .ddentl files. Signal handling for SIGFPT is
set up automatically by this subroutine. Also, since this
subroutine sets up and catches alarm system calls, the programs
which use the Locking Mechanism should not use an alarm call
which might interfere with this subroutine's operation.

Subroutine dd wnfree returns one of the following values to the
calling program:

-5 Bad Protection file.

-4 Protection file semaphore permanently locked.
=3 System errof occurred.

=2 Illegal office ID passed to this subroutine.

-1 An interrupt occurred.

DD_WNFREE(3L) SCCs July 26, 1978 DD_WNFREE(3L)

0 Access to .ddcntl file gained.

The Protect file is a temporary file and is rebuilt, by the first
call to subroutine dd wnfree or subroutine dd ifree, each time
the system is rebooted.

If a process cannot afford to go to sleep and wait for gaining
access to a particular .ddcntl file, it should use subroutine
dd ifree.

dd snatch

This routine will catch the SIGFPT signal. It should be used in
any program which uses the 4d wnfree routine. Note that, except
for setting an alarm clock, it performes no function. The SIGFPT
signal will thus simply awake the process from being asleep on a
semaphore. The alarm clock is used in the unlikely event that
the process receives the SIGFPT signal between the time that the
signal handling is set up and the time that the process goes to
sleep on the semaphore.

LIBRARY
/lib/libl.a

SEE ALSO
dd_ifree(3L), d&d_freup(3L), dad_check(3L)

DIAL(3L)

NAME

SCCs Apr 11, 1980 DIAL(3L)

dial -- construct DDD telephone number

SYNOPSIS

#include <dial .h>

dial(dn_ptr, number)
struct dntbl *dn_ptr;

char *number;

DESCRIPTION

The purpose of this subroutine is to construct a well formed DDD
telephone number from one supplied by the caller and to command
the specified dnil to dial that number. The argument dn ptr

points to

the structure returned by getds(3L) and number is the

DDD telephone number supplied by the user.

Return values:

The file descriptor of the data multiplexor line

Errors are indicated as follows :

-1
-2
-3
-4
-5
-6
-7

=
="

FILES

No carrier, busy, Or no answer.
All equipment in use.
Bad speed specification.
Bad telephone number.
Ioctl failure.
Bad equipment resource table.
No equipment exists - not specifyed in
equipment resource table.
Permission denied.
Bad equipment.

/usr/include/dial.h /etc/d_dntable

LIBRARY
/1lib/libl.a

SEE ALSO
getds{3L)

DIFF(3L) SCCsS Aug 20, 1979 DIFF(3L)

NAME
_ diff -~ locate first string difference
SYNOPSIS
diff(sl,s2)

char *sl1, *s2;

DESCRIPTION

diff returns an integer indicating the position within the two
strings that the first character mismatch was discovered. If the
two strings are identical, the integer returned is -1.

s1 string to be used in comparison.
s2 string to be used in comparisom.

An empty string is one whose first character is the null charac=-
ter. If both strings are empty, the integer returned has the
value -1.

The two strings are compared character by character until one or
both are terminated by the null character or until a mismatch is
found. If the two strings are identical until one string is ter-
minated Dby the null character while the other string is not ter-
minated, the returned integer is the index of the null character.

If the two strings differ on a character other than the null
character the index of the character position that differs is re-
turned.

LIBRARY

/1lib/1ib3.a

SEE ALSO

stremp(3)

DLTCLLI{3L) SCCs February, 1980 DLTCLLI(3L)

NAME
dltclli - delete office's CLLI code translation.

SYNOPS IS
#include "ofcclli.h"

dlitclli(ofecp)
char *ofcp; /* office name string =/

DESCRIPTION
Ditclli deletes the Common Language Location Identification
(CLLI) code for the specified office. It assumes the office name
is pointed to by ofcp and is null-terminated. Dltclli scans the
file /sccetc/ofcclli and blanks out every entry which has the
specified office name in the entry's office name field.

The /sccetc/ofcclli file is maintained by the commands RC:CLLI
and VRFY:CLLI.

FILES
/sccetc/ofcclli

LIBRARY
/1ib/1libl.a

SEE ALSO
clliofc(3L), ofcclii(3L)

DIAGNOSTICS
None; system errors are reported in standard SCCS fashion but no
indication is returned to the caller.

DP_ADD(3L) SCCs Aug 21 1975 DP_ADD(3L)

NAME
dp_add -- double precision add
SYNOPSIS
int *dp_add(num) int num;
DESCRIPTION
This subroutine adds a single-precision number, num, to a
double-precision number contained in the external variable, WORD.
The result of this addition is placed in WORD, and the address of
WORD is returned to the calling program.
The global variables used are:
int WORD[2];
LIBRARY
/1ib/1libl.a
SEE ALSO
binary(3L)
DIAGNOSTICS

-1 -

DP_MUL(3L) SCCS Aug 21 1875 DP_MUL(3L)

NAME
dp_mul -- double precision multiply

SYNOPSIS
int *dp_mul(radix) int radix;

DESCRIPTION
This subroutine multiplies a double-precision number, stored in
the external variable, WORD, by a&a single-precision number, radix.
The address of WORD is returned by this function, unless an error
is detected. 1In this case a 0 is returned by this subroutine and
appropriate error information is returned in the eXxternal vari-
ables, E_SPCL, E_TYPE, E CODE, E_NUM, and E_MSG.

DP_MUL has one argument, radix, which specifies the base of the
numpber contained in WORD.

The global variables used are:
char *E_SPCL;
char *E_TYPE;
char *E_CODE;
char *E_ NUM;
char *E_MSG;
int WORD([2];

The errcr information returned:
E_SPCL= "?D";
E TYPE= " ";
E_CODE= "LIB";
E_NUM= "ooli";
E_MSG= "PRODUCT LARGER THAN 32 BITS.";

LIBRARY
/1lib/libl.a

SEE ALSO
binary(3L)

DIAGNOSTICS
BUGS

DSKACC(3L) SCCS Jun 26, 1979 DSKACC(3L)

NAME
dskacc, mdskacc - get number of disk accesses

SYNOPS1IS
dskacc()

midskace ()
DESCRIPTION
dskacc returns number of disk accesses of current process and its

children since its last call

mdskacc is identical to diskacc except it is used by the measur-
ment subroutines

LIBRARY
/1lib/1libl.a

DTOGL(3L) sCCs Jun 27, 1979 DTOGL (3L)

NAME
dtogl - turn data collection on or off

SYNOPSIS ;
dtogl (chptr,anlptr,stptr,ctlptr)
char *chptr;
char *anlptr;
char *stptr;
register struct DD_CNTL *ctlptr;

DESCRIPTION
This routine will turn the data collection for a specified of-
fice and channel on or off. This is done by placing the proper
value in the flag byte associated with the appropriate function
in the data collection control record of the office of interest.
The flag value will be set to a channel name index if collection
is turned on or to a -1 if collection is turned off. when data
collection for a particular channel is to be turned on or off,
the pointers for that channel will be zeroed. Since cne channel
may be collecting data for several types of analysis, checks of
all flag bytes are made before zeroing any pointers. Additional-
1y, since collection for a particular analysis/channel may be
turned on several times in succession (and subsequently turned
off an equal number of times), a counter is kept with each flag
byte. This counter is incremented each time collection is turned
on for an analysis/channel, and decremented when collection is
turned off; data collection for an analysis/chan- nel will not
actually be turned off until this counter is decremented to zero.

The routine returns one of several values:

0 - everything okay

1 - invalid channel or function

2 - stptr (see below) points to a string which is
neither "START" nor "STOP"

3 ~ an attempt was made to turn off an analysis/channel
which was already off

4 - an attempt was made turn collection on or off for
an illegal analysis/channel

5 ~ an analysis/channel count was illegal
(less than O or greater than maximum)

Arguments:
chptr is a pointer to a string which is the name
of the channel of interest.
anlptr is a pointer to a string which is the name

of the analysis function for which data is
being (or will be) collected

stptr is a pointer to a string which must be either
"START" (for collection turn-on) or "STOP"
(for collection turn-off)

ctlptr points to the structure to be updated

DTOGL(3L) SCCs Jun 27, 1879 DTOGL(3L)

Note that this routine will be manipulating data in the structure
which is pointed to by the calling parameter ctlptr.

LIBRARY
/lib/libl.a

E_ACCTXT(3L) SCCs Apr 11, 1980 E_ACCTXT(3L)

NAME
e _acctxXt -- provide access to the stored OM text field
SYNOPSIS
char ¥e_acctxt()
DESCRIPTION
This subroutine returns a pointer to the string containing the
text field of the current stored OM.
LIBRARY

/1ib/libl.a

E_ASSERT(3L) SCCs Apr 11, 1980 E_ASSERT(3L)

NAME
e_assert -- internal program constistancy check
SYNOPS1IS
#include <errfct.h>
e_assert(true_expression, msg)
char *msg;
DESCRIPTION
If the true expression is not true an internal error OM
erated and output and the trap function is called.
pointer to the OM string that is to be output.
Return values:
0 -- if true expression is true
ofl, == &F AOE
LIBRARY

/1lib/1libl.a

is gen-
Msg is a

E_CLSTST(3L) SCCs Apr 11, 1980 E_CLSTST(3L)

NAME
e clstst —-- error class test

SYNOPSIS
#include <errfect.h>
#include <syserr.h>
e_clstst (INHXXX INHYYY INHZZZ ...)

DESCRIPTION
The arguments INHXXX, etc. are defined in /usr/include/errfct.n
and define the error classes to be tested. e clstst returns
INHXXX (non-zero) if errno is equal to EXXX, as defined
/usr/include/syserr.h; 2zero is returned otherwise. If the argu-
ment is NOERR, non-zero is always returned.

FILES
/usr/include/errfct.h /usr/include/syserr.h

LIBRARY

/1lib/1ibl.a

E_FORM(3L) SCCs July 17,1979 E_FORM(3L)

NAME
e _form - format and store an output message (om)
SYNOPSIS
e_form (errnum, msgl, msg2, ..., 0)
char *errnum;
char *msgl;
char *msg2;
DESCRIPTION
Store an OM for subsequent output by e output(3L). This is nor-
mally called by other routines e stdio(3L), e _splerr(3L),
e intern(3L)), but may be called directly. It is wparticularly
useful when the text field of the OM is a concatenation of
several strings.
The errnum argument specifies the error number of the OM. It
should point to a three-digit numerical string. The error code
for the OM is determined by the standard error ccde for the pro-
cess as set up by e setcode or e setup(3L).
The strings pointed to by the (variable number of) msg? arguments
are concatenated to become the text field of the OM.
LIBRARY

/lib/libl.a

E_INIT(3L) SCCS Apr 14, 1980 E_INIT(3L)

NAME
e init, e_term -- generate initialization and termination mes-
sages for autonamous processes.

SYNOPS IS
#include <efffct.h>
e_init()
e_term(exitcode)

DESCRIPTION
Initialization and Termination messages should be generated with
e init when the program is initialized; and e term when the pro-
gram terminates in a controlled manner, whether because of the
receipt of a signal or because of a fatal error. e init requires
no arguments. e term requires an exit status as an argument,
which it passes to the exit(2) function. These functions au-
tomatically create and remove, respectively, a temporary file
with a name based upcn the progran name (as set by e setup(3L) or
e setname(3L)). When the file exists when e init is called, it
is presumed that the program died in a uncontrolled manner. Thus
a "REINITIALIZED" message, with the standard alarm level, is gen-
erated in this case. ©Note that all the temporary files are au-
tomatically removed when the system is rebooted.
Either e setup(3L) or e setname(3L) must be used to set the pro-
gram name before e init is called. This is needed both to formu-
late the temporary file name and for inclusion in the messages.
The return value of e init is zero if a normal initialization 1is
detected and -1 if an abnormal reinitializaticon is detected. The
e term function never returns.

LIBRARY

/lib/libl.a

E_INTERN(3L) SCCS June 26, 1979 E_INTERN(3L)

NAME

e_intern - generate "internal" output message (oM)

SYNOPSIS

include <errfct.h>
e_intern(NORMINTERN, msg, inhflag)
char *msg;
int inhflag;
e_intern(TRINTERN, msg, inhflag)

DESCRIPTION

An OM is created to describe an "internal" No.2 SCCS error (such
as failure of an internal program consistncy check, or other er-
ror that "can't happen”). Normally NORMINTERN is used as the
first argument; TRINTERN is used if you always want the field to
submit a TR if the problem shows up. The msg argument should
point to an (upper case) string serving to identify but not ex-
plain the error condition.

The inhflag argument is the standard error system inhibit flag
(See e syscall(3L)). In this case only the values ALLERR (output
the OM) or NOERR (just store away the OM) are meaningful.

LIBRARY

/1lib/libl.a

E_NEW(3L) SCCS June 26, 1979 E_NEW(3L)

NAME

e new - modify a stored output message (OM)
SYNCPS1S
#include <errfct.h>
e_newcode (errcode)
char *errcode;
e_newnum (errnum)
char *errnum;
e_newnote ()
e_newlvl (almivl)
int almlvl;
e_newlname (libmname)
char *libname;
char (*e_acctxt())
DESCRIPTION
A stored OM (See e syscall(3L), e splerr(3L), e intern(3L),
e form(3L)) may be modified.

E newcode changes the error code of the OM (See sccerr(3L));

€ newnum changes the error number;

e newnote makes the OM a "notification" alarm (ie, alarm level
"none" but alerted);

€ newlname inserts a library routine name into an OM for er-
rors occurring with library routines.

The arguments errcode, errnum, and almlvl are identical to those
used in e setup(3L).

E acctxt returns a pointer to the null terminated text field
cf the OM so that it may be modified. It may be
lengthened, but only up to the second null byte.

SEE ALSO

e_output(3L), e_setup(3L)
DIAGNOSTICS

none
LIBRARY

/1ib/libl.a

E REFLEX(3L) SCCS July 13 1978

NAME

e reflex -- Input Message error reporting

_ SYNOPSIS

e_already(x,opt) char *x, *opt;
e_arb(sl,s2,.¢¢e..%n,0) char *sl, *s2,,*$n;
e_backgrd()

e_chl (x,opt) char *x, *opt;
e_exkw(x,opt) char *x, *opt;
e_incd(x,y,opt) char *x, *y, *opt;
e_inckw(x,y,opt) char *x, *y, *opt;
e_inperr (opt) char *opt;

e_invc(x,opt) char *x, *opt;
e_invd(x,y,opt) char *x, *y, *opt;
e_invkw(x,opt) char *x, *opt;

e_ip()

e_kw(sl,s2,,0) char *sl, *s2, ..
e_loc(x,opt) char *x, *opt;
e_lperm(x,opt) char *x, *opt;
e_misd(x,opt) char *x, *opt;
e_miskw(x,opt) char *x, *opt;

e ng(sl,;s2, s....,0) char *sl, *s2, ..
e ofc(x,opt) char *x, *opt;

e_ok()

e_perm(x,opt) char *x, *opt;

e_pf()

e_punct(x,y,opt) char *x, *y, *opt;
e_rgerr (x,opt) char *x, *opt;

e_rlbsy(opt) char *opt;

E_REFLEX(3L)

E_REFLEX(3L) sccs July 13 1978 E_REFLEX(3L)

e_rlovld(opt) char *opt;

e_sched()

e_spinoff ()

e_ssys(x,opt) char *x, *opt;

e_stderr ()

e_stdin()

e_stdout ()

e_syntax(sl,s2,,0) char *sl, *s2, ..

e_uperm(x,y,opt) char %x, %y, ¥opt;
DESCRIPTION

Each function (except e ok , e ip , and e pf) is provided as a

standard method of responding to reflexive errors in an Input
Message (IM) or in a prompted user response error.

e ok , e ip , and e pf are provided for the generation of common,
high usage non-error messages.

Each function is listed below with the error message format.
Note, however, that the message acknowlegements (OK, NG, etc.)
are not preceeded by a newline and will be outputted on the same
line as the input command. Some functions require arguments "x"
and "y" of type (char *). If non-zero, the string is inserted in
the message where indicated by <x> and <y>. Some functions re-
quire an argument "opt" of type (char *). If non-zero, the
string contained in square brackets will be outputted in the for-
mats below.

Those functions accepting an arbitrary number of arguments "sl1",
"s2",... of type (char *) require that the last argument be zero.

Each of the routines produces the following output which is
directed to file descriptor 2.

e already(x,opt)

NG

ALREADY <x> [; <opt>]
e arb(sl,;S2;ece00004,0)
T8l

S2 S3 Geoseoe

e_backgrd()

E_REFLEX(3L) sces July 13 1978

NG
Command can not executed in the background

e chl(x,opt)
?E
INVALID CHL: <x> [; <opt>]

e_exkw(x,opt)
?E

EXTRA KEYWORD <x> [; <opt)>]

e incd(x,y,opt)
= ?E
INCONSISTENT DATA <x>[, WITH <y>][; <opt>]

e_inckw(x,y,opt)
?E
INCONSISTENT KEYWORD <x>[, WITH <y>][:; <opt>]

e lnperr (opt)
?E
INPUT ERROR [; <opt>]

e invc (x,opt)
?E

INVALID CHARACTER <x>[; <opt>]

e invd(x,y,opt)
?E
INVALID DATA <x> [FOR KEYWORD <y>][; <opt>]

e invkw(x,opt)
?E
INVALID KEYWORD: <x>[; <opt>]

e_ip()
IP

e kw(sl,s2,....,0)
VALID KEYWORDS: <sl>
<s2>

e_loc(x,opt)
?E

INVALID LOCATION: <x>[; <opt>]
e lperm(x,opt)
?E
- <x> NOT IN THIS LOCATION[; <opt>]

e misd(x,opt)

E_REFLEX(3L)

