PPGMDOT(3L) SCCs October 22, 1980 PPGMDOT(3L)

NAME
ppomdot -~ get mdot and field pointer buffer address

SYNOPSIS
char **ppgmdot ()

DESCRIPTION
Ppgmdot (3L) will return the address of the buffer (which was set
by the 1last ppsmdot). If ppsmdot had not been called prior to
ppgmdot, then ppgmdot will return a zero.
Ppsmdot (3L) is used to tell the pattern matcher (ppmatch(3L)) the
location of the Dbuffer to be used to store the pointer values
which are set by the mdot, deffld, startfld and endfld Dbuilt-in
patterns. If ppsmiot is never called or if the value of the
ppsmdot argument is *(int *) 0, then mdot, deffld,
startfld and endfld primitives are ignored by the matcher.
Ppmdotsiz(3L) can be used to optain the size of the buffer whose
address is obtained by ppgmdot().

SEE ALSO
ppmatch(3L), ppsmdot(3L), ppmdotsiz(3L), pattern(5L)

DIAGNOSTICS
Ppsmdot and ppgmdot produce no diagnostics, and they never change
the value of pperrno.

BUGS

Ppsmdot and ppgmdot are very simple assembly language routines
which are a part of the ppmatch(3L) subroutine in the pattern 1li-
prary. They do not use e¢sv(2) and cret(2) so adb(1) will not
show any auto variables for them.

PPGVDFLT(3L) SCCS October 22, 1980 PPGVDFLT(3L)

NAME
ppgvdflt - get address of pattern variable default value
SYNOPSIS
#include <ppsubs.h> /* pattern definitions and struct =/
char ‘pf)gitd;faul t(viptr,index)
PPATY1 *viptr; /* pointer to the variable information =x/
int index; /* var info struct index =/
DESCRIPTION
This subroutine returns a pointer to the <index> variable default
found in the variable information pointed to by viptr.
SEE ALSO
pattern{sL)
DIAGNOSTICS

ppgvdflt() produces no diagnostics.

PPGVIHDR(3L) SCCs October 22, 1980 PPGVIHDR(3L)

NAME
ppgvindr - get address of pattern variable info header
SYNOPSIS
#include <ppsubs.h> /* pattern definitions and struct =/
struct PPVIHEADER *ppgviheader(viptr)
PPATVI *viptr; /* pointer to the variable information =/
DESCRIPTION
This subroutine returns a pointer to the variable information
header found in the variable information pointed to by viptr.
SEE ALSO
pattern(sL)
DIAGNOSTICS

ppgvihdr() produces no diagnostics.

PPGVINFO(3L) SCCs October 22, 1980 PPGVINFO(3L)

NAME
ppgvinfo - get address of info on pattern variable
SYNCPS1S
#include <ppsubs.h> /* pattern definitions and struct =/
struct PPVINFO *ppgvinfo(viptr, index)
PPATVI *viptr; /* pointer to the variable information =/
int index; /* var info struct index =/
DESCRIPTION
This subroutine returns a pointer to the <index> variable infor-
mation structure found in the variable information pointed to by
viptr.
SEE ALSO
pattern(sL)
DIAGNOSTICS

ppgvinfo() produces no diagnostics.

PPGVNAME(3L) SCCs October 22, 1980 PPGVNAME(3L)

NAME
ppgvname - get address of pattern variable name
SYNOPSIS
#include <ppsubs.h> /* pattern definitions and struct =/
int *ppgvname(viptr,index)
PPATVI *viptr; /* pointer to the variable information x/
int index; /* var info struct index =/
DESCRIPTION
This subroutine returns a pointer to the <index> variable name
found in the variable information pointed to by viptr.
SEE ALSO
pattern(5L)
DIAGNOSTICS

ppgvname () produces no diagnostics.

PPGVOCCUR(3L) SCCs October 22, 1980 PPGVOCCUR(3L)

NAME
ppgvoccur = get address of pattern variable occurrance
SYNOPS1IS
#include <ppsubs.h> /* pattern definitions and struct =/
struct PPYOCCUR *ppgvoccur{viptr, index)
PPATVI *viptr; /* pointer to the variable information =/
int index; /* var info struct index =/
DESCRIPTION
This subroutine returns a pointer to the <index> variable occu-
rance structure found in the variabple information pcinted to by
viptr.
SEE ALSO
pattern(sL)
DIAGNOSTICS

ppgvoccur () produces no diagnostics.

PPHDRSIZ(3L) SCCs November 3, 1980 PPHDRSIZ(3L)

NAME
pphdrsiz - return size of pattern header

SYNOPS1S
#include <ppsubs.h>
unsigned pphdrsiz()

DESCRIPTION]
Pphdrsiz() is a macro defined in <ppsubs.h> and always returns
the size (in bytes) of the pattern file header
(sizeof(struct PPHEAD)) which is the same for any pattern file.

SEE ALSO

pattern(5L)

PPHDRTELL (3L) SCCS November 3, 1980 PPHDRTELL(3L)

NAME
pphdrtell - return tell value for pattern header

SYNOPS1S
#include <ppsubs.h>
long pphdrtell()

DESCRIPTION
Pphdrtell() is a macro defined in <ppsubs.h> and always returns
the tell wvalue for the start of the pattern file header (OL)
which is the same for any pattern file. The tell wvalue can be
used by lseek(2) or fseek(3).

SEE ALSO

lseek(2), fseek(3), pattern(5L)

(o

PPHEAD(3L) SCCs October 22, 1980 PPHEAD(3L)

NAME
pphead - external pattern file header buffer

SYNOPS1S 5
#include <ppsubs.h> /* pattern definitions and struct =/
struct PPHEAD pphead;

DESCRIPTION
This is the pattern library pattern header structure. This
structure is used by ppgetpat(3L) and ppsccsgp(3L) so that header
information about the pattern which is returned is not lost.

SEE ALSO

ppfgetpat(3L), ppgetpat(3L), ppsccsgp(3L), pattern(5L)

PPMAKEPAT(3L)

SCCs October 22, 1980 PPMAKEPAT(3L)

NAME
ppmakepat - make pattern from definition
SYNOPSIS
#include <ppsubs.h> /* pattern definitions and struct =/
int ppsleep; /* sleep time between fork trys =/
int pptryagain; /* how many fork() tries =/
int pperrno; /* pattern subs error depository =/
int errno; /* system I/O error depository =/
int ppmakepat(patname,type,dirso,flags,def0,...,(char *) NULL)
char *patname; /* name of the pattern =/
int type; /* pattern format type =/
PPATDIR *dirso; /* pattern directory search order =/
unsigned flags; /* ppmkpat program flags; +t =/
char *defo0; /* first definition string pointer =/
DESCRIPTION
This is the pattern library subroutine which will take a pattern

definition and make a pattern with arguments as follows:

patname

type

dirso

flags

This points to the name of the pattern to De created.
This may be a full pathname (e.g., "/typeOi/pat/ex01"),
but should not include the ".p"™ or ".o" ending.

This describes the type (standard, object, etc.) of pat-
tern to Dbe created. One of the defined symbols in
/usr/include/ppsubs.h should be used. For example
PPSTDFRMT for a standard format type pattern.

This describes the directory search order to be used when
looking for predefined patterns in the definition. How
to specify dirso is described in ppdefdso(3L). If the
default search order (as described in ppdftdso(3L)) is
desired, then use (PPATDIR *) NULL for the value of dir-
sSO.

This variable allows the use of one or more compiler op-
tions for ppmkpat(1L). The following options are avail-
able:

PPTRANFLAG = +t; translate lowercase to uppercase
PPRESTRICT = +r; restrict some built-in patterns
PPNOCPPFLAG = -p; no C compiler prepass
PPONLYPPFLAG = +p; only C compiler prepass

PPIPOKFLAG = +ipok; output IP and OK acknowledgments

If more than one opticn is desired, then bit-or them to-
gether {e.g., PPTRANFLAG | PPRESTRICT will implement both
the +t and +r ppmkpat(lL) options). If no options are
desired, then use & 0 or NULL value for flags. The
ppsubs .h header file should be consulted for additional

PPMAKEPAT(3L)

SCCS October 22, 1980 PPMAKEPAT(3L)

options which may exist but are not described above.

def0 The definition may be one or more NULL terminated strings
which are given as arguments after the flags argument.
The last argument must always be a (char *) NULL. The
pattern compiler (ppmkpat(1D)) is fork() and execve()
with its input being each of the definitions strings
given in the order they occur in the argument list.

SEE ALSO

ppsleep(3L), pptryagain(3L), pperrno(3L), intro(2), pattern(5L)

DIAGNOSTICS

ppmakepat () returns a NULL value when an error occurs, and sets
the value of the external variable pperrno to one of the follow-
ing values (defined in <ppsubs.h>):

PPSYNTAX

PPSYSERR

The pattern definition given has one or more syntax
errors. This was determined by the pattern com-
piler (ppmkpat(1L)), and the pattern compiler will
already have sent error messages to standard out-
put.

A system call error occurred (usually no memory).
Check the wvalue of the external variable errno.
The pattern was not read in.

PPMATCH(3L) SCCS October 21, 1880 PPMATCH(3L)

NAME
ppmatch - pattern matcher
SYNOPS1S
char *ppcursor;
char *ppdot;
int ppmatch(patptr,progarg)
PPAT =xpatptr;
PPROGARG =*progarg;
DESCRIPTION

Ppmatch and match provide two ways to call the common pattern
package pattern matcher. In general a pattern matcher takes a
pattern and one (or more) strings and determines if the pattern
matches the string(s). The common pattern package pattern match-
er preforms this function and several other functions to include:

1) Pattern matching on one or more strings given in the progarg
array as determined by the switch built-in pattern.

2) Return an integer value as specified by the suecc built-in
pattern.

3) Mark one or more positions in any of the strings provided by
the dot and mdot built-in patterns.

4) Provide the addresses of one or more pieces of the string or
pattern in a user supplied buffer (specified by ppmdot(3L))
as a first step in reformating one or more strings using the
startfld, endfld and deffld built-in patterns.

The arguments to ppmatch() are as follows:
patptr is a pointer to the pattern to be used by the matcher.

progarg 1s a pointer to an array of application program defined
inputs. The first element (patarg[0]) in the array
must point to the start of the first text-area. All
other elements of the array may point to any valid pro-
gram argument type as defined in the <ppsubs.h> header
file.

Ppmatch and match never change anything pointed to by their argu-
ments.

Ppmatch and match sets the value of several external variables as
described below.

PPMATCH(3L) SCCs October 21, 1980 PPMATCH(3L)

ppcursor - contains the value of the matcher cursor (pointer to
first text-area) at the time the matcher returned. 1In
the old version of the pattern matcher cursor was used
instead of ppeursor For upward compatibility purposes
cursor is equivalent to ppcursor

ppdot - 1s set to the current cursor position when a dot
built-in pattern is encountered in the pattern. If no
dot built-in pattern is encountered, Then the value of
ppdot is not changed. In the old version of the pat-
tern matcher dot was used instead of ppdot For upward
compatibility purposes dot is equivalent to ppdot

The first element (zero subscript) of the patarg array (and pa-
targ0 in match()) should be a text-area. This element is used to
initialize the matcher cursor (pointer to the text-area being
pattern matched). A switch keyword in the pattern may change the
text-area being pattern matched (as well as the pattern). There-
fore, the use of a switch keyword in the pattern may require ad-
ditional text-areas which must have pointers (to them) included
in the array. The index of the pointer in the array corresponds
to the number argument in the switch keyword. For example the
keyword switch(2,arb ’aaa’) requires progarg{2] to be a pointer
to a text-area.

Ppmatch and mmtch returns one of the integer values described

below:

PPSUCCESS - indicates a successful match

PPABORT - indicates an unsuccessful match

PPUNDEFKEY - indicates a zero value primitive was found in the
pattern. This indicates that the pattern has been
scribbled (or is not a pattern).

n - where n >= 0; and n is the value of a succ Dbuilt-in
pattern argunment which is encountered by ppmatch
and match

SEE ALSO

match(3L), ppchkpat(3L), ppsmdot(3L)

DIAGNOSTICS
Ppmatch and match produces no diagnostics except that a PPUNDEF-
KEY value will be returned when a 2zero value primitive is
discovered in the pattern (zero is an invalid primitive value).

PPMATCH(3L) SCCS October 21, 1980 PPMATCH(3L)

BUGS

Ppmatch and match do not check the pattern or the elements of
progarg If any of their values are improper, then
unpredictable/terrible things may occur (e.g., trying to execute
instructions in data or stack space). To avoid some of the posi-
ble problems ppchkpat(3L) should be used.

PPMDOTSIZ(3L) SCCs October 22, 1980 PPMDOTSIZ(3L)

NAME
ppmdotsiz - return the size of mdot and field buffer

SYNOPSIS
#include <ppsubs.h> /* pattern definitions and struct =/

int pperrno; /* error type external =/
unsigned ppmdotsiz(headptr)
struct PPHEAD *headptr;

DESCRIPTION
Ppmdotsiz(3L) returns the size of the buffer (in bytes) required
to store the pointers which are saved by the
mdot, deffld, startfld and endfld built-in patterns which are in-
cluded in the pattern whose header is pointed to by headptr. If
ppmdotsiz return a NULL and pperrno == NULL, then the pattern
does not need a buffer because no mdot, deffld, startfld or
endfld built-in patterns were used. This is the only case where
a NULL return value indicates a normal (no-error) termination.
Ppsmdot (3L) is used to tell the pattern matcher (ppmatch(3L)) the
location of the Dbuffer to be used to store the pointer values
which are set by the mdot, deffld, startfld and endfld built-in
patterns. If ppsmdot 1is never called or if the value of the
ppsmdot argument is *(int *) 0, then mdot, deffld,
startfld and emdfld primitives are ignored by the matcher.
Ppgmdot (3L) will return the address of the buffer (which was set
by the last ppsmiot). If ppsmdot had not been called prior to
ppgmdot, then ppgmdot will return a zero.

SEE ALSO
ppmatch(3L), ppsmdot(3L), ppgmdot(3L), pattern(SL)

DIAGNOSTICS

When an error occurs in ppmadotsiz, it will return a NULL value
and will set pperrno to one of the following values:

NULL — As mentioned above, NO ERROR EXISTS a buffer is not
needed Dbecause the pattern contains no startfld,
endfld or mdot built-in patterns.

PPBADPAT - The pattern header has erroneocus information in it
(i.e., the pattern header is not a pattern header or
has been scribbled or altered).

PPNOMDOT - This error occurs when the pattern format is not stan-
dard. Only standard format type patterns have the
maximum mdot information.

PPMDOTSIZ(3L) SCCS October 22, 1980 PPMDOTSIZ(3L)

BUGS

Ppmdotsiz() may return an erroneous (too small) value if one or
more number variables are used in startfld, endfld, deffld or
mdot built-in patterns. Ppmdotsiz() uses only built-in patterns
without number variables when it determines the size of the
buffer. This is normally not a problem because ppmatch(3L) and
match(3L) will have many other problems if a variable pattern is
used. They use only non-variable patterns (which includes vari-
able patterns which have been compiled using specified arguments
and default values into a non-variable pattern).

PPOPENPAT(3L) SCCs August 31, 1979 PPOPENPAT(3L)

NAME
ppopenpat - open pattern disk file
SYNOPSIS
#include <stdio.h> /* only needed for ppfopenpat x/
#include <ppsubs.h>
int pperrno; /* error type external =/
char *ppathname; /* full path name of openned file #/
FILE *ppfopenpat(patname,pattype,dirso)
char *patname;
int pattype;
PPATDIR dirso[];
int ppopenpat{patname,pattype,dirso)
char *patname;
int pattype;
PPATDIR dirso[];
DESCRIPTION

Ppopenpat and ppfopemnpat provides an easy method for openning a
pattern file on the disk for reading. They are equivalent except
that ppfopenpat is a <stdie.h> version of ppopenpat.

Ppopenpat and ppfopenpat first look at the string pointed to Dby
patname. Ppopenpat and ppfopenpat use the string to form the
disk file name for the pattern. To be valid, the string must be
null terminated and no longer than 256 characters. If patname
points to a valid string, then the string 1is copied into a
buffer. If patname points to a \0 (null string) or if patname =
NULL, then PPDFLTNAM is copied into the buffer.

If pattype is PPOBJFRMI, then a .o is appended to the name in the
buffer. 1If pattype is PPSTDFRMI, then a .p is appended. If pat-
type is PPMDDFRMI, then nothing is appended. The address of the
buffer is put into the external ppathmname. This buffer is used
for the filename.

If filename starts with a /, then ppopenpat and ppfopenpat will
try to open filename. If filename does not start with a /, then
ppopenpat and ppfopenpat will search the pattern directories (in
order). The pattern directory search order may be specified as
detailed in ppdefdso{(3L).

If the search order is not specified (i.e., dirso = (PPATDIR
NULL), then a default order is used. The default search order is
as follows:

/keyword pattern keyword and primitives directory
‘ present working directory

/compat common patterm directory

/usr/pat common user patterm directory

PPOPENPAT(3L) SCCs August 31, 1979 PPOPENPAT(3L)

Ppopenpat and ppfopenpat will try to open filename in the first
pattern directory in which filename is found.

Once filename 1is opened, ppfopenpat returns a stream file
pointer, and ppopenpat returns the file descriptor of the open
file.

SEE ALSO
ppdefdso(3L), ppdftdso(3L), pattern(5L)

DIAGNOSTICS
Ppopenpat returns a EOF when an error occurs. Ppfopempat returns
a NULL when and error occurs. Ppopenpat and ppfopenpat will set
pperrno to one of the following values (defined in ppsubs.h) when
a problem occurs:

PPBADDIR - The directory name given for the search path is too
long (too many charaters). The directory name and
pattern file name (including the ".p" or ".o") can
be no 1longer than the PPMAXNAM value defined in
pPpsubs .h.

PPBADNAME - The pattern name had invalid syntax.

PPNOPAT - The pattern could not be openned or found.

PPOS(3L) SCCS - Aug 20, 1879 PPOS(3L)

NAME
ppos -- address of char in string

SYNOPSIS
ppos(sl,cl,nl)
char *s1, ci;
int nl;

DESCRIPTION
Ppos returns the address of the character ¢l within the string sl
after nl occurrences of the character ci.
s81 string to be searched.
Ccl character to be searched for.
nl integer number of occurrences of cl before final search.
If cl does not occur in sl after the nl preliminary occurrences
of cl, the address returned is zero.
If cl occurs in sl many more times than nl, the address returned
is that of the first occurrence of cl after the nl preliminary
occurrences of cl.
The string sl is defined as a null terminated array of charac-
ters. The address that is returned is the address of the charac-
ter ¢l in sl. The returned address can Dbe any 1legal address
within the string sl. The address value of zero is reserved for
the error return.
An empty string is one whose first character is the null charac-
ter. If sl 4is empty or cl is the null character, the zero ad-
dress is returned.
The integer nl can be any positive value from zero to 32767. If
nl 1is zero, the address returned is that of the first occurrence
of. the character cl in the string sl.

LIBRARY
/1ib/1ib3.a

SEE ALSO

pos(3L)

PPOUTEMSG(3L) SCCsS October 22, 1980 PPOUTEMSG(3L)

NAME
ppoutemsg - SCCS pattern software OM generater
SYNOPSIS
#include <ppsubs.h> /* pattern definitions and struct =/
char *ppemsg[]; /* reflexive error messages =/
int pperrno; /* error number depository =/
int errno; /* system error number depository =/
ppoutemsg()
DESCRIPTION
This subroutine writes out an error message in standard SCCS for-
mat. ppemsg{pperrno] points to a string which contains the text
of the error message. In some cases the value of errno is also
used.
SEE ALSO
ppemsg(3L), pperrno(3L), intro(2), pattern(5L)
DIAGNOSTICS

ppoutemsg() does not return a value, but does return.

PPRCPAT(3L) SCCs October 22, 1980 PPRCPAT(3L)

NAME
pprcpat - fork/exec RC:PAT command
SYNOPSIS
#include <ppsubs.h> /* pattern definitions and struct =/
int ppsleep; /* sleep time between fork trys =/
int pptryagain; /* how many fork() tries =/
int pperrno; /* pattern subs error depository =/
int errne; /* system I/0 error depository =/

int pprcpat(patnane,ofctype,usrnsg)
char *patname; /* initial default pattern name =*/
char *ofctype; /* pointer to the office type character
* pair for example "01" = ESS1
x
/

char *usrmsg; /* pattern name for user message */

DESCRIPTION
This is the pattern library subroutine which will fork{() and ex-
ecve() the RC:PAT program SO that the user can define a pattern.
The default name is initially set to 'patname' and the SPCS type
('ofctype!) is passed by the environment to /dist/rcpat.

SEE ALSO
ppsleep(3L), pptryagain(3L), pperrno(3L), intro(2), pattern(5L)

DIAGNOSTICS
pprcpat() returns a NULL value when an error occurs, and sets the
value of the external variable pperrmo to one of the following
values (defined in <ppsubs.h>):

PPSYSERR - A system call error occurred (usually fork(2) or
execve(2) failed). Check the value of the external
variable errmo. The pattern was not read in.

PPRDHDR(3L) SCCs November 3, 1880 PPRDHDR(3L)

NAME
pprdhdr - read pattern header

SYNOPSIS .
#include <ppsubs.h> /x pattern definitions and structs =/

int pperrno; /* error type external =/

int pprdhdr(patfdes,hdrptr)
int patfdes;
struct PPHEAD *hdrptr;

DESCRIPTION
Pprdhdr and ppfrdhdr read the header information from a pattern
file (patfdesorpatstream). This information is read into a pat-~
tern header structure (struct PPHEAD as defined in the <ppsubs.h>
header file) which is pointed to by hdrptr.

SEE ALSO
ppopenpat(3L), ppgetpat(3L), pphdrtell(3L), pphdrsiz(3L),
pperrno(3L), pattern(5L)

DIAGNOSTICS
Normally this subroutine returns the number of bytes read. The
subroutine returns a NULL when an error occurs. This subroutine
will set the value of pperrmo to one of the following values (de-~
fined in <ppsubs.h>) when a problem occurs.

PPBADPAT - The size of a particular part of the pattern is
smaller than indicated in the pattern header (i.e.,
the pattern has been scribbled or altered), or the
pattern header has erroneous information in it (i.e.,
the pattern header is not a pattern header or the
pattern file has been scribbled or altered).

PPSYSERR - A system call error occurred (usually read or seek
problem). Check the value of the external variable
errno. The pattern was not read in.

BUGS
If these subroutines are used to read pipes, then the seeks per-
formed internal to the subroutines will most likely fail result-
ing in a PPSYSERR value for pperrno.

PPRDPAT (3L) SCCs November 3, 1980 PPRDPAT(3L)

NAME
pprdpat - read pattern
SYNOPS1S L
#include <ppsubs.h> /% pattern definitions and structs =/
int pperrno; /* error type external =/
int pprdpat(patfdes,patptr,maxsize,headptr)
int patfdes;
PPAT *patptr;
int maxsize;
struct PPHEAD *headptr;
DESCRIPTION
Pprdpat and ppfrdpat read the pattern part (part used by
ppmatch(3L) and match(3L)) from a pattern file (patfdesor-
patstream). The pattern part is read into a buffer which must
start on a 16 bit word boundary which is pointed to by patptr.
This buffer area is maxsize bytes in size. Maxsize should have a
value greater than or egual to the value returned by the
ppatsiz(3L) subroutine.
SEE ALSO
ppopenpat(3L), ppgetpat(3L), ppattell(3L), ppatsiz(3L),
pperrno(3L), pattern(5L)
DIAGNOSTICS

Normally this subroutine returns the number of bytes read. The
subroutine returns a NULL when an error occurs. This subroutine
will set the value of pperrmo toc one of the following values (de-~
fined in <ppsubs.h>) when a problem occurs.

PPBADPAT -~ The size of a particular part of the pattern is
smaller than indicated in the pattern header (i.e.,
the pattern has been scribbled or altered), or the
pattern header has erroneous information in it (i.e.,
the pattern header is not a pattern header or the
pattern file has been scribbled or altered).

PPOVRFLOW - The part of the pattern to be read is larger than the
buffer size as given in the subroutine call (max-
size). This was determined by comparing maxsize toO
the information in the pattern header. No attempt
was made to read anything into the buffer.

PPSYSERR - A system call error occurred (usually read or seek
problem). Check the value of the external variable
errno. The pattern was not read in.

PPRDPAT({3L) SCCs November 3, 13980 PPRDPAT(3L)

BUGS
If these subroutines are used to read pipes, then the seeks per-

formed internal to the subroutines will most likely fail result-
ing in a PPSYSERR value in pperrno.

PPRDSRC(3L) SCCS ~ November 3, 1980 PPRDSRC(3L)

NAME

pprdsrc - read pattern source

SYNOPSIS

#include <ppsubs.h> /= pattern definitions and structs =/
int pperrno; /* error type external =/

int pprdsrc(patfdes,srcptr,maxsize,headptr)
int patfdes;
char *srcptr;
int maxsize;
struct PPHEAD *headptr;

DESCRIPTION

Pprdsrc and ppfrdsrc read the source part from a pattern file
(patfdes Or patstream). The source part is only found in stan-
dard format type pattern files. This part comprises the ASCII
character definition used to make the pattern. The source part
is read into a buffer which is pointed to by srcptr. This buffer
area is maxsize bytes in size. Maxsize shoculd have a value
greater than or equal to the value returned by the ppsresiz(3L)
subroutine.

SEE ALSO

ppopenpat(3L), ppgetpat(3L), ppsrctell(3L), ppsrcsiz(3L),
pperrno(3L), pattern(sL)

DIAGNOSTICS

Normally this subroutine returns the number of bytes read. The
subroutine returns a NULL when an error occurs. This subroutine

will set the value of pperrmo to one of the following values (de-

fined in <ppsubs.h>) when a problem occurs.

PPBADPAT

The size of a particular part of the pattern is
smaller than indicated in the pattern header (i.e.,
the pattern has been scribbled or altered), or the
pattern header has erronecus information in it (i.e.,
the pattern header is not a pattern header or the
pattern file has been scribbled or altered).

PPNOSRC This error occurs when the pattern format type is not
standard. Only standard format type patterns have

source included in the pattern file.

PPOVRFLOW

The part of the pattern to be read is larger than the
buffer size as given in the subroutine call (max-
size). This was determined by comparing mmaxsize tO
the information in the pattern header. No attempt
was made to read anything into the buffer.

PPSYSERR

A system call error occurred (usually read or seek
problem). Check the value of the external variable

PPRDSRC(3L) SCCS November 3, 1980 PPRDSRC(3L)

errno. The pattern was not read in.

BUGS
If these subroutines are used to read pipes, then the seeks per-
formed internal to the subroutines will most likely fail result-
ing in a PPSYSERR value in pperrno.

PPRDVI(3L) SCCs November 3, 1980 PPRDVI(3L)

NAME

pprdvi - read pattern variable information

SYNOPSIS

#include <ppsmbs.h> /* pattern definitions and structs =/
int pperrmo; /* error type external =/

int pprdvi(patfdes,viptr,maxsize,headptr)
int patfdes;
int *viptr;
int maxsize;
struct PPHEAD *headptr;

DESCRIPTION

Pprdvi and ppfrdvi read the variable argument information part
from a pattern file (patfdes Or patstream). The variable argu-
ment information part is read into a buffer which must start on a
16 Dbit word boundary which is pointed to by viptr. This buffer
area is maxsize bytes in size. Maxsize should have a value
greater than or equal to the value returned by the ppvisiz(3L)
subroutine. If pprdvi or ppfrdvi return a NULL and pperrno ==
NULL, then the pattern is not a variable pattern (i.e., no vari-
able arguments required). This is the only case where a NULL re-
turn value indicates a normal (no-error) termination.

SEE ALSO

ppopenpat(3L), ppgetpat(3L), PpPvitell(3L), ppvisiz(3L),
pperrno(3L), pattern(5L)

DIAGNOSTICS

Normally this subroutine returns the number of bytes read. The
subroutine returns a NULL when an error occurs. This subroutine
will set the value of pperrmo to one of the following values (de-
fined in <ppsubs.h>) when a problem occurs.

PPBADPAT - The size of a particular part of the pattern is
smaller than indicated in the pattern header (i.e.,
the pattern has been scribbled or altered), or the
pattern header has erroneous information in it (i.e.,
the pattern header is not a pattern header or the
pattern file has been scribbled or altered).

PPNOVI1 - This error occurs when the pattern format type is not
standarad. Only standard format type patterns have
variable argument information included in the pattern
file.

PPOVRFLOW - The part of the pattern to be read is larger than the
buffer size as given in the subroutine call (max-
size). This was determined by comparing maxsize tO
the information in the pattern header. No attempt
was made to read anything into the buffer.

PPRDVI(3L) SCCs November 3, 1980 PPRDVI(3L)

PPSYSERR -~ A system call error occurred (usually read or seek

problem). Check the value of the exXternal variable
errno. The pattern was not read in.

BUGS

If these subroutines are used to read pipes, then the seeks per-

formed internal to the subroutines will most likely fail result-
ing in a PPSYSERR value in pperrno.

PPSCCSGP(3L) SCCs October 22, 1980 PPSCCSGP(3L)

NAME
ppsccsgp - SCCS get/create pattern from definition

SYNOPSIS
#include <ppsubs.h> /= pattern definitions and struct =/

int ppsleep; /* sleep time between fork trys =/

int pptryagain; /* how many fork() tries =/
struct PPHEAD pphead; /* pattern header =/

int pperrno; /* pattern subs error depository */
int errno; /* system I/0 error depository =/

PPAT *ppsccsgp(patdef,ofctype,usrmsg)
char *patdef; /*x definition or name of the pattern =/
char *ofctype; /* two character string for the office
type =/
char *usrmsg; /* user message pattern name x/

DESCRIPTION
This is the pattern library subroutine which will take a a pat-
tern definition and return a pattern. The definition may be a
single pattern name, then ppgetpat(3L) is used to read it off of
the disk. If the definition is more complicated, then the pat-
tern compiler ppmkpat(1lL) is fork(2) execve(2) with its input be-
ing the string pointed to by patdef.

If the definition comprises only a "+", then the RC:PAT program
is called (using pprcpat(3L)) and the user is allowed to input
the definition from his terminal.

SEE ALSO

ppsleep(3L), pptryagain(3L), pphead(3L), pperrno(3L), intro(2),
pattern(sL)

DIAGNOSTICS
ppscesgp() returns a NULL value when an error occurs, and sets
the value of the external variable pperrno to one of the follow-
ing values (defined in <ppsubs.h>):

PPBADNAME

The pattern name had invalid syntax.

PPBADPAT

The internal format of the pattern was not correct.
This could occur if the pattern was not made by
pponkpat(1L) or if the pattern had been scribbled.

PPSYNTAX

The pattern definition given has one or more syntax
errors. This was determined by the pattern com-
piler (ppmkpat(iL)), and the pattern compiler will
already have sent error messages to standard out-
put.

PPSYSERR A system call error occurred (usually no memory).

Check the wvalue of the external variable errno.

PPSCCSGP(3L) SCCs October 22, 1980 PPSCCSGP(3L)

The pattern was not read in.

PPSLEEP(3L) SCCS October 22, 1980 PPSLEEP(3L)

NAME
ppsleep - external pattern sleep time between fork trys varaible
SYNOPSIS
#include <ppsubs.h> /* pattern definitions and struct =/
int pptryvagain = { 0 }; /*x how many times to try and fork =/
int ppsleep = { 5 }; /* how many seconds sleep before next
try =/
DESCRIPTION
These are the pattern library ferk(2) variables. They are used
by any pattern library subroutine which must ferk(2) a new pro-
cess (such as the pattern compiler, ppmkpat(1L), or RC:PAT).
SEE ALSO

ppmakepat(3L), pprcpat(3L), ppsccsgp(3L), pptryagain(3L)

PPSMDOT(3L) SCCS October 22, 1980 PPSMDOT(3L)

NAME

ppsmdot - set mdot and field pointer buffer for matcher

SYNOPSIS

ppsmdot (mdotbufptr)
char **mdotbufptr;

DESCRIPTION

Ppsmdot (3L) is used to tell the pattern matcher (ppmatch(3L)) the
location of the Dbuffer to be used to store the pointer values
which are set by the mdot, deffld, startfld and emndfld Dbuilt-in
patterns. If ppsmdot is never called or if the value of the
ppsmdot argument is *(imt *) 0’, then mdot, deffld,
startfld and emndfld primitives are ignored by the matcher.

Ppgmdot (3L) will return the address of the buffer (which was set
by the 1last ppsmdot). If ppsmdet had not been called prior to
ppgmdot, then ppgmdot will return a zero.

No check is made to ensure that the ppsmdot argument is valid or
that it points to a large enough area to hold everything that is
going to be put there. For example, if a 'mdot(<index>)’ pattern
occurs, then the matcher writes the cursor value into memory lo-
cation *(mdotbufptr + index*2). To avoid some problems ppmdotsiz
should be used to obtain the maximum offset from mdotbufptr which
may occur.

SEE ALSO

ppmatch(3L), ppgmdot(3L), ppmdotsiz(3L), pattern{5L)

DIAGNOSTICS

BUGS

Ppsmdot and ppgmdot produce no diagnostics, and they never change
the value of pperrno.

Ppsmdot and ppgmot are very simple assembly language routines
which are a part of the ppmatch(3L) subroutine in the pattern li-
brary. They do not use esv(2) and cret(2) so adb(1) will not
show any auto variables for them.

PPSRCSIZ(3L) SCCs November 3, 1980 PPSRCSIZ(3L)

NAME
ppsrcsiz - return size of pattern source definition

SYNOPSIS
#include <stdio.h> #include <ppsubs.h>

int pperrno; /* error type external =/

unsigned ppsrcsiz(headptr,patstream)
struct PPHEAD *headptr; /* pointer to pattern header =/
FILE “*patstream; /* pattern file stream {stdio)

*/

DESCRIPTION
Ppsresiz{() returns the size (in bytes) of the pattern source de-
finition part of the pattern file with header pointed to by
headptr and in the stdio file stream of patstream.

SEE ALSO
pattern(SL)

DIAGNOSTICS
Ppsrcsiz() returns a NULL when an error occurs and sets the value
of the external pperrmo to one of the following values:

PPBADPAT - The internal format of the pattern was not correct.
This could occur if the pattern was not made by
ppmkpat (1L) or if the pattern had been scribbled.

PPNOSRC - This error occurs when the pattern format type is
not standard. Only standard format type patterns
have source included in the pattern file.

PPSRCTELL(3L) SCCs November 3, 1980 PPSRCTELL(3L)

NAME
ppsrctell - return tell value for pattern source definition
SYNOPS1IS
#include <ppsubs.h>
int pperrno; /* error type external =/
long ppsrctell (headptr)
struct PPHEAD *headptr;
DESCRIPTION
Ppsrctell () returns the tell value for the start of the source
part of the pattern file with header pointed to by headptr. The
tell value can be used by lseek(2) or fseek(3).
SEE ALSO
lseek(2), fseek(3), pattern(5L)
DIAGNOSTICS

Ppsrctell() returns a (O0L) wvalue when an error occurs. The
subroutine will set the value of pperrmno to one of the following
values (defined in <ppsubs.h>) when a problem occurs.

PPBADPAT - The internal format of the pattern was not coerrect.
This could occur if the pattern was not made by
ppmkpat(1L) or if the pattern had been scribbled.

PPNOSRC - This error occurs when the pattern format type is
not standard. Only standard format type patterns
have source included in the pattern file.

[

PPTRYAGAIN(3L) SCCs October 22, 1980 PPTRYAGAIN(3L)

NAME
pptryagain - external pattern fork trys varaible
SYNOPSIS
#include <ppsubs.h> /* pattern definitions and struct =/

int pptryagain = { 0 }; /* how many times to try and fork =/
int ppsleep = { 5 }; /* how many seconds sleep before next
try =/

DESCRIPTION
These are the pattern library fork() variables. They are used by
any pattern library subroutine which must fork() a new process
(such as the pattern compiler, ppmkpat(1L), or RC:PAT).

SEE ALSO
ppmakepat(3L), pprcpat(3L), ppsccsgp(3L), ppsleep(3L)

PPVISIZ(3L) SCCS November 3, 1980 PPVISIZ(3L)

NAME
ppvisiz - return size of pattern variable information

SYNOPSIS
#include <ppsubs.h>

int pperrno; /* error type external =/

unsigned ppvisiz(headptr)
struct PPHEAD *headptr; /* pointer to pattern header =/

DESCRIPTION
Ppvisiz() returns the size (in bytes) of the variable argument
information part of the pattern file with header pointed to Dby
headptr. If ppvisiz() returns a NULL and pperrno == NULL, then
the pattern is not a variable pattern {(i.e., no variable argu-
ments required). This is the only case where a NULL return value
indicates a normal (no-error) termination.

SEE ALSO
pattern(5L)

DIAGNOSTICS
Ppvisiz() returns a NULL when an error occurs and sets the value
of the external pperrno to one of the fcollowing values:

PPBADPAT - The internal format of the pattern was not correct.
This could occur if the pattern was not made by
ppokpat(1L) or if the pattern had been scribbled.

PPNOV1 — This error occurs when the pattern format type is
not standard. Only standard format type patterns
have variable argument information included in the
pattern file.

PPVITELL(3L) - SCCs November 3, 1980 PPVITELL(3L)

NAME
ppvitell - return tell value for pattern variable information
SYNOPSIS
#include <ppsubs.h>
int pperrno; /* error type external =/
long ppvitell (headptr)
struct PPHEAD *headptr;
DESCRIPTION
Ppvitell() returns the tell value for the start of the variable
argument information part of the pattern file with header pointed
to by headptr. 1If ppvitell() returns a (OL) and pperrno == (OL),
then the pattern is not a variable pattern (i.e., no variable ar-
guments required). This is the only case where a (OL) return
value indicates a normal (no-error) termination. The tell value
can be used by lIseek(2) or fseek(3).
SEE ALSO
lseek(2), fseek(3), pattern(sL)
DIAGNOSTICS

Ppvitell() returns a (OL) value when an error occurs. The
subroutine will set the value of pperrmo to one of the following
values (defined in <ppsubs.h>) when a problem occurs.

PPBADPAT - The internal format of the pattern was not correct.
This could occur if the pattern was not made by
ppmkpat(1L) or if the pattern had been scribbled.

PPNOVI = This error occurs when the pattern format type is
not standard. Only standard format type patterns
have variable argument information included in the
pattern file.

PREPEAT(3L) Sces Aug 20, 1979 PREPEAT(3L)

NAME
prepeat -- concatenate identical strings n times

SYNOPSIS
prepeat(sl,s2,nl)
char *sl1, *s2;
int nl;

DESCRIPTION
Prepeat returns a pointer to the address of the position after
the last character in the string sl. The value returned is the
same as that returned by the plen function.

S1 Dbuffer area for the target string.
$2 source string which is copied into si.

nl integer which specifies the number of times s2 is copied into
sl.

If the address pointed to by sl is zero, the address returned is
zZero.

If the value of nl is negative or zero, the target string sl will
be empty and the returned address will point to the null charac-
ter at the beginning of string sil.

If the value of nl is positive, the characters of the string s2
are copied into the string sl the number of times indicated by
nl. The target string sl is then terminated with the null char-
acter. It shculd be noted that prepeat becomes a copy string
function when nl is one.

The strings sl and s2 are each defined as a null terminated array
of characters. The returned address minus the starting address
of the string sl is the length of the string.

An empty string is one whose first character is the null charac-
ter. If 52 is empty, the target string sl will be set empty and
the returned address will point to the null character at the be-
ginning of the string.

LIBRARY
/1lib/1lib3.a

SEE ALSO
repeat (3L)

PRMNULL (3L) SCCs Aug 20, 1878 PRMNULL(3L)

NAME
& prmnull -- remove nulls from a series of strings
SYNOPSIS
promull(si,cl,nl)
char *s1, ci;
int nl;
DESCRIPTION
1 Prmnull returns a pointer indicating the address of the terminat-
ing null character for string sl after nl nulls have been removed
and replaced with the character cl.
S1 string which is to be elongated by removal of nulls.
€1 character to which the null character is translated.
nl numpber of null to cl translations to be performed.
The string sl is defined as a null terminated array of charac-
ters.
An empty string is one whose first character is the null charac-
ter. If string sl is empty and ni is zero the address returned
is the value of sl.
- If the address pointed to by sl is =zero, the address returned
will be zero.
If ¢l is null, prmnull returns the same address as it does for
other values of (cl except that intervening nulls are not modi-
fied.
If the value of nl is zero or negative, the address returned is
the address of the terminating null character of the unmodified
string sl.
— LIBRARY

/1ib/1ib3.a

PROMPT(3L) SCCS Jul 2, 1979 PROMPT(3L)

NAME
prompt —-- prompt user

SYNCPS1IS
char punc;
char instr{128];
prompt(str)
char *str;

DESCRIPTION
Prompt prompts the user (on the standard error output) with what
is in str and collects the user's response in instr. The re-
turned value is the length of the string that the user typed in.
The user response must be terminated by a '!' or a '/', which is
not part of the response but is returned in punc. New 1lines and
leading and trailing spaces are ignored.

LIBRARY
/lib/libl.a

DIAGNOSTICS

If the standard input cannot be read, the result is as if a zero
lingth string was read with the terminating punctuation /0

PSPAN(3L) SCCsS Aug 20, 1878 PSPAN(3L)

NAME

pspan -- look for first char not in pattern

SYNOPSIS

pspan(si, s2)
char *s1, *s2;

DESCRIPTION

Pspan returns an address indicating the success or failure of the
pattern match. If the address returned is not zero the match was
a success. If the address returned is zero the match was a
failure. This function returns the address of the first charac-
ter found in the searched string that was not in the pattern
string.

sl the searched character string.
$2 a string of characters used as a pattern.

The pattern, s2, can be any null terminated string of characters.
Repeated characters in s2 are ignored. The pattern string "Mis-
sissippi™ is equivalent to the pattern string "iMps".

This function is implemented with a table driven pattern matcher.
The empty string is defined as a string whose first character is
the null character.

The error code, zero, is returned only if the searched string,
sl, is empty.

If a character not in the string s2 is found in the string si,
the address of that character in sl will be returned.

If the entire string sl is searched and every character matches
the pattern, the length pointer of the string sl is returned.
The length pointer is the address of the terminating null Dbyte.

LIBRARY

/1ib/1ib3.a

SEE ALSO

span(3L)

PSUBSTR(3L) SCCS Aug 20, 1979 PSUBSTR(3L)

NAME
psubstr - copy substring of a string

SYNOPS IS
psubstr(sl,s2,pl,p2)
char *s1, *s2, *pl, *p2;

DESCRIPTION
Psubstr returns a pointer whose value is the address of the ter-
minating null character at the end of the target string sl. °The
substring of s2 as specified by pl and p2 is copied into sl. The
address returned is the same as that returned by the function
plen.

si the target string into which the extracted substring is
copied. The target string is null terminated.

S2 the string from which the substring is to be extracted.

P1 a pointer that indicates the starting address of the
substring in s2.

P2 a pointer that indicates the address of the last
character in s2 to be transferred into si.

An empty string is one whose first character is the null charac-
ter. If the source string, s2, is empty, the target string, s1,
is set to empty and the address return is zero. The exception to
the above is when pl points to the null character of the empty
string and p2 is of an equal or higher address. In this case,
the address returned is the address of the null character in
string sil.

If the address pointed to by sl is zero, the address returned is
zero.

If pl is higher than p2 or addresses a character past the end of

the string, the target string is set empty and the address re-
turned is zero.

The address of p2, however, may be any value equal or higher than
pl. If p2 points to a character past the end of the source
string, the substring will terminate with the last character of
the the source string.

The only time that the address of the first character of the tar-
get string is returned is when Pl points to the null character of
the source string. If Pl points to the null character of the
source string the target string is set empty. For these cases p2
may be equal or higher than pl. o

PSUBSTR(3L) . SCCsS Aug 20, 197° PSUBSTR(3L)

LIBRARY
/1ib/1ib3.a

SEE ALSO
substr(3L)

RAL1MSG(3L) SCCS Jul 2, 1979 RAL1MSG(3L)

NAME

ralimsg -- notify the alerting system of a change in the logging
status for a channel.

SYNOPS1IS
#include <fs.h>

ralimsg(fspa, mp)
struct FS *fspa;
char *mp;

DESCRIPTION

FS_SEMA semaphore should be locked and unlocked around the call
to this subroutine in order to prevent the logger from writing
into the alerter 1 pipe at the same time as this routine.

LIBRARY
/1ib/1libl.a

SEE ALSO
rcaltupd(3L)

RESTRICTIONS
This routine will not exist beyond SCS.

[

RATEEST(3L) SCCS Jul 2, 1979 RATEEST(3L)

NAME
rateest -- estimate the rate of occurance of events.

SYNOPSIS
rateest()

DESCRIPTION
Based on the time of the current and previous call to rateest,
the rate of occurance of calls is estimated using 7/8 first order
linear filtering. The return value is the estimated rate in
events per hour.

LIBRARY

/1lipb/1libl.a

RATESAMP(3L) SCCs Jul 2, 1979 RATESAMP(3L)

NAME
ratesamp -- sampling function.
SYNOPS1IS
ratesamp(crate, drate, minrate, inh)
-
DESCRIPTION
ARGUMENTS:

crate is current estimated rate of events

drate is desired rate of events

minrate is the minimum desired rate

inh is 1 if sampling cannot be done for the current event
Ratesamp returns 1 if event should be processed, 0 if not, at-
tempting to get current rate to remain less than drate; inhibited
events always cause a 1 return, but are approximately accounted
for in the sampling. A 1 is also returned if the desired rate is

less than minrate.

LIBRARY
/lib/libl.a

SEE ALSO
rateest(3L)

5

RCALTUPD(3L) SCCs Jul 11, 1979 RCALTUPD(3L)

NAME

rcaltupd -- notify the alerting system of a change in the data
base for a logging channel.

SYNOPSIS
#include <chldata.h>
rcaltupd(cid, cdba)
struct CHL_B *cdba;

DESCRIPTION
LIBRARY
/lib/libl.a

RCTYPS(3L) SCCS Jul 11, 1979 RCTYPS(3L)

NAME
rctyps, rcbtyps -- standard recent change types

SYNOPSIS
#include <rc.h>

#include <rcbtyps.h>

DESCRIPTICN
rctyps -~ List of standard recent change types’
referenced by rc.h
char srctyps{] {
"new" o
" Out " 5
" cng" 5
(0]
};

rcobtyps -- List of standard recent change types referenced by the
header file rcbtyps.h, and used by RC:BUILD programs.
char =rcbtyps|] {

” new" 5

” Out " 5

n Ch.g" o

"addll 5

0

L IBRARY
/1ib/libil.a

READINT(3L) . SCCS Mar 15 1977 READINT(3L)

NAME

readint - buffered input for files containing integer data

SYNOPSIS

#include <rwint.h>
readint(inbuf)
struct IOCBUF *inbuf;

DESCRIPTION

This subroutine provides buffered input capability for files con-
taining integer data in records whose size is a power of two. It
returns the starting address of the record in r0. However, if an
error is detected or an end of file is encountered, a O is re-
turned in ro and a return code is returned in the structure vari-
able, errval. The possible return codes are discussed below
under DIAGNOSTICS. Inbuf is the address of a 522(10) byte buffer
area whose format is:

struct IOBUF
{ int fildes;
int errval;
int idata;
int recsize;
int nread;
int intbuf[IBUFSIZE];

};
where
fildes is the file descriptor of an open input file.
errval is the return code which indicates an I/O error
or an EOF.
idata is the current number of records in the Dbuffer

that have been retrieved by the calling program.
The calling program initializes this variable Dby
setting it equal to the maximum number of records
that can be contained in intbuf[].

recsize is the record size in words. The record size
must be a power of two; ie. 2, 4, 8, 16, etc.,
words.

nread contains the number of bytes that have been read
into the Dbuffer. This variable should not be
used or changed by the calling program.

intbuf is the data buffer and should not be written into
by the calling program.

IBUFSIZE contains the value, 256.

READINT(3L) ' SCCS Mar 15 1977 READINT(3L)

The calling program must initialize the following structure vari-
ables for each input file that is to be read. These variables
must be initialized prior to the first call to this subroutine to
read the appropriate input file.

<structure>.fildes= <file descriptor of input file>;

<structure>.idata= <max. number of records that will
fit in buffer (IBUFSIZE/recsize)>;

<structure name>.recsize= <record size in words>;

FILES

/usr/include/rwint.h which contains the definitions for IOBUF and
IBUFSIZE.

LIBRARY
/lib/libl.a

SEE ALSO
writint(3L)

DIAGNOSTICS

When this subroutine returns a O in r0, the following codes are
returned in the structure variable, errval:

-1 I/0 error. 0 End of file.

BUGS

REFCDEC(3L) scecs Jul 11, 1979 REFCDEC(3L)

NAME
refcdec, refcinc -- decrement/incremint min's reference count in
the lindata file
SYNOPSIS
refcdec(min, fd)
refcinc(min, fd)
DESCRIPTION
If £fd is negative, then the linedata file is opened and closed;
otherwise £d is the file descriptor of the already open linedata
file.
LIBRARY
/lib/1libl.a
DIAGNOSTICS
Returns:
0 OK

=il Could not open, read, or write the linedata file
=2 Invalid mln number

RELEASEDS(3L) SCCs Apr 14, 1980 RELEASEDS(3L)

NAME
releaseds -- release data communications equipment
SYNOPSIS
#include <dial.h>
releaseds(dn_ptr) struct dmtable *dn_ptr;
DESCRIPTION
The purpose of this subroutine is to process all releases of data
communications equipment that was allocated by way of the
getds(3L) subroutine. #dn ptr is a pointer to the structure re-
turned by getds(3L).
Return values:
1 - the release was sucessful.
0 - the release was not sucessful.
FILES
/usr/include/dial.h /etc/d_dntable
LIBRARY
/1ib/libl.a
SEE ALSO

dial(3L), getds(3L)

RET_ENV(3L) SCCS February 18, 1982 RET_ENV(3L)

NAME

ret_env -- return an environment parameter
T2YNOPSIS

char *#¥ret_env(parm_name)
char ¥parm_name;

DESCRIPTION
Ret env searches the current environment for the named parameter.
The current environment is defined as the environment pointed to
by the global cell, char *¥environ, set up by the C run-time
start-off routine. The argument supplied, parm name, must be a
pointer to a string specifying the target parameter. By conven-
tion, this string consists only of upper case alpha characters.
The value returned by this routine allows the parameter to be
redefined by changing the contents of the pointer returned. The
new contents should be the address ¢of a string having the form:
<name>=<value> and stored in a protected, global (i.e.,non-

f volatile) data area.

LIBRARY
/1ib/1ibl.a

SEE ALSO
add_to_env(3L), exec(2), environ(7)

DIAGNOSTICS

If the named parameter is found, a pointer to the environment
parameter pointer is returned, otherwise NULL is returned.

REPEAT(3L) SCCs Aug 20, 1879 REPEAT(3L)

NAME
= repeat —-- concatenate identical strings n times

SYNOPSIS
repeat(sl,s2,nl)
char *s1, *s2;
int nl;

DESCRIPTION
Repeat returns an integer indicating the length of the resulting
string sl. The value returned is the same as that returned by
the len function.
sl Dbuffer area for the target string.
$2 source string which is copied into sl.
nl integer which specifies the number of times s2 is copied

into si.
If the address pointed to by sl is zero, the value returned is
=L
If the value of nl is negative or zero, the target string si will
be empty and the returned value will be Zzero.
If the value of nl is positive, the characters of the string s2
are copied into the string sl the number of times indicated by
nl. The target string sl is then terminated with the null char-
acter. It should Dbe noted that repeat becomes a copy string
function when nl is one.
The strings sl and s2 are each defined as a null terminated array
of characters. The returned integer can also be considered the
number of characters preceding the terminating null character.
An empty string is one whose first character is the null charac-
¥ ter. If s2 is empty, the target string sl will be set empty and

the returned value will be zero.

LIBRARY
/1lib/1ib3.a

SEE ALSO

prepeat(3L)

RMDIR(3L) sces Feb 26, 1980 RMDIR(3L)

NAME
rmdir - remove directory

SYNOPSIS
rodir (dirname)
char *dirname;

DESCRIPTION
Rmdir removes the directory specified by the partial or full
pathname, dirname. Dirname is a string pointer. Rmdir checks
the effective user id before doing anything. If th effective
uid is not super user, control is returned to the caller with a
-2 return value. Thereafter no checking is done on any unlinks
or closings. Hence if the process executing rmdir is aborted or
killed in the process of doing an unlink the file system could
result in a bad link count.
Return codes:

0 successful rmdir.

-1 dirname not a directory or nonexistent.
-2 not allowed (could not open dirname or not super user).
-3 dirname not empty.
Rmdir calls close(2), getuid(2), open(2), read(2), stat(2) and
unlink(2) while removing dirname.

SEE ALSO
mkdir:o(3C)

BUGS

Rmdir should not require the effective user id to be super-user.

RMGUN(3L) - SCCSs Jun 3 1975 RMGUN(3L)

NAME
rmgun —-- remove group Or user name
SYNOPS1IS
rmgun (name ,bit)
char name;
int bit;
DESCRIPTION
rmgun removes the given user (name) from the /etc/passwd file (if
bit is O0) or removes the given group (name) from the /etc/group
if the bit is non zero. rmgun will retun:
0 - if it was successful.

-1 - if it could not find the user/group in
the passwd/group file.

-2 - system problems: could not open or link
passwd/group or /etc/ptmp files, or perform any
of the other routine system calls.

Close is the only sys call not checked.

-3 - given user has a colon in name

-4 - /etc/ptmp already exists (try again).

LIBRARY

/lib/1ibl.a
FILES

/etc/group /etc/passwd /etc/ptmp
BUGS

RMNULL(3L) SCCS Aug 20, 1979 RMNULL(3L)

NAME

rmnull -- remove nulls from a series of strings
SYNOPS1S

rmmull(st,el,nl)

char *s1, cl;

int nl;
DESCRIPTION

Rmnull returns an integer indicating the length of the string sl
after nl nulls have been removed and replaced with the character
Eile

sl string which is to be elongated by removal of nulls.

cl character to which the null character is translated.

nl number of null to cl translations to be performed.
The string sl is defined as a null terminated array of charac-
ters. The value of the integer that is returned is the array in-
dex of the terminating null character.

This returned integer can also be considered the number of char-
acters preceding the terminating null character.

An empty string is one whose first character is the null charac-

ter. If string sl is empty and nl is zero, the value return is
zZero.

If the address pointed to by sl is zero, the value returned will
be=1%

If ¢l is null, rmnull returns the same value as it does for other
values of cl except that intervening nulls are not modified.

If the value of nl is zero or negative, the value returned is the
length of the string si without modification.

L IBRARY
/1lib/1ib3.a

RUNLVL_(3L) SCCs Jul 12, 1979 RUNLVL_(3L)

NAME
runlvl_ -- returns the run level read from /etc/utmp

SYNOPSIS
runlvl(flag)

DESCRIPTION
If flag is O, then ,upon error, an error message is printed on
the system console by calling glberr(g&).

FILES
/etc/utmp

LIBRARY
/1ib/libl.a

DIAGNOSTICS
Upon error -1 is returned (cannot open or read utmp or cannot
find the RL entry)

SCANF1:0(3L) SccCs Jul 19 1976 SCANF1:0(3L)

NAME

scanfl -- formatted input scanner

SYNOPSIS

int scanf1([-j[,input-string]],control-string,argl,arg2,...)
char *input-string;
char *control-string;

DESCRIPTION

Scanfl is patterned after the interface existing for the portable

library routine scanf. It was developed to perform most of the
features offered Dby scanf without incurring the penalty of
scanf's size (approximately 7000 bytes). The size of scanfl is
about 1650 bytes.

Scanfl is designed to read either from terminals or strings. On

reads from terminals, scanf provides its own buffer. Terminal
reads in excess of 100 characters may cause errors.

Scanfl reads characters, interprets them according to a format

and stores the results in its arguments. It expects as arguments:

1. An optional input-string, indicating the source of the input
characters; if omitted the standard input is read.

2. A control-string described below.

3. A set of arguments, each of which must be a pointer, indi-
cating where the converted input should be stored.

The integer j must be in the range of 4>3>0. If (3j&1) 4is not
equal to zero, the optional input string is to be specified. If
(j&2) is not equal to zero, indirection is specified. See the
description for format specification "i" below.

The control string usually contains conversion specifications,
which are used to direct interpretation of input sequences. The
control string may contain:

1. Blanks, tabs or newlines which are ignored.

2. Conversion specifications, consisting of the character %, an
optional assignment suppressing character x, and optional
numerical field width, and a conversion character.

A conversion specification is used to direct the conversion of
the next input field; the result is placed in the variable point-
ed to by the corresponding argument, unless assignment suppres-
sion was indicated by the * character. An input field is defined
as a string of non-space characters; it extends either to the
next space character or until the field width, if specified, is
exhausted.

The conversion character indicates the interpretation of the in-
put <field; the corresponding pointer argument must usually be of
a restricted type. Pointers, rather than variable names, are re-

SCANF1:0(3L)

SCCs Jul 18 1976 SCANF1:0(3L)

quired by the "“call-by-value" semantics of the C language. The
following conversion characters are legal:

d

indicates that a decimal integer is expected in the input
stream; the corresponding argument should be an integer
pointer.

indicates that an’ octal integer is expected in the input
stream; the corresponding argument should be an integer
pointer.

indicates that a character string is expected; the
corresponding argument should be a character pointer
pointing to an array of characters large enough to accept
the string and a terminating "\O", which will be added.
The input field is terminated by a space character or a
newline.

indicates that a character string of non-space, non-
slash, non-exclamation point characters is expected at
this point. Otherwise it is handled as for "s" above.
indicates that all internal pointers are to Dbe reset.
From the terminal this will force a read.

indicates that the next argument in the call to scanf is
to be taken as the address of a new argument list. All
converted inputs are stored as directed by this argument
list. There is no return to the original argument list.
indicates that a single character is expected; the
corresponding argument should be a character pointer; the
next input character is placed at the indicated spot. The
normal skip over space characters is suppressed in this
case; to read the next non-space character use %ls.
indicates a string not to be delimited by space charac-
ters. The left bracket is followed by a set of characters
and a right bracket; the characters between the brackets
define a set of characters making up the string. If the
first character is not circumflex (4), the input field is
all characters until the first character not in the set
between the brackets; if the first character after the
left Dbracket is A, the input field is all characters un-
til the first character which is in the remaining set of
characters between the brackets. The corresponding argu-
ment must point to a character array. Right bracket may
be escaped within brackets by preceding it with back
slash.

For example, the call:

int i;int j;char name[50];
scanfl(”%d%0%a” ,&i ,&j,name) ;

with the input line

77 77 test/

SCANF1:0(3L) SCCS Jul 19 1976 SCANF1:0(3L)

will assign to i the value of 77, to j the value of octal 77, and
name will contain "test\0". The subsequent call

scanf1(”%1s”,name)
will move the string "/\0O" into the array name.

Care should be exercised when reading from the terminal. If a
format 1is specified such that it successfully matches to the end
of the last string read, another read will be made from the ter-
minal. This might cause the program to go to sleep on the termi-
nal. The conversion character "a" is designed to make this prob-
lem easier to avoid from the SCCS shell.

Scanfl returns as its value the number of successfully matched
and assigned input items. This can be used to decide how many in-
put items were found. On end of file, -1 is returned; note that
this is different from O, which means that the next input charac-
ter does not match what you called for in the control string.
Scanfl, if given a first argument of -1, will scan a string in
memory given as the second argument. It differs from scanf in
that the switching of input streams from a terminal to a string
causes the pointers to the terminal stream to be lost. If a sub-
sequent read is made to the terminal it should be reinitialized
with the conversion character r. All scans from a string are au-
tomatically reinitialized.

LIBRARY
/1ib/libl.a

SEE ALSO
scanf(1s)

RESTRICTIONS
Used only prior to SCs.

SCCERR(3L) SCCs Jan 28 1976 SCCERR(3L)

NAME
sccerr -- SCC error routine
SYNOPSIS
sccerr(spcl,etype,ecode,enumber,emsg)
char *spcl,*etype,*ecode,*enumber, *emsg;
DESCRIPTION
This subroutine prints an error message on the user's standard
output device (file descriptor = 2). If the severity or type of
the error is not minor or major, sccerr returns to the calling
progranm. If, on the other hand, the severity or type of the er-
ror is minor or major, the subroutine glberr is called to print a
system error message on the system teletype, cause the error mes-
sage to be logged onto the system error file, and cause an ap-
propriate audible alarm to be generated.
Sccerr has five arguments, spcl, etype, ecode, enumber and emsg.
A description of these arguments follows.
spcl is the address of a string containing the special
characters associated with an error message.
etype is the address of a string containing the severity or
type of error.
ecode is the address of a string containing a three-
character error code.
enumber is the address of a string containing a three-
character error number.
emsqg is the address of a string containing the message as-
sociated with the error.
LIBRARY
/1lib/1libl.a
SEE ALSO
fmterr(3), glberr(3), shlerr(il)
DIAGNOSTICS
BUGS

SCCISSUE(3L) SCCS Jul 12, 1979 SCCISSUE(3L)

NAME
sccissue ~- returns an identification if the current generic,
generic issue and processor type being run

SYNOPSIS
#include <sccissue.h>
#include <errfct.h>

sccissue(flag)
int flag;

DESCRIPTION
ARGUMENTS:

flag - the error printing control flag as defined
for the e_subroutines and defined in
errfct.n

RETURNS:

An integer value which is -1 if any errors are
detected in opening, reading or the format of

the sccissue file as defined in sccissue.lh.

When no errors are detected from a call of the form:

X = sccissue(flag):;

the information is:

(&x)->r mach = the processor type as defined by the
define symbols MACH490 and MACH70 in
sccissue.h

(&x)->r genumb = the generic number of the system

|

(&x)->r isnumb = the generic issue number of the system

The header file sccissue.h should be included by
the calling program so that it may interpret the
returned value.

FILES
The sccissue file as defined by the define
sympbol I_NAME(in sccissue.n) is
read to determine the required data.
LIBRARY
/1ib/1lipl.a

SD_TBL(3L) SCCs Aug 24, 1975 SD_TBL(3L)

NAME

sd_tbl -- exXtract requested information from signal distributor
table file

SYNCOPSIS
#include <sdtbl.h>

sd_tbl (funct,fd,key, imax,iarray);
int funct, fd, imax;

int iarray[];

char *key;

sdtb_fr(fd,key, imax);
sdtb_usd(fd,imax,iarray);
sdtb_ssd(fd, imax,iarray);

DESCRIPTION
Sd tbl searches an appropriate signal distributor table file and
extracts the requested information specified by funct and key. If
an error is detected a negative value is returned as discussed
below.

The argument funct identifies the type of function that is to be
performed. Examples are SDF_FR, to extract the frame type of a
specific circuit and SDF_ALL, to extract all frame types for a
specified circuit type.

The argument f£d is the file descriptor of an opened signal dis-
tributor table file.

The argument key is the address of a null terminated character
string identifying the specific circuit or circuit type for which
the information is to be extracted.

The argument imax is an integer specifying the maximum number of
circuits of type key that can be provided.

The argument iarray, if non-zero, specifies the address of a user
supplied integer array of size imax which stores the frame types
extracted by the function SDF_ALL.

To simplify the user's interface macros have been defined to ac-
cess sd tbl. A Dbrief description of the macros and their func-
tions are given below.

sdth_fr(fd,key, imax);
Extracts the frame type for a specific circuit. If the
circuit does not exist a value of SDR_CR is returned. If
the specified circuit does exist the value >SDR_NORM is
returned to the calling program.

sdtb_usd(fd,imax,iarray);
Extracts the frame types for all supported USD circuits.

SD_TBL(3L) SCCS Aug 24, 1978 SD_TBL(3L)

The value SDR_NORM is returned upon completion.

sdtb_ssd(fd, imax,iarray);
Extracts the frame type for all supported SSD circuits.
The value SDR_NORM is returned upon completion.

The arguments to the macros are the same as those described
above.

FILES

/usr/include/sdtbl.h which specifies the structure of a signal

distributor table file entry and defines the return values and
macro calls.

/usr/include/sdtint.h which initializes an array of character
strings to valid frame types.

LIBRARY
/1ib/1libl.a

DIAGNOSTICS
The error codes returned by this subroutine are:

SDR_FUNC The specified function is invalid.

SDR_READ Error detected while trying to read the signal dis-
tributor table file.

BUGS

SINDEX(3L) SCCsS Aug 20, 1979 SINDEX(3L)

NAME
sindex -~ find position of substring within a string

SYNOPSIS
sindex(sl,s2)
char *s1, *s2;

DESCRIPTION
Sindex returns an integer indicating the starting position within
the string sl of a substring identical to string s2.
sl string to be searched.
s2 string to be searched for.
If s2 does not occur in si, the value returned is -1.
If s2 occurs more than once in si, the starting position of the
first occurrence is returned.
The strings sl and s2 are each defined as a null terminated array
of characters. The value of the integer that is returned is the
array index of the substring in si. The returned integer can
have values from zero to 32767.
An empty string is one whose first character is the null charac-
ter. If one and only one of the two argument strings is empty,
the result returned is -1. If both argument strings are empty,
the result returned is zero.

LIBRARY
/1lib/1ib3.a

SEE ALSO
pindex(3L)

SPAN(3L) scecs Aug 20, 1978 SPAN(3L)

NAME
span -- look for first char not in pattern

SYNOPSIS
span(sl,s2)
char *s1, *s2;

DESCRIPTICN
Span returns an integer indicating the success or failure of the
pattern match. If the value returned is a positive array index
the match was a success. If the value returned is -1 the match
was a failure. This function returns the index of the first
character found in the searched string that was not in the pat-
tern string.
sl the searched character string.
$2 a string of characters used as a pattern.
The pattern, s2, can be any null terminated string of characters.
Repeated characters in s2 are ignored. The pattern string "Mis-
sissippi” is equivalent to the pattern string "iMps".
This function is implemented with a table driven pattern matcher.
The empty string is defined as a string whose first character is
the null character.
The errcr code, -1, is returned only if the searched string, si,
is empty.
If a character not in the string 82 is found in the string sl,
the array index of the character position in sl will be returned.
If the entire string sl is searched and every character matches
the pattern, the length of the string sl is returned. The length
is the array index of the terminating null byte.

LIBRARY
/1ib/1ib3.a

SEE ALSO

pspan(3L)

SPINOFF(3L) SCCs Apr 11, 1980 SPINOFF(3L)

NAME
spinoff -- ask user of process is to be spun off, then spin off
if requested.

SYNOPSIS
spinoff(sig, sigval)

DESCRIPTION
Sig is the signal which is to be sent to the spunoff process in
case the user wants to abort it using the ABORT input message.
Sigval is the interrupt address in the calling program. 0 and 1
are also acceptable values for sigval. If sig is not a legal
signal, INTR is used, but note that INTR's and QUIT's are ignored
automatically.

Spinoff prompts the user to determine if process is to be spun
off. If not, it returns a value of 0. If yes, it forks twice; the
resulting processes do the following:

grandparent (original process):
generates control file, passes it to
child, waits for child to initialize it,
then exits so that parent shell will return.

parent:
waits for child to die, then removes control
file and exits. removing control file is
its only function.

child:
sets up control file passed from grandparent,
sets up abort signal by doing signal(sig, sigval)
makes himself low priority (20),
and returns a 1 to calling program.

If any 1/0 error occurs, or if either fork fails, an appropriate
error message is printed and a 0 is returned, as if the user had
indicated no spinoff.

LIBRARY
/1lib/libl.a

STDTIME(3L) sces Jul 13, 1979 STDTIME(3L)

NAME
stdtime -- get date, time
SYNCPSIS :
char *stdtime(tvecptr)
long *tvecptr;
DESCRIPTION
Converts the time pointed to by tvecptr (such as returned
by time(2)) and returns a pointer of the character string
pm/dd/yy hh:mm
SCCS
with date and time filled in
LIBRARY
/1ib/libl.a
SEE ALSO
timoa(3L)

STOLC

NAME

SYNOP

DESCR

FILES
LIBRA

(3L) SCCS Jan 25, 1982 STOLC(3L)

stolc - ASCII string to lower case conversicn

S18
stolc(strptr)
char #strptr;

nstolo(strptr, n)
char ¥strptr;
int n;

argstolc(arge, argptr)
int arge;
ohar %argptr(];

IPTION
stolc -- scans the null-terminated, ASCII string pointed to by
"strptr' and converts all upper case ASCII characters into lower

case ASCII characters.

nstolc -- scans at most the first 'n' characters in the null-
terminated, ASCII string pointed tc by 'strptr' and converts all
upper case ASCII characters into lower case ASCII characters.

argstolc -- converts arguments te main programs - (by using arge
and argv as arguments to the routine) cr any null-terminated ar-
ray of null-terminated ASCII strings to lower case. targce!
represents the number of null-terminated ASCII strings in the ar-
ray ‘argptr'.

RY
/lib/1ib3.a

STYP_NAMS(3L) SCCS Nov 4, 1979 STYP_NAMS(3L)

NAME
styp_nams -- Initialize lists of names of supported network
switch types

SYNOPSIS
#include <nwktbl.h>

DESCRIPTION
Lists of lower and upper case names of supported network switch
types referenced by common header file nwktbl.h:

char =*styp lnams{] {
"nn
14
"ferreed"”,
"remreed”,

char *styp unams[] {
”"n
"PFERREED",
"REMREED",

LIBRARY
/lib/libl.a

SUBSTR(3L) SCCs Aug 20, 1979 SUBSTR(3L)

NAME
substr -- copy substring of a string

SYNOPSIS
substr(s1,s2,nl,n2)
char *s1, *s2;
int nl1, n2;

DESCRIPTICN
Substr returns an integer whose value is the length of the target
string si. The substring of s2 as specified by nl and n2 is
copied into sl. The value returned is the same as that returned
by the function len.

S$1 the target string into which the extracted substring is
copied. The target string is null terminated.

S2 the string from wnich the substring is extracted.

nl an integer that is the array index indicating the starting
position of the substring in s2.

nZ2 an integer that is the array index indicating the position of
the last character to be transferred to sl.

An empty string is one whose first character is the null charac-
ter. If the source string, s2, is empty, the target string, si,
is set to empty and the value return is -1. The exception to the
above is when nl is zero and n2 is zero or larger. In this case
the value returned is zero.

If the address pointed to by EZL is zero, the wvalue returned is
-1.

If nl is larger than n2 or is negative or indexes a character
past the end of the string, the target string is set empty and
the value returned is -1.

The value of n2, however, may be any positive number. If n2
indexes a character past the end of the source string, the sub-
string will terminate with the last character of the the source
string.

The only time that zero is returned is when nl indexes the null
character of the source string. If nl indexes the null character
of the source string the target string is set empty but a zerc is
returned. For these cases n2 may be equal or greater than nl.

LIBRARY
/1ib/1ib3.a

SUBSTR(3L) SCCs Aug 20, 1979 SUBSTR(3L)

SEE ALSO
psubstr(3L)

TELLNICE(3L) SCCs May 25 1977 TELLNICE(3L)

NAME
tellnice -- find nice level

SYNOPSIS
tellnice()

DESCRIPTION
fellnice returns the nice level of the current process.

LIBRARY
/lib/libl.a

SEE ALSO
nice (2)

DIAGNOSTICS

BUGS
If the current nice level is negative and the effective user id
is not the super user, the nice level is changed to zerc. This
results from the fact that tellnice determines the nice level by
setting the nice level to zero, noting the old value returned,
and resetting the nice level.

TERMSG(3L) SCCS Jun 26, 1979

NAME
termsg -- array of termination messages

SYNOPSIS : =
extern charf*termsg;
DESCRIPTION

source:

char »termsgl] {
"Hangup" ,
"Interrupted”,
"QUit" ,
"Tllegal Instruction",
"Trace/BPT Trap",
"I0T Trap",
"EMT Trap",
"Floating Point Exception",
"Killed",
"Bus Error",
"Memory Fault",
"Bad System CallY,
"Broken Pipe",
"Alarm Timeout",
"Software Kill",
"16" o
"1'7" o
"Child Death",
"Power Fail",
"20“ 9
"21“ 5
"22" o
l!23" o
"24" .
"25" 5
"26" 0
"2'7" -
"28"'
ll29" o
"30",
"31"

};

TERMSG(3L)

If a parent waits for the death of a child, a status is returned.
The low byte of the status gives the reason why it terminated.
This data structure contains common error messages to be used Dby
the parent when reporting an error in termination.

LIBRARY
/1lib/libl.a

TERMSG(3L) SCCS Jun 26, 1979 TERMSG(3L)

SEE ALSO
signal(2), wait(2)

TIMTOA(3L) SCCS July 19, 1978 TIMTOA(3L)

NAME
timtoa - Convert time in seconds to an ASCII string.

SYNOPSIS
timtoa (tptr,tsec)
char *tptr
long *tsec

DESCRIPTION
This subroutine takes from tsec a time in seconds such as re-
turned by time(2) or atotim(3L) and converts it into a null ter-
minated string of the format "mmddhhnnyy" which it stores in

tptr.
mm - 2 digit month 01 to 12
dd - 2 digit day 01 to 31
hh - 2 digit hour 00 to 23
nn - 2 digit minutes 00 to 58
yy - 2 digit year.

Note that the seconds are truncated and not rounded to the
nearest minute.

If successful a zero is returned, otherwise, -1 is returned.

LIBRARY
/1lib/1ibl.a

SEE ALSO
time(2),ctime(3),atotim(3),stdtime(3L)

DIAGNOSTICS
A -1 is returned if it encounters an error (when calling local-
time).

77TOA(3L) SCCS Aug 20, 1979 ?7TOA(3L)

NAME

?7toa - machine format to ASCII conversion

SYNOPS1IS

??toa(sl,nl)
char *s1;
int nl;

DESCRIPTION

??toa describes a family of 10 functions which convert binary
numeric representations of a word or a double word to ASCII
string format. The first five functions convert a word or in-
teger to a string. The second five functions convert a double
word or long to a string. The following is a list of the
subroutine names:

btoa =~ binary

dtoa - signed decimal
etoa - octal

utoa - unsigned decimal
xtoa - hexadecimal

lbtoa - long binary

ldtoa - long signed decimal

~ long octal

- long unsigned decimal
Ixtoa - long hexadecimal

These functions return an integer indicating the length of the
generated string s1 if no error occurred. If an error occurred,
the value returned is zero. The value returned is the same as
would be returned by the len function. The only cause for an er-
ror is the address zero for the string pointer sl.

S1 points to a pbuffer where the generated string will be stored.
The buffer length is always assumed to be sufficient. The gen-
erated string is a null terminated string.

nl an integer or long to be evaluated. Depending upon the func-
tion, the integer or long will be converted to an ASCII string.

The string generation conventions are minimum length strings ex-
cept for the binary case in which leading zeros are preserved.
In all conversions except binary leading zeros are deleted. For
signed conversions, only the minus sign is generated. The ter-
minating null character is placed immediately after the last
numeric character. A zero numeric value will generate a string
containing a single zero character.

The ranges of each of the conversion types are

btoa - 16 zero's to 16 one's
dtoa -32768 to 32767

oto C to 177777

uto 0 to 65535

)
i

|

v
1

s

?7TOA(3L)

xtoa
lbtoa
1dtoa
lotoa
lutoa
Ixtoa
LIBRARY
/lib/1lib3.a
SEE ALSO
ato??(3L)

SCCs Aug 20, 1879

0 to FFFF

32 zero's to 32 cne's
-2147483648 to 2147483647
0 to 37777777777

0 to 4294967295

0 to FFFFFFFF

??TOA(3L)

TRANS(3L) sces Aug 20, 1979 TRANS(3L)

NAME

trans -- translate characters

SYNOPSIS

trans(sl,s2)
char *s1, *s2;

DESCRIPTION

Trans returns an integer indicating the number of characters

‘translated. If the value returned is -1 an illegal parameter was

passed to the subroutine. Trans is a function which translates
characters in string sl based on the contents of s$2. String s2
consists of character pairs. If the first character of a charac-
ter pair is found in string sl, that character is replaced with
the second character of the character pair.

sl the processed character string.
82 a string of characters used as a pattern.

The pattern string, s2, is a null terminated string of characters
whose content is character pairs. The length of S$2 as determined
by len must be even. This function can be used to count the oc-
currence of a given character. For example, the pattern "aa"
will count the number of capital A's in the string si. If two
character pairs have the same first character, the last character
pair dominates. The pattern string "7?Mississippi" is equivalent
tc "?Mssippi”". Note that the pattern "?Mssippi" will change all
i's to p's and all p's to i's in the source string. To capital-~
ize the 1letters in a string one can use the 52 character string
"aAbBcC...2z2" as a pattern string.

This function is implemented with a table driven pattern matcher.
The empty string is defined as a string whose first character is
the null character. If either sl or s2 is empty the value re-
turned is zero.

The error code, -1, is returned if the address pointed to by sl
is zero or if the length of s2 is odd.

As the string sl is processed every character that is translated
increments the translation count which is the value returned by
the functicn.

LIBRARY

1ib/1ib3.a

TRNULL(3L) SCCs Aug 20, 1979 TRNULL(3L)

NAME

trnull -- replace a pattern char with a null

SYNOPSIS

troull(si,ci,nl)
char *s1, ci;
int nil;

DESCRIPTION

Trnull returns an integer indicating the number of matched char-
acters found in the string sl and translated to the null charac-
ter.

sl string which is to be modified by translation of matched
characters, cl, to the null character.

cl character if found in string El is translated to the null
character.

nli integer, maximum number of cl to null translations to be per-
formed.

The string sl is defined as a null terminated array of charac-
ters. The value of the integer that is returned is the number of
cl characters found in sl and replaced with a null. The maximum
number of translations is determined by nl. The actual number of
translations can vary from zero to nl depending upon the number
of ¢l characters found before encountering the terminating null
of the original string sl.

An empty string is one whose first character is the null charac-
ter. If string sl is empty or if nl is zero or negative the
value return is zero.

If the address pointed to by sl is zero, the value returned will
be -1.

If ¢l is null, trnull returns a zero.

LIBRARY

/lib/1ib3.a

UPDACME(3L) SCCs Apr 15, 1980 UPDACME(3L)

NAME

updacme -- modify ACME word and channel channel control file

SYNOPSIS

#include <acmestat.h>

updacme(flag, value, ofcname, chliname)
int flag, value;
char *ofcname, *chlname;

DESCRIPTION

FILES

This routine will be called by TRUMP (and NSCS) to modify the
ACME word in the ACMESTAT maus area and the channel control file
for the channel passed. The flag passed defines what bits in the
ACME word are to be modified (use "DEFINE"S in
/usr/include/acmestat.h). The value passed is the value retained
by the modified bits. If a change is the ALERT bit in the FS
file is required it will be made.

Arguments:

flag - bits defined in acmestat.h

value - new value defined in acmestat.h
ofcname ~ pointer to office name string
chlname - pointer to channel name string

Return Values:

0 if sucessful
-1 if system error
-2 if illegal flag

NOTE: The calling routine must lock the LN _RC_SEM semaphore.
Alsc this routine uses the "e " routines so messages are stored
up (in case of system errors) and must be accessed via "e output”
or "e_wrapup".

/dev/maus/acmestat
/sccetc/fs
/office/<ofcname>/<chlname>

LIBRARY

/1ib/1ibl.a

UPDFS(3L) SCCS Apr 15, 1980 UPDFS(3L)

NAME
updfs -- update FS file

SYNOPSIS
#include <chl.h>

updfs (value, chlhdr)
int value;
struct CHLHDR *chlhdr;

DESCRIPTION
This routine updates the FS file by setting the alerting bit to
the wvalue passed in value. This is done only if logging is ac-

tive on the channel. chlhdr is a pointer to the CHLHDR structure

defined in /usr/include/chl.h. p

Return values:

-1 if system error
0 otherwise

FILES
/sccetc/fs

LIBRARY
/lib/1libl.a

UPDOFC(3L) sces Dec 17 1980 UPDOFC(3L)

updofc ~- update default office name

SYNOPSIS

updofc(name)
char *name;

DESCRIPTION

Updofc changes the default office to the name given. This is
done by calling setdfprm(3) to change or create a line in the
.dftparm file in the current directory (usually a user directory)
of the form
OFFICE=/office/name
Updofc allows name to take either of two forms:
cfficename

officename.chlname

In the latter case the .chlname is ignored.

DIAGNOSTICS

A -1 is returned if the name is too long, or there are troubles
creating the .dfltparm file, in which case errno is set and an
"e_" error message is stored that can be output by e output(3).

LIBRARY

/lib/1ibl.a

Does not check to insure that name corresponds to a valid office
name. c

SEE ALSO

lopen(3), getdfprm(3), e_output(3), e_syscall(3).

[N

UTOATNN(3L) SCCS Apr 11, 1980 UTOATNN(3L)

NAME
utoatnn -- convert unsigned integer to ASCII TNN

SYNOPSIS
utoatnn(str, value)
char str{];
unsigned value;

DESCRIPTION
This subroutine converts an unsigned integer into an ASCII
representation of a trunk network number. A companion subroutine,
atnntou, performs the conversion in the reverse direction.

Preconditions:
1. It is assumed that the string, str, is large enough
to heold the resulting string.

Postconditions:

1. There are no failure modes. There is no return value.

2. The resulting null terminated string is exactly six chars
long, excluding the null.

3. Two (2) implies that leading zeroes are not suppressed.

LIBRARY
/1ib/libl.a

SEE ALSO
atnntou(3L)

VQSORT(3L) SCCs Rpr 9, 1980 VOSORT(3L)

NAME
vgsort -- sorting algorithm
SYNOPSIS
vqsort(ptr, cnt, rec_size, p_comparison)
char *ptr;
int (**p_comparison)();
DESCRIPTION

Vgsort is an inplementaticon of the "quicker" sort algorithm. It
allows a vector of compariscon routines. When "ties" in the sort
code are encountered, then the next comparison routine is called
in order to resolve it unless a NULL is the next pointer.

Arguments

ptr -- is a pointer to an array of "records" to
be sorted.

cnt -~ is the number of records.
rec size -- is the size of each record in bytes.

p comparison -- is the address of an array of
comparison routines. It sets the following
externals:

vV _siZe -- the size of the records being sorted.

v_comp —-= a pointer to the first comparison
routine.

vV _Cvec == a pointer to the vector of comparison
routines.

v cc -- the return value of the comparison
routine.

This subroutine returns nc useful value.

LIBRARY
/1lib/1ibil.a

SEE ALSO
fixedsort(3L), gsort(3C)

WRITINT(3L) sces Mar 15 1977 WRITINT(3L)

NAME
writint -- buffered output for files containing integer data

SYNOPSIS
#include <rwint.h>

writint (func,recptr,outbuf)
int func;

int *recptr;

struct IOBUF *outbuf;

DESCRIPTION
This subroutine provides buffered output capability for files
containing integer data in records whose size is a power of two.
It returns a 1 if the task is completed successfully or a nega-
tive value if an error is detected.

The argument, func , must contain one of the following values:

-1 when the calling program has finished writing
data to an output file. It causes a partially
filled output buffer, if one exists, to be written
to the output file.

o] when the calling program is writing data to
an output file.

The argument, recptr , is the address of the record that is to be
written to the output file.

outbuf is the address of a 522(10) byte buffer area whose format
is:

struct IOBUF
{ int fildes;
int errval;
int idata;
int recsize;
int nread;
int intbuf[IBUFSIZE];

o

where fildes is the file descriptor of an open output file.
errval is not used by this subroutine.
idata is the current number of records that has Dbeen

written into the buffer by the calling program.
The calling preogram initializes this variable Dy
setting it equal to O.

[

WRITINT(3L) SCCS Mar 15 1977 WRITINT(3L)

FILES

recsize is the record size in words. The record size
must be a power of two; ie. 2, 4, 8, 16, etc.,
words.

nread is not used by this routine.

intbuf is the output buffer.

IBUFSIZE contains the value, 256.
The calling program must initialize the following structure vari-
ables for each output file that is to be written. These vari-
ables must be initialized prior to the first call to this
subroutine to write to the appropriate output file.

<structure>.fildes= <file descriptor of output file>;

<structure>.idata= 0; indicates that buffer is empty
<structure>.recsize= <record sizs in werds>;

Once the calling program has finished writing data to an output
file, it must call this subroutine, as shcwn below, so that a
partially filled output buffer, if one exists, will be written to
the output file. This call should be made as follows:

writint(-1,&<previously written record>,&<output buffer>);

Note that func has the value, -1, which forces a partially filled

‘output buffer, if one exists, to be written to the output file.

/Jusr/include/rwint.h which contains the definitions for IORUF and
IBUFSIZE.

LIBRARY

/1ip/libl.a

SEE ALSO

readint(3)

DIAGNOSTICS

BUGS

The error ccdes returned by this subroutine, in r0, are:

-1 1/0 error.

