E_REFLEX(3L) sCCs July 13 1978 E_REFLEX(3L)

?E
MISSING DATA [FOR KEYWORD <x>][; <opt>]

e miskw(x,opt)
?E
MISSING KEYWORD <x>[; <opt>]

e ng(sl,s2,...,0)
NG
<S1> <S2> .44

e ofc(x,opt)
2E
INVALID OFC: <x>[; <opt>]

e ok ()
OK

e perm(x,opt)
?E
USE OF <x> NOT PERMITTED [; <opt>]

e_pf()
PF

e_punct(x,y,opt)
?E

INVALID PUNCTUATION; '<x>' SHOULD BE '<y>' [; <opt>]

e_rgerr (x,opt)
?E

RANGE ERROR IN <x>[; <opt>]
e rlbsy(opt)
RL
PROGRAM BUSY[; <opt>]
— e rlovld(opt)
RL
SYSTEM OVLD[; <opt>]
e_sched()
NG
Command can not be scheduled
= e _spinoff ()
NG

Command can not be spunoff

e_ssys (x,opt)
— ')E

INVALID SUBSYSTEM: <x>[; <opt>]

E _REFLEX(3L) SCCS July 13 1978 E_REFLEX(3L)

e_stderr ()
NG
ERROR OUTPUT OF PROGRAM MUST BE TO A TERMINAL

e_stdin()
NG
INPUT TO PROGRAM MUST BE FROM A TERMINAL

e stdout ()
NG
NORMAL OUTPUT OF PROGRAM MUST BE TO A TERMINAL
e_syntax(sl,s2,....,0)
PROPER FORMAT: <sl>
<s2>

-

e_uperm(x,y,opt)
7B
<x> RESTRICTED TO <y>[; <opt>]

The e arb() routine is intended to output reflexive errors of an
arbitrary format as described by the strings pointed to by
s2,83,... It is not intended that this routine be used in 1lieu
of other reflexive routines which satisfy a specific need. Note
that sl is to be used as an acknowledgement string. That is, two
spaces will be prepended to sl and a newline will be appended to
sl. The string will then be written out before continuing with
the remaining arguments. Following the output of sl, the routine
will output the following strings on the same line unless a char-
acter count of 75 is exceeded or an imbedded newline is encoun-
tered. The routine will attempt to break a line between speci-
fied strings or at an imbedded space char. Note that the routine
will place a space between each string.

FILES
LIBRARY
/lib/libl.a

DIAGNOSTICS
Reports as above. Returns a 0 if successful and a -1 in case of
error.

BUGS

S

E_OUTPUT(3L) SCCs June 26,1979 E_OUTPUT(3L)

e_output - output a stored OM

SYNOPSIS

#include <errfct.h>

e_output ()

e_foutput(fildes)
int fildes;

e_wrapup(inhflag)
int inhflag;

DESCRIPTION

A stored OM (See e syscall(3L), e splerr(3L), e intern(3L),
e form(3L)) is output. E output uses sccerr(3) for outputting,
unless the "primative report function" is set up by e setup(gg)
or e setprim; e foutput writes the OM to the file corresponding
to the file descriptor fildes. (Handy for keeping your own log
files.) E wrapup checks the inhibits flag (See e syscall(3L))
against the errno variable (See intro(2)) before outputting the

OM. E wrapup also calls the "trap function" if set up by
e settrap or e setup(3L) after outputting the OM.

Cutputting an OM does not erase it from storage and so an OM may
be output sequentially by e output and e foutput.

SEE ALSO
e_syscall(3L), e_setup(3L)

DIAGNOSTICS
none

LIBRARY
/1lib/1libl.a

E_REFLEX(3L) SCCS July 13 1978 E_REFLEX(3L)

NAME
e reflex == Input Message error reporting

SYNOPSIS
e_already(x,opt) char *x, *opt;

e_arb(s1,s2,...... $n,0) char *si1, *s2,,*$n;
e_chl(x,opt) char *x, *opt;
e_exkw(x,opt) char *x, *opt;
e_incd(x,y,opt) char *x, *y, *opt;
e_inckw(x,y,opt) char *x, *y, *opt;
e_inperr(opt) char *opt;
e_inve(x,opt) char *x, *opt;
e_invd(x,y,opt) char *x, *y, ®*opt;
e_invkw(x,opt) char *x, *opt;
e_ip()

e_kw(sl,s2, ,0) char *s1, *s2,
e_loc{(x,opt) char *x, *opt;
e_lperm(x,opt) char *x, *opt;
e_misd(x,opt) char *x, *opt;
e_miskw(x,opt) char *x, *opt;
e_ng(sl,s2, ,0) char *si, *s2,
e_ofc(x,opt) char *x, *opt;

e_ok()

e_perm(x,opt) char *x, *opt;

e_pf()

e_punct(x,y,opt) char *x, *y, *opt;
e_rgerr(x,opt) char *x, *opt;
e_rlbsy(opt) char *opt;

e_rlovld{(opt) char *opt;

E_REFLEX(3L) SCCs July 13 1978 E_REFLEX(3L)

e_ssys(x,opt) char *x, *opt;
e_stderr()
e_stdin()
e_stdout ()
e_syntax(sl,s2, ,0) char *sl, *s2,
e_uperm(x,y,opt) char *x, *y, *opt;
DESCRIPTION
Each function (except € ok , € ip , and e pf) is provided as a

standard method of responding to reflexive errors in an Input
Message (IM) or in a prompted user response error.

e ok , e ip , and e pf are provided for the generation of common,
high usage non-error messages.

Each function is listed below with the error message format.
Note, however, that the message acknowlegements (OK, NG, etc.)
are not preceeded by a newline and will be outputted on the same
line as the input command. Some functions require arguments "x"
and "y" of type (char =). 1If non-zero, the string is inserted in
the message where indicated by <x> and <y>. Some functions re-
quire an argument "opt" of type (char =). If non-zero, the
string contained in square brackets will be outputted in the for-
mats below.

Those functions accepting an arbitrary number of arguments "si",
"g2",... of type (char *)} require that the last argument be zero.

Each of the routines produces the following output which is
directed to file descriptor 2.

e_already(x,opt)
NG
ALREADY <x> [; <opt>]

e _arb(s1,s2,......,0)
sl
S2 83 seeenee

e chl(x,opt)
7E
INVALID CHL: <x> [; <opt>]

e exkw(x,opt)
7E
EXTRA KEYWORD <x> [; <opt>]

E_REFLEX(3L) sccs July 13 1978 E_REFLEX(3L)

e_incd(x,y,opt)
i)
INCONSISTENT DATA <x>[, WITH <y>][; <opt>]

e_inckw(x,y,opt)
7E
INCONSISTENT KEYWORD <x>[, WITH <y>][; <opt>]

e inperr(opt)
7E
INPUT ERROR [; <opt>]

e invc(x,opt)
7E
INVALID CHARACTER <x>[; <opt>]

e invd(x,y,cpt)
7E _
INVALID DATA <x> [FOR KEYWORD <y>][; <Opt>]

e_invkw(x,opt)
7E
INVALID KEYWCRD: <x>[; <opt>]

e ip()

IP
e kw(si,s2,....,0)
VALID KEYWORDS: <sl1>

<s2>

e loc(x,opt)
7E
INVALID LOCATION: <x>[; <opt>]

e lperm(x,opt)
7E

<x> NOT IN THIS LOCATION[; <opt>]

e misd(x,opt)
7E
MISSING DATA [FOR KEYWORD <x>][; <opt>]

e miskw(x,opt)
7E
MISSING KEYWORD <x>[; <opt>]

e ng(si,s2,...,0)
NG
<§l> <s82>

E_REFLEX(3L) SCCs July 13 1978 E_REFLEX(3L)

e_ofc(x,opt)
7E
INVALID OFC: <x>[; <opt>]

e _ok()
OK

e_perm(x,opt)
7E
USE OF <x> NOT PERMITTED [; <opt>]

e_pf()
PF

e_punct(x,y,opt)
E
INVALID PUNCTUATION; '<x>' SHOULD BE '<y>' [; <opt>]

e rgerr(x,opt)
7E _
RANGE ERROR IN <x>[; <opt>]

e rlbsy(opt)
RL
PROGRAM BUSY[; <opt>]

e _rlovld(opt)
RL
SYSTEM OVLD[; <opt>]

e_ssys(x,opt)
7E
INVALID SUBSYSTEM: <x>[; <opt>]

e_stderr()
NG
ERROR OUTPUT OF PROGRAM MUST BE TO A TERMINAL

e_stadin()

NG
INPUT TO PROGRAM MUST BE FROM A TERMINAL
e_stdout()

NG
NORMAL OUTPUT OF PROGRAM MUST BE TO A TERMINAL
e_syntax(si,s2,....,0)

PROPER FORMAT: <sl1>

<s2>

e uperm(x,y,opt)
7E
<x> RESTRICTED TO <y>[; <opt>]

E_REFLEX(3L) SCCs July 13 1978 E_REFLEX(3L)

The e arb() routine is intended to output reflexive errors of an
arbitrary format as described by the strings pointed to by
s2,83,... It is not intended that this routine be used in 1lieu
of other reflexive routines which satisfy a specific need. Note
that s1 is to be used as an acknowledgement string. That is, two
spaces will be prepended to sl and a newline will be appended to
sl. The string will then be written out before continuing with
the remaining arguments. Following the output of sl1, the routine
will output the following strings on the same line unless & char-
acter count of 75 is exXceeded or an imbedded newline is encoun-
tered. The routine will attempt to break a line between speci-
fied strings or at an imbedded space char. Note that the routine
will place a space between each string.

FILES
LIBRARY
/1lib/1libl.a

DIAGNOSTICS
Reports as apove. Returns a 0 if successful and a -1 in case of
error.

BUGS

E_SAVENAME(3L) SCCs JUNE 22, 1979 E_SAVENAME(3L)

NAME

e_savename - save filename for standard I/0 reporting

SYNOPSIS

e_savename (name, fildes)
char *name;
int fildes;

DESCRIPTION

Save a pointer to a file name for use in generating OM's for
standard I/O0 «calls on the stream associated with the file
descriptor fildes. Normally fildes would be obtained from fileno
(stream). This routine is called automatically Dby e fopen(g) and
e freopen(3). It would be explicitly called by application pro-
grams only if the saved name is inappropriate or if the file
descriptor is opened by some other means.

SEE ALSO
e_stdio(3L)
DIAGNOSTICS
none
BUGS
Only the pointer is saved, not the whole string.
LIBRARY
/1ib/1libl.a

E_SETUP(3L) SCCS July 18, 1979 E_SETUP(3L)

NAME
e_setup - Set up OM (Output Message) generating parameters
SYNOPSIS
#include <errfct.h>
char *e_setname (program name)
char *program name;
char *e_setcode (errcode)
char *errcode;
e_setlvl (almlvl)
int almlivl;
int (e_setprim (prim report_func)) ()
int (*prim_report_func) ();
int (*e_setglb()) ()
e_setrep (repeat_time)
int repeat_time; .
int (*e_settrap (trap_fumction)) ()
int (*trap_function) ();
e_setup (program mame, almivl, repeat_time, prim,
trap_function, errcode)
int prim;
DESCRIPTION

Set parameters to be used by OM-generating functions such as
e syscall(3), e stdio(3). E_setname MUST be used. Program name
points to a string containing the program name as it should be
seen by the field (eg, "SCHEDULER" or "OP:MEAS").

E_setcode sets up a "standard error code" (see sccerr(3)) for the
program. This will be used by e splerr(3) and e form(3). Errcode

should point to a three letter (upper case) string.

E setlvl sets up the alarm level for all OM's, if other than
"minor" is desired. Almlvl should be one of the fcollowing define
sympols: LVLMINOR, LVLMAJOR, LVLCRIT, or LVLNONE.

E setprim sets up the "primitive report function". This is used
to output OM's. If none is set, sccerr(3) is used; if one is
set, it is called with arguments consistent with glberr(g).
e setglb, with a non_zero argument is equivalent to
e setprim(glberr).

E settrap sets up a "trap function", called after an OM is output
{(except with output by e output or e foutput). It is called with
a non_zero argument. If no trap function is set up, none is
called.

(23

E_SETUP(3L) SCCS July 18, 1979 E_SETUP(3L)

Each of these routines returns the previous value of it parame-
ter. E setup performs the functions of all of the above in one
fell swoop. Exception: for the fourth argument (prim) if glb is
equal to one, e setglb is simulated,.if any other non-zero value
is given, a call to e setprim is simulated. Any zero arguments
to e setup cause the corresponding parameter to Dbe unmodified.

LIBRARY
/1ib/libl.a

E_SPLERR(3L) SCCS July 17, 1979 E_SPLERR(3L)

NAME
e_splerr - Generates "special" output message (OM)
SYNOPSIS
#include <errfct.h>
e_splerr (errnum,msg,inhfiag)
char *errnum;
char *msg;
int inhflag;
DESCRIPTION
Bn OM is created to describe a "special” No.2 SCCS error (ie, an
error that needs to Dbe described to the user in a separate OM
Manual entry). The errnum argument specifies the error number of
the OM; it should point to a three-digit numerical string. The
error code of the OM is picked up from the standard error code
for the process, as set by e setcode or e setup(3L).
The msg argument specifies the text field of the OM: it should
point to a null terminated (upper case) string.
The inhflag argument is the standard error system inhibit flag
(See e syscall(3L)). 1In this case only the values ALLERR (output
the OM) or NOERR (just store away the OM) are meaningful.
LIBRARY

/1lib/1libl.a

E_STDIO(3L)

NAME
e_stdio

SYNOPSIS

SCCS June 19, 1979 E_STDIC(3L)

error generating versions of standard I/0 routines

#include <stdio.h>
#include <errfct.h>

char * e_cuserid(s, inhflag)
char *s;
int e_fclose(stream, inhflag)
FILE *stream;
FILE * e_fdopen(fildes, type, inhflag)
int fildes;
char *type;
int e_fflush(stream, inhflag)
FILE *stream;
int e_fgetc(stream, inhflag)
FILE *stream;
char * e_fgets(s, n, stream, inhflag)
char *s;
int n;
FILE *stream;
FILE * e¢_fopen(filename, type, inhflag)
char *filename;
char *type;
int e_fprintf(stream, format, inhflag, argl, arg2,
FILE ¥*stream;
char *format;
int argl;

/* etc. -— NB only 10 args are effective =/
int e_fputc(c, stream, inhflag)
int c¢;

FILE *stream;
int e_fputs(s, stream, inhflag)
int s3
FILE *stream;
int e_fputw(w, stream, inhflag)
int w;
FILE *stream;
int e_fread(ptr, siz, nitems, stream, inhflag)
char *ptr;
int siz;
int nitems;
FILE *stream;
FILE * e_freopen(filename, type, stream, inhflag)
char *filename;
char *type;
FILE *stream;
int e_fscanf(stream, format, inhflag, ptri, ptr2,
FILE *stream;
char *format;
int *ptri;
/* etc. —-- NB only 10 args are effective #/

arglo)

ptr10)

E_STDIO(3L)

int

long

int

int

int

char * e_gets (s,

int

int

SCCS June 19, 197S

e_fseek(stream, offset, ptrname,
FILE *stream;
long offset;
int ptrname;
e_ftell(stream,
FILE *stream;
e_fwrite(ptr, siz, nitems, stream,
char *ptr;
int siz;
int nitems;
FILE *stream;
e_getc(stream,
FILE *stream;
e_getchar(inhflag)
inhflag)

inhflag)

inhflag)

inhflag)

inhflag)

char *s;
e_getw(stream,

FILE *stream;
e_pclose(stream,

FILE *stream;

inhflag)

inhflag)

FILE * e_popen(commnd, type, inhflag)
char *command;
char *type;
int e_printf(format, inhflag, argl, arg2, argl0)
char *format;
int argl;
/= etc. -- NB only 10 args are effective =/
int e_putc(c, stream, inhflag)
int c;
FILE *stream;
int e_putchar(c, inhflag)
int c;
int e_puts(s, inhflag)
int s;
int e_rewind(stream, inhflag)
FILE *stream;
int e_scanf(format, inhflag, ptrl, ptr2, ptrio)

int

int

char *format;

int *ptri;

/* etc. ~~ NB only 10 args are effective =/
e_setbuf(stream, buf, inhflag)

FILE *stream;

char *buf;

e_system(string, inhflag)

char *string;
e_ungetc{(c, stream,
int c;

FILE *stream;

inhflag)

E_STDIO(3L)

E_STDIO(3L) SCCs June 19, 1979 E_STDIO(3L)

DESCRIPTION

These routines are analagous to those described in e syscall(}g).
The corresponding standard I/0 routine = Section 3S - is called
and its return value is in turn returned (like that?). See
e syscall(3L) for details of how errors are processed.

Note that no extra "name" arguments are required as in some
e syscall(}&) routines. Instead the file name passed to e open
or e reopen is remembered and stdin, stdout and stderr are spe-
cial cased. If a file is opened be other means or if you don't
like the saved name, it may be changed by calling e savename(gé).

LIBRARY

/1ib/libl.a

SEE ALSO

e_syscall(3L) and the sections referenced there
e_savename(3L)

DIAGNOSTICS

BUGS

Same as corresponding routines in Section 3S.

Attempts to use e fprintf {and possibly a few others) with a
stream opened for reading will not be detected since the standard
I1/0 routine leaves no trace of such an error.

E printf, e fprintf, e scanf and e fscanf are limited to 10 argu-

ments besides the format, stream, and inhflag arguments.

E SYSCALL(3L) SCCs June 26, 1979

NAME

e_syscall - error generating versions of

SYNOPSIS

#include <errfct.h>

int

int

int

int

int

int

int

int

int

int

int

int

int

int

int

e_access (name, mode, inhflag)
char *name;

int mode;

e_acct(name, inhflag)

char *name;

e_attach(sub, gp, inhflag)
int sub;

int gp;

e_block(sema, inhflag)

int sema;

e_brk(addr, inhflag)

char *addr;

e_chan(gr, inhflag)

int gr;

e_chdir(dirname, inhflag)
char *dirname;

e_chmod (name, mode, inhflag)
char *name;

int mode;

e_chown(name, owner, group, inhflag)
char *name;

int owner;

int group;

e_chroot(dirname, inhflag)
char *dirname;
e_close(fildes, name, inhflag)
int fildes;

e_connect(fd, ch, side, inhflag)
int fd;

int ch;

int side;

e_creat(name, mode, inhflag)
char *name;

int mode;

e_csignal(index, gp, sig, inhflag)
int index;

int gp;

int sig;

e_detach(sub, gp, inhflag)
int sub;

int gp;

e_dismaus (vaddr, inhfliag)
char *vaddr;

e_dup(fildes, name, inhflag)
int fildes;

char *name;

char * e_enabmaus (mausdes, inhflag)

E_SYSCALL(3L)

system call routines

E_SYSCALL(3L) SCCSs June 26, 1979 E_SYSCALL(3L)

int

int

int

int

int

int

int

int

int

int
int

int

int

int

int

int mausdes;

e_errlog(flag, inhflag) /* SC5 only */
int flag;

e_execl(name, arg0, argl , ... 0, inhflag)
char "name;

char *arg0;

e_execle(name, arg0, argl, ... 0, envp, inhflag)
char *name;

char *arg0;

char *envpl[];

e_execlp(name, arg0d, argl, ... 0, inhflag)
char *name;

char *arg0;

e_execv(name, argv, inhflag)

char *name;

char *argv(];

e_execve(mame, argv, envp, inhflag)

char *name;

char *argv[];

char *envp{];

e_execvp(name, argv, inhflag)

char *name;

char *argv[];

e_extract(sub, ch, side, inhflag)

int sub;

int ch;

int side;

e_fentl(fildes, request, argument, name, inhflag)
int fildes;

int request;

int argument;

char *name;

e_fork(inhflag)

e_freemaus (mausdes, inhflag)

int mausdes;

e_fstat(fildes, buf, name, inhflag)

int fildes;

struct stat *buf;

char *name;

e_getmaus (name, mode, inhflag)

char *name;

int mode;

e_gtty(fildes, arg, name, inhflag) /* SC5 only*/
int fildes;

struct SGBUF *arg;

char *name;

e_ioctl(fildes, request, argp, name, inhflag)
char *fildes;

int request;

struct sgttyb *argp;

char *name;

e_join(fd, xd, inhflag)

int fd;

E_SYSCALL(3L) SCCS

int

int

int

long

int

int

int

int
int
int

int

int
int

int

int

int

int

June 26, 1979

int xd;
e_kill(pid, sig, inhflag)
int pid;
int sig;
e_link(namel, name2, inhflag)
char *namel;
char *name2;
e_lock(sema, inhflag)
int sema;
e_lseek(fildes, offset, whence, name,
int fildes;
long offset;
int whence;
char *name;
e_nknod(name, mode, addr, inhflag)
char *name;
int mode;
int addr;
e_mount(special, name, rwflag, inhflag)
char *special;
char *name;
int rwflag;
e_mpx(name, mode, inhflag)
char *name;
int mode;
e_msgdisab(inhflag)
e_msgenab(inhflag)
e_nice(priority, inhflag)
int priority;
e_open(name, mode, inhflag)
char *name;
int mode;
e_p(sema, inhflag)
int sema;
e_pause(inhflag)
e_pipe(fildes, inhflag)
int *fildes;
e_post(sema, inhflag)
int semm;

E_SYSCALL(3L)

inhflag)

e_ptrace(request, pid, addr, data, imhflag)

int request;

int pid;

int addr;

int data;
e_rdsem(sema, inhflag)
int sema;

e_read(fildes, buffer, nbytes, name, inhflag)

int fildes;

char *huffer;

int nbytes;

char *name;

e_recv(buf, size, type, inhflag)
char *buf;

E_SYSCALL(3L) SCCs June 26, 1979

char

int

int

int

int

int

int

int

char

int
long
int
long
long

int

int size;
char *type;
e_recvw(buf, size, type, inhflag)
char *buf;
int size;
char *type;
* ¢_sbrk(imcr, inhflag)
int *incr;
e_send(buf, size, topid, type, inhflag)
char *buf;
int size;
int topid;
int type;
e_sendw(buf, size, topid, type, inhflag)
char *buf;
int size;
int topid;
int type;
e_setgid(gid, inhflag)
int gid;
e_setpgrp(pid, inhflag)
int pid;
e_setsem(sema, value, imhflag)
int sema;
int value;
e_setuid(uid, inhflag)
int uid;
(*e_signal(sig, func, inhflag)) ()
int sig;
int (*fumc) ();
e_stat(mame, buf, inhflag)
char *name;
struct stat *buf;
e_stime(tp, inhflag)
long *tp;
e_stty(fildes, arg, name, inhflag)
int fildes;
struct SGBUF *arg;
char *name;
* ¢_switmaus (mausdes, vaddr, inhflag)
int mausdes;
char *vaddr;
e_sync(imhflag)
e_tell(fildes, name, inhflag)
int fildes;
char *name;
e_test(sema, inhflag)
int sema;
e_time(tloc, inhflag)
long *tloc;
e_times(buffer, inhflag)
struct tbuffer *buffer;
e_tlock(sema, inhflag)

E_SYSCALL(3L)

E_SYSCALL(3L) SCCS June 26, 1979 E_SYSCALL(3L)

int sem;
daddr_t e_ulimit(newlimit, inhflag)
daddr_t newlimit;
int e_umask(mask, inhflag)
int mask;
int e_umount(special, inhflag)
char *special;
int e_unlink(name, inhflag)
char *name;
int e_unlock(semm, inhflag)
int sema;
int e_utime(file, times, inhflag)
char *file;
struct utimbuf times;
int e_v(sema, inhflag)
int sema;
int e_wait(wait, status, inhflag)
int wait;
int *status;
int e_write(fildes, buffer, nbytes, name, inhflag)
int fildes;
char *buffer;
int nbytes;
char *name;
int e_xread(fildes, buffer, nbytes, name, inhflag)
int fildes;
char *buffer;
int nbytes;
char *name;

DESCRIPTION
Each routine calls the corresponding system call routine in Sec-

tion 2, and returns the same value returned by the system call.
If an error is detected:

1) If the error is overload related (eg, inability to open a
file because the incde table is full) and if the program has
previously called e setrep (or e setup(3L) with appropriate
arguments - see e setup(3L)), then the system call is re-
peated for the time specified in the e setrep call or until
the error clears.

2) If another type of error is detected or if the overload er-
ror 1is not resolved, then an SCCS output message (OM) is
formatted and stored away.

3) If an OM is created and if the "error class" (as determined
by the errno variable - see Intro(2)) is not "inhibited",
then the OM is outputted by means of sccerr or glberr. The
inhibiting is controlled by the "inhflag" argument. 1Its
value may be any of the following defines (<errfct.g>) or
the logical ORing of two or more of them:

E_SYSCALL(3L)

4)

SCCs June 26, 1878

E_SYSCALL(3L)

Define Error Class Inhibited Errno
INHPERM Permission (su or owner) EPERM
INHNOENT File not found ENOENT
INHINTR System call interrupted EINTR
INHNXIO Non existing special file ENXIO
INHNOEXEL No execute permission ENCEXEC
INHAGAIN Process table overflow EAGAIN
INHACCES File access permission EACCESS
INENOTDIR File should be a directory ENOTDIR
INHNFILE File or inode table overflow ENFILE
INHFBIG File too big EFBIG
INHZBIG Argument list too big EZBIG
INHNCSPC Out of disk space ENOSPC
NOERR Inhibit for all -

If no inhibiting is desired, use ALLERR for

flag.

the inhibit

Numerous options are available - see e setup(3L).

The routine e setname(3L) or e setup(3L) must be called pri-
or to these routines to set up the program name field of the
OM.

OM's stored away may be modified and then output - see
e new(3L) and e output(3L).

Note that several routines have an extra "name" argument. This
should be a pointer to the name of the file being operated upon
or zero if the name is not known.

LIBRARY
/1ib/libl.a

SEE ALSO
e_stdio(3L) e_setup(3L) e_new(3L) e_output(3L) intro(2)

DIAGNOSTICS
Same as corresponding routines in Section 2.

FGID(3L) SCCs Jun 21 1977 FGID(3L)

NAME
fgid -- find group id
SYNOPSIS
fgid(group)
char *group;
DESCRIPTION
Fgid looks in the /etc/group file for a given group name and re-
turns the numerical group id if found, or,
-1 - if it cannot find group
-2 - if it cannot open /etc/group
The standard I/O subroutine getgrmam(3) is used which uses mml-
loc(3)
LIBRARY
/1lib/libl.a
FILES
/etc/group
SEE ALSO
fgname(3), getgrnam(3)
DIAGNOSTICS

BUGS

(%Y

ENV (3L) sccs ENV (3L)

NAME
isdemand,issched,isspinoff,isbackgrd - execution environment

SYNOPSIS
isdemand ()

issched ()
isspinoff ()
isbackgrd()

DESCRIPTION
All routines reference the environment variable EX MODE to re-
trieve the execution mode. In all cases, the returned value is
either 0 to represent a 'no' condition or 1 to represent a 'yes'
condition.

isdemand indicates if execution initiated from a terminal.

issched indicates if execution initiated by the
SCCS Scheduler.

isspinoff indicates if background execution initiated from a
terminal.

isbackgrd indicates if execution is either of the
scheduled or spinoff case.

LIBRARY
/lib/libl.a

FGNAME(3L) SCCS Jun 3 1875 FGNAME(3L)

NAME
fgname -- find group name
SYNOPS IS
char *fgname(gid)
int gid;
DESCRIPTION
fgname accepts gid, an integer group id value, searches
/etc/group file for the corresponding group name and returns:
-1 - if the group id is not found.
-2 - if fgname had trouble opening /etc/group file.
<string pointer to group name> - if the group id
is found.
getgrgrid(3) is used which uses mallec(3)
LIBRARY
/lib/libl.a
FILES
/etc/group
SEE ALSO
fgid(3), getgrgrid(3)
DIAGNOSTICS
BUGS

FMTERR(3L)

NAME

SCCs Jan 28 1976 FMTERR(3L)

fmterr —-- SCC error formatting routine

SYNOPSIS

fmterr(fdes,fmt,argl,arg2,...,argn)

int fdes;

char *fmt,*argl,*arg2,...,*argn;

DESCRIPTION

This subroutine is a special string formatter used by the error

handling

routines, glberr and sccerr, to print the various ele-

ments of an SCC error message.

Fmterr has the following arguments:

fdes

h
g
ct

is either the file descriptor of the device on which
the message is to be printed. For sccerr, fdes equals
2; for glberr, fdes is the file descriptor for the
system teletypewriter or the negative of the process id
of thte system spooler.)

is a special format string which controls the printing
of the error message. Default characters from this
string are simply outputted to the specified device.
The following characters have special meanings.

\O terminate output.

\1 go to the next argument and output one character.
W2 output one character from the current argument.
\3 output the next argument as a string.

\4 append an End of Msg (031) char, to the msg.

argl,arg2,...,argn

LIBRARY

a variable number of arguments, each being a pointer to
a character string.

1ib/1libil.a

SEE ALSO

glberr(3), sccerr(3)

DIAGNOSTICS

FPID(3L) SCCs Jun 27, 1979 _ FPID(3L)

NAME
fpid -- get process id
SYNOPSIS
int fpid(line)
char *line;
DESCRIPTION
FUNCTION:
~ The fpid subroutine searches the /etc/utmp file for the
process line name specified by the argument line. The
routine returns the process id (pid) of the line if the
search was successful.
ARGUMENTS:
line -- a pointer to a character string containing the
process line name.
RETURNS:
pid -- process id of the given line name
0 -~ found the line name, but process is probably dead
-1 ~-- given line name could not be found
-2 -- gystem problem; check errno for exact system error
FILES
/etc/utmp -—-- open, read, and close it.
LIBRARY

/lib/libl.a

[

FREESORT(3L) SCCS Jan 16, 1978 FREESORT(3L)

NAME
freesort -- variable length record sort

fixedsort -- fixed length record sort

SYNOPSIS
freesort (argc, argv, comp)
fixedsort (argec, argv, comp)
int arge;
char **argv;

int (*comp) (ppl,pp2);

char **ppl, *%pp2;

extern char DELIM = ’\n’; /* for freesort() omly */
extern char RCDSIZ = 0; /* for fixedsort() omnly */
extern int cmpflg;

extern struct {
int e_code;
char e_msg{50];
} errsort;

DESCRIPTION

freesort() and fixedsort() are provided as alternatives to the
standard UNIX sort for those instances that the standard compari-
son routine is not appropriate. These routines use standard I/0.
For "large" sorting jobs, freesort() and fixedsort() may use up
to 10 streams above and bevond that of the routine that calls
them; if 10 file descriptors are not available, then the
subroutine will fail.

The comparison routine should return a value greater than 0 when
the record corresponding to the first argument is "greater than"
(i.e. should precede in the output) the record corresponding to
the second argument. Analcgously, & negative value should be re-
turn by the comparison routine when the first record is "less
than" (i.e. should follow in the output) the second record. When
the compariscn routine returns the value 0, it means that the
routine does not care which is first.

By default, the algorithm is not stable (i.e. it does not
preserve the order of records with identical sort codes.
However, options are available to either preserve or reverse ori-
ginal order which are rather efficient for mecst applications.

freesort() and fixedsort() work by allocating almost all of the
available memory, repeatedly filling that core with records which
they sort and dump to disc, and then they merge the disc files
(if necessary). Therefore, these subroutines may not work well
unless lots of unallocated memeory is available to this routine.
However, with separated I&D space, it should be very seldom when
the calling routine takes up so much of the available memory that
these routines cannot run efficiently compared to the costs of

FREESORT(3L) SCCs Jan 16, 1978 FREESORT(3L)

executing a smaller main which executes freesort() or fixed-
sort().

Upon exiting, even in the case of an error, all streams are
closed and the allocated memory is returned to the system.
freesort() and fixedsort{() can be called repeatedly from the same
routine as a part of a larger algorithm (the old versions could
not). freesort() and fixedsort() catch interrupts, hangups, and
quits in order to clean up the temporary files which they make.
They return to main the value 6 after they have cleaned up in
order to give the main routine the same opportunity to clean up.
In all cases, when freesort() and fixedsort() return to main, the
process is in a mode to ignore interrupts, hangups and quits;
thus the calling routine may wish to reset those signals.

freesort() tosses trivial records (those which only contain the
delimiter). For each input file which does not end with a delim-
iter, freesort() behaves as if a delimiter were added to the in-
put file. However, if fixedsort() encounters an odd part of a
record at the end of any input file, that partial record is dis-
carded.

The first element of argv is ignored. The remaining argument
strings will have the following interpretation:

-m merge only. All input files are assumed to De
sorted.

-u output records with unique sort keys only.

-0 the next argument is taken to be the output file.

If none are given or the output file is "-", then
stdout is assumed.

=s<char> or -s<size>
For freesort{(), <char> is the delimiter. The del-
imiter defaults to '\n'. For fixedsort(), <size>
is the record size. It defaults to zero, which if
left there, causes an error.

-c<value> The external variable, cmpflg, which may be used as
a flag by the comparison routine is set to the
value of the ascii string, <value>.

-t<threshold> After partitioning the records into sets of identi-
cal sort keys, only the sets with <threshold> or
more records are output.

-l<size> For freesort(), the 1limit of the record size.
Records which exceed this size are truncated to
<size> bytes (including the delimiter).

“T<string> For freesort() when a record is truncated, <string>

FREESORT(3L) SCCs Jan 16, 1978 FREESORT(3L)

will be placed at the end of the record. If the
"-1<size>" is not specified, then freesort()
chooses the maximum size so that at least three
records can fit into the allocated data space. a3
neither the "-T" or "-1" options are used, then
freesort() will return abnormally if it encounters
a record which is toc large to handle.

<filename> Arguments which do not begin with "-" or follow an
"-o" argument are assumed to be input files. No
more than thirty input files are allowed. If there
are no input file arguments, then stdin is assumed.

-d For freesort(), a delimiter will be placed as the
first character in the output stream so that all
records are "surrounded" by delimiters.

-P In the output, preserve the order of the records on
input if they have identical sort codes.

R In the output, reverse the order of the records on
input if they have identical sort codes.

LIBRARY
/1lib/libl.a

DIAGNOSTICS

These routines return 0 for normal execution. A variety of non-
zero returns occur when the subroutine does not terminate normal-
ly. When that occurs, the return value will also be written 'in
errsort.e code and an error message will Dbe written in
errsort.e msg. The error message may help the calling routine
construct an error message for the user. No message is written
when the return value is 0 (normal) or 6 {(interrruption by inter-
rupt, hangup or quit signal). The structure of errsort, named
ERRSORT, is found in "/compool/sorterr.h".

FUID(3L) SCCs Jun 23 1877 FUID(3L)

NAME
fuid -- find user id in passwd file
SYNOPSIS
fuid(user)
char *user;
DESCRIPTION
Fuid looks in the /etc/passwd file for a given user name and
turns the numerical user id if found or,
-1 - if it cannot find user
-2 - if it cannot open /etc/passwd
getpwnam(3) is called, which calls mallec(3).
LIBRARY
/1lib/libl.a
FILES
/etc/passwd
SEE ALSO
getpw(3), getpwnam(3)
DIAGNOSTICS

BUGS

(=Y

re-

GEN_LIST(3L) SCCS Oct 8, 1978 GEN_LIST(3L)

NAME
gen list = extract next generic-issue message from issue file

SYNOPSIS
#include <issfil.h>

char *gen_list(fd)
int fd;

DESCRIPTION

Gen list should be used by those routines that need to generate a
list of supported generics for a particular office type. This
subroutine extracts the next generic record and its associated
issue records (generic-issue message) from the indicated issue
file and returns the starting address of the generic record to
the calling routine. 1If the next generic-issue message can not
be found or an EOF i1s detected, then the value GLR_NME 1s re-
turned to the calling routine. If an error is detected, a nega-
tive value is returned as discussed below.

The user should note that the generic record is first copied to a
static global character buffer and terminated with a null. The
address of this static global character buffer is then returned
to the calling routine. Data should be extracted from the record
via the structure members defined in the header file issfil.h,
however, prior to making a call to gen name(3L), get gen(3L),
get iss(3L), or iss 1list(3L). These subroutines also use the
same static global character buffer and a call to one of them
would probably destroy the generic record extracted by this
subroutine.

The argument fd is a file descriptor associated with an opened
issue file.

FILES
/usr/include/issfil.h which specifies the structure of a generic
record and an issue record and defines valid function codes and
return codes for this subroutine.

LIBRARY
/1ib/1ibl.a

SEE ALSO
get_gen(3L), get_iss(3L), gen_name(3L), iss_list(3L),
e_output(3L)

DIAGNOSTICS
If this subroutine detects an error, an Output Message (OM) is
generated Dby one of the standard OM generation subroutines, but
not printed. The wvalue GLR_ERR is returned to the calling
routine. If the calling routine wishes to print the stored OM,
it may call one of the standard OM outputting subroutines, such
as e output(3L).

GEN_NAME(3L) Ssccs Oct 8, 1979 . GEN_NAME(3L)

NAME

gen _name - extract indicated generic name from issue file

SYNOPSIS

#include <issfil.h>

gen_name (func, ofcnam, genid, name)
int funmc;

char *ofcnam;

char *genid;

char *name;

DESCRIPTION

Gen name opens an appropriate issue file that is pertinent to the
specified office. It then searches this file to see if a
generic-issue message corresponding to the specified generic 1ID
exists. If the desired generic-issue message does exist, then
either the official generic name or generic slang name is ex-
tracted from the generic record and copied to name and the value
GNR_EF is returned to the calling routine. If the desired
generic-issue message does not exist, the value GNR_ENF is re-
turned. If an error is detected, a negative value is returned as
discussed below.

The user should note that the generic record is temporarily
copied to the same static global character buffer that is used by
gen 1list(3L), get gen(3L), get iss(3L), and iss list(3L). Thus,
the data record extracted by one of these subroutines would be
destroyed by the call to gen name.

The argument func identifies which generic name is to be extract-
ed from the generic record. Valid values for this argument are:

GNF _GNAM Extract generic name.
GNF_SLANG Extract generic slang name.

The argument ofcnam is a null-terminated string that contains the
office name.

The argument genid is a null-terminated string containing the
generic ID that has Dbeen extracted from the oparm file in the
ofcnam directory.

The argument name is the address of a character array to which
the requested generic name is to be copied. The generic name
will be null-terminated. Gen name assumes that this array has a
declared size that 1is equal to IF_GNAMSZ + 1 or IF_SLGSZ + 1,
depending upon which value of func has been specified.

GEN_NAME(3L) SCCs Oct 8, 1979 GEN_NAME(3L)

FILES
/usr/include/issfil.h which specifies the structure of a generic

record and defines valid function codes and return codes for this
subroutine.

LIBRARY
/1lib/libl.a

SEE ALSO
get_gen(3L), get_iss(3L), gen_list(3L), iss_1ist(3L),
e_output(3L)

DIAGNOSTICS
If this subroutine detects an error, an Output Message (OM) is
generated by one of the standard OM generation subroutines, but
not printed. The value GNR_ERR is returned to the calling
routine. If the calling routine wishes to print the stored ON,
it may call one of the standard OM ocutputting subroutines, such

as e output(3L).
BUGS

GEN_RNG(3L) ScCsS Aug 29, 1979 GEN_RNG(3L)

NAME

gen_rng - locate specified entry in generic range data file

SYNOPSIS

#include <gen_rng.h>

char *gen_rng(ofcnam, feature,featfun)
char *ofcnam;

char *feature;

char *featfun;

DESCRIPTION

FILES

Gen rng searches an appropriate generic range file to see if an
entry corresponding to the specified feature and featfun exists.
If the entry does not exist, the value GRR_ENF is returned. If
the requested entry does exist, then the starting address of the
entry is returned to the calling routine. If an error is detect-
ed, a negative value is returned as discussed below.

The user should note that the generic range record is terminated
by a null and data should be extracted from the record via the
structure members defined in the header file, gen rng.h.

The argument ofcnam is a null-terminated string that identifies
the office for which the feature is being performed. The office
name steers this subroutine to a particular /type?? directory
wherein resides the generic range file that is to be used.

The argument feature is a null-terminated string that identifies
which feature is to be performed. Examples are rcb for RC:BUILD
and sca for Scheduled Common Analysis.

The argument featfun is a null-terminated string that identifies
which one of the feature's functions is to be performed. For ex-
ample, the feature sca has several functions, such as spa for
Switched Path Analysis, eca for External Circuit Analysis, and
nca for Network Controller Analysis. If a feature has only one
function, then this argument may contain a null string.

/usr/include/gen rng.h which specifies the structure of a generic
range file entry.

LIBRARY

/1lib/libl.a

SEE ALSO

e output(3L)

DIAGNOSTICS

If this subroutine detects an error, an Output Message (OM) is
generated by one of the standard OM generation subroutines, but
not printed. The value GRR_ERR 1is returned to the «calling

GEN_RNG(3L) SCCs Aug 29, 1979 GEN_RNG(3L)

routine. If the calling routine wishes to print the stored OM,
it may call one of the standard OM outputting subroutines, such

as e output(3L).
BUGS

GET_GEN(3L) SCCs Oct 8, 1979 GET_GEN(3L)

NAME

get_gen - extract specified generic—-issue message from issue
file

SYNOPSIS

#include <issfil.h>

char *get_gen(func, fd, gen)
int func;

int fd;

char *gen;

DESCRIPTION

Get gen extracts the specified generic record and its associated
issue records (generic-issue message) from the indicated issue
file and returns the starting address of the dJeneric record to
the calling routine. If the desired generic-issue message does
not exist, then the value GGR_ENF is returned. If an error is
detected, a negative value is returned as discussed below.

The user should note that the generic record is first copied to a
static global character buffer and terminated with a null. The
address of this static global character buffer is then returned
to the calling routine. Data should be extracted from the record
via the structure members defined in the header file issfil.h,
however, prior to making a call to gen 1list(3L), gen name(3L),
get iss(3L), or iss list(3L). These subroutines also use the
same static global character buffer and a call to one of them
would probably destroy the generic record extracted by this
subroutine.

The argument func identifies whether the generic name, generic
slang name, or generic ID is to be used as the generic search
key. Valid values for this argument are:

GGF_GNAM Use generic name as the generic search key.

GGF _SLANG Use generic slang name as the generic search key.

GGF_GID Use generic ID as the generic search key.

The argument f£fd is a file descriptor associated with an opened
issue file.

The argument gen is a null-terminated string containing the gen-
eric search key. If the value of func is GGF_GNAM, GGF_SLANG, or
GGF_GID, then this key should contain the official generic name,
generic slang name, or generic ID, respectively.

GET_GEN(3L) SCCS Oct 8, 1979 GET_GEN(3L)

FILES
/usr/include/issfil.h which specifies the structure of a generic
record and defines valid function codes and return codes for this
subroutine.

LIBRARY
/1ib/libi.a

SEE ALSO
get_iss(3L), gen_list(3L), gen _name(3L), iss_list(3L),
e_output(3L)

DIAGNOSTICS
If this subroutine detects an error, an Output Message (OM) is
generated by one of the standard OM generation subroutines, but
not printed. The value GGR_ERR is returned to the calling
routine. If the calling routine wishes to print the stored OM,
it may call one of the standard OM outputting subroutines, such

as e output(3L).
BUGS

GET_ISS(3L) SCCS Oct 8, 1979 : GET_ISS(3L)

NAME

get_iss = locate specified issue record in issue data file

SYNOPSIS

#include <issfil.h>

char *get_iss(iss)
char *iss;

DESCRIPTION

FILES

Get iss locates the specified issue record in the generic-issue
message that has been extracted from the issue file by a previous
call to the library subroutine, get gen(gé). If the desired is-
sue record does exist, then the starting address of the issue
record is returned to the calling routine. If the desired issue
record does not exist, then the value GIR_ENF is returned.

The user should note that the issue record is first copied to a
static global character buffer and terminated with a null. The
address of this static global character buffer is then returned
to the calling routine. Data should be extracted from the record
via the structure members defined in the header file issfil.n,
however, prior to making a call to gen 1ist(3L), gen name(3L),
get gen(3L), or iss 1ist(3L). These subroutines also use the
same static global character buffer and a call to one of them
would probably destroy the issue record extracted Dby this
subroutine.

The argument iss is a null-terminated string that identifies the
desired issue and point issue. It must be of the form ii.pp
where ii identifies the issue, such as 3, 6a, or 10c; the "." is
a delimiter character, and pp identifies the point issue, such 1,
2, or 12.

/usr/include/issfil.h which specifies the structure of an issue
record and defines valid return codes for this subroutine.

LIBRARY

/lib/1libl.a

SEE ALSO

get _gen(3L), gen_list(3L), gen_name(3L), iss_list(3L)

DIAGNOSTICS

BUGS

GETDFPRM(3L) SCCS December 17, 1980 GETDFPRM(3L)

NAME
getdfprm, setdfprm - default SCCS parameters (office, etc.)
SYNOPISIS
char *getdfprm(name)
char *name;
char *setdfprm(name, value)
char *name;
char *value;
DESCRIPTION
getdfprm and setdfprm search the .dfltparm file in the current
directory for a line of the form
name=oldvalue
If such a line is found, the string oldvalue is returned.
setdfprm, in addition, does the following:
1) If such a line is found, oldvalue is replaced by value,
2) If such a line is not found, the line
name=value
is added to the file and value is returned,
3) If the .dfltparm file does not exist, it is created,
and the same line as in 2) is put in it.
NOTES
Lib3 is used by setdfprm.
The string returned by getdfprm or setdfprm is distroyed by
another call to getdfprm or setdfprm.
FILES
.dfltparm
.dfltparm<pid> temporary file
/usr/include/aparam.h has the following defines:
#define DFLTPARM ".dfltparm"
#define DFLTOFC "QFFICE"
DIAGNOSTICS

getdfprm returns NULL if a default line for name is not found.
setdfprm returns NULL if the length of value is greater than MAX-
VALUE (currently 20). NULL is also returned if an open error (or
link error, in the case of setdfprm) is encountered, in which
case errno is set, and an "e " error message is stored, that can
be output by e output(3E)}. An open error indication from
getdfpram generally should be ignored, since this just means that

GETDFPRM(3L) SCCs December 17, 1980 GETDFPRM(3L)

the .dfltparm doesn't exist yet.

SEE ALSO
getenv(3C), updofc(3E), lopen(3E)

LIBRARY
/1ib/1libi.a

GETDS(3L) SCCS Apr 11, 1980 GETDS(3L)

NAME
getds -- process requests for data communications equipment

SYNOPS1S
#include <dial.h>

struct dntbl *getds(baudrate, WATS_or_not, ans_mode_term)
char *baudrate;
short WATS_or_not, ans_mode_term;

DESCRIPTICON
The purpose of this subroutine is to process all requests for
data communications equipment . Given the desired baudrate and
whether or not a WATS line is needed, this subroutine 1locates a
free data set of the requested characteristics, allocates it to
the requestor and indicates certain other characteristics about
that data set (such as the associated multiplexor line and dnil

).

It is the responsibility of the user to open and c¢lose the ap-
propriate multiplexor line .

The requesting process is told to ingore the SIGPWR signal so
that a pericdic check routine may send that signal in order to
check for the existence of the process.

Arguments:

baudrate -- "110","300", or "1200"
WATS_or_not -— 1 if WATS is needed, O otherwise
ans_mode_term -- 1 if calling terminal is answer-mode only

Return values:

It returns a pointer to a structure like dntbl (/usr/include/dial.h)
which specifies the characteristics of the allocated equipment.

Errors are indicated as follows :
=il No carrier, busy, Or no answer.
-2 All equipment in use.
=g Bad speed specification.
-4 Bad telephone number.
&5 Ioctl failure.
=z Bad equipment resource table.
=7/ No equipment exists - not specifyed in

equipment resource table.
NOTE :
Users must release the equipment with a call to releaseds(3L).

FILES
/usr/include/dial.nh /etc/d_dntable

GETDS(3L) SCCS Apr 11, 1980 GETDS(3L)

LIBRARY
/lib/libl.a

SEE ALSO
releaseds(3L), dial(3L)

GETFLD(3L) SCCs April 14 1979 GETFLD(3L)

NAME

getfld -- locate a specified field within a specified 1line of
ASCII data

SYNOPSIS
#include <gtmhdr.h>

getfld(line,field, inbuf)
int line;

int field;

struct GMBUF *inbuf;

DESCRIPTION

Getfld breaks a specified line of input data into its respective
fields, starting with field 0. Field separation characters are
one or more tabs and/or blanks, a newline, an octal 212, or a
null byte. The address of the requested field is returned in the
structure variable, gm fptr, and the value returned by getfld is
the 1length of the field, in bytes. If an error is detected, a
negative value is returned as discussed below.

The ASCII data buffer, which is a structure of type GMBUF, is de-
clared and allocated by the calling routine. Before calling this
subroutine, the calling routine must first fill the ASCII data
buffer via the subroutine gtmsg(3L) or some other routine which
performs a similar function.

The argument line is the number of the line in which the request-
ed field is located. The range of values for line are:

0 <= line < GM_MAX_LNS

The argument field is the number of the field that is to be lo-
cated. The range of values for field are:

0 <= field < max. fields for line

The argument inbuf is the address of a data buffer whose format
is:

struct GMBUF
{ int gm_fd;
int gm_len;
int gm_delim;
int gm_lncnt;
int gm_nchar;
char =gm_lptr[GM_MAX_LNS];
char xgm_fptr;
char =*gm_ bufp;
char =gm_bufe;
char gm_buf [GM_BUFSIZ + 2];
}i

where

