INTRO(3)

NAME

CB—UNIX 2.1 INTRO(3)

intro — introduction to subroutines and libraries

SYNOPSIS

#include <stdio.h>
#include <math.h>

DESCRIPTION
This section describes functions that may be found in various libraries, other than those func-
tions that directly invoke UNIX system primitives, which are described in Section 2 of this
volume. Functions of certain major collections are identified by a letter after the section
number at the head of the page:

(3C)

(3M)

These functions, together with those of Section 2 and those marked (3S), constitute
library /ibc, which is automaticaily loaded by the C compiler, cc(1). The link editor /d(1)
searches this library under the —Ilc¢ option. Declarations for some of these functions
may be obtained from ‘‘include’’ files indicated on the appropriate pages.

Since this release contains two versions of the C compiler, there are two versions of the
C libraries supplied (/ibc.a for cc(1) and liboc.a, liboa.a, and liboS.a for occ (1)). The
contents of the libraries are identical in interface and function unless otherwise indicated.
Any differences are documented as follows: any manual page whose name does not end
with :O is in the standard C library. If the routine is not the same in the old library,
there will be another version of the manual page suffixed with :0. If the routine exists
only in the old version of the library, there will exist only a manual page suffixed with
0.

These functions constitute the math library, /ibm. They are automatically loaded as
needed by the Fortran compiler f77(1). The link editor searches this library under the
~1m option. Declarations for these functions may be obtained from the ‘“‘include” file
<math.h>.

(3S) These functions constitute the ‘‘standard [/O package,”” see stdio(3S): These functions
are in the library /libc, already mentioned. Declarations for these functions may be
obtained from the “‘include’ file <stdio.h>.

(3X) Various specialized libraries. The files in which these libraries are found are named on
the appropriate pages.

FILES

/lib/libc.a

/lib/liboc.a

/lib/liboa.a

/1ib/1iboS.a

/lib/libm.a

/lib/libplot.a

SEE ALSO
ar(1), cc(1), oce(1), £77(1), I1d(1), am(D), intro(2), stdio(3S), ostdio(3S), 1ib7(3X), libil (3X).
DIAGNOSTICS

Functions in the math library (3M) may return conventional values when the function is
undefined for the given arguments or when the value is not representable. In these cases, the
external variable errio (see inro(2)) is set to the value EDOM or ERANGE.

ASSEMBLER

In assembly language, these functions may be accessed by simulating the C calling sequence.
For example, ecvt{3C) might be called as follows:

Page 1

November 1979

INTRO (3)

November 1979

.globl

setd
mov
mov
mov
movf

st

add

CB—UNIX 2.1

_cevt

Ssign,— (sp)
Sdecpt,— (sp)
ndigit,— {sp)
value,— (sp)
pc._ecvt
S14..sp

INTRO(3)

Page 2

A64L (3C) . CB-UNIX 2.1 A64L (3C)

NAME

ab4l, 16da — convert between long and base-64 ASCII

SYNOPSIS

long a64l (s)
char =s;

char *164a (1)
long 1;

DESCRIPTION

BUGS

These routines are used to maintain numbers stored in base-64 ASCIL. This is a notation by
which long integers can be represented by up to six characters; each character represents a
‘‘digit’’ in a radix-64 notation.

The characters used to represent ‘‘digits” are . for 0, / for 1, 0 through 9 for 2—11, A through
Z for 12—37, and a through z for 38 —63.

AG64! takes a pointer to a null-terminated base-64 representation and returns a corresponding
long value. Lé64a takes a long argument and returns a pointer to the corresponding base-64
representation.

The value returned by /64a is a pointer into a static buffer, the contents of which are overwrit-
ten by each call.

November 1979

ABORT (3C) CB—UNIX 2.1 ABORT (3C)

NAME
abort — generate an 10T fault

SYNOPSIS
abort ()

DESCRIPTION
Abort executes the 10T instruction. This is usually considered a program fault by the system
and results in termination with a core dump. It is used to generate a core image for debugging.

It is possible for abort to return control if SIGIOT is caught or ignored.

SEE ALSO
adb (1), signal(2), exit(2)

DIAGNOSTICS
Usually ‘abort — core dumped’ from the Shell.

Page 1 November 1979

ABS (3C) CB—-UNIX 2.1

NAME
abs — integer absolute value

SYNOPSIS
int abs ()
int i;
DESCRIPTION
Abs returns the absolute value of its integer operand.

SEE ALSO
floor (3M).

BUGS I
You get what the hardware gives on the largest negative integer.

Page 1

ABS (3C)

November 1979

ALLOC:0(3C) CB—UNIX 2.1 ALLOC:0(3C)

NAME
alloc — core allocator

SYNOPSIS
char *alloc (size)

DESCRIPTION
Alloc has been made obsolete by malloc(3C). It continues to exist for old programs which may
still use it but it calls malloc to do all the work. Alloc is given a size in bytes; it returns a
pointer which is even and hence can hold an object of any type, addressing an area of at least
the requested size. A =1 return indicates failure to allocate.

SEE ALSO
malloc(3C)

Page 1 November 1979

—

ALRM(@3C) CB—UNIX 2.1 ALRM@3C)

NAME
alrm — audible alarm

SYNOPSIS
alrmopen (name,mode)
alrmelos ()
alrminor (time)
alrmajor ()
alrmrset ()
alrm (function)

char *name
int mode, function

DESCRIPTION
The airm subroutines provide an interface the BD04 alarm panel driver. Name is the UNIX spe-
cial file name of the BD04 device; mode lists the open permissions desired for the BDO04 device -
write permission must be granted or the interface subroutines will not work.

Alrmopen opens the UNIX file name associated with the BD04 and squirrels away the file
descriptor returned by open(2). Alrmopen must be called first; if it is not then none of the
other interface subroutines will work correctly. Alrmclos closes the file.
Alrminor causes a minor alarm of time seconds duration.
Alrmajor causes a major alarm; it stays on until an alrmrset .
Alrmrset turns off all alarms.
The alrm subroutine takes as an argument a function code:
0 Reset alarms.
1 Sound a ! second minor alarm.

3 Sound a major alarm.

SEE ALSO
open(2)

DIAGNOSTICS
A —1 return indicates an error.

November 1979 Page 1 November 1979

ASSERT (3X) CB—UNIX 2.1 ASSERT (3X)

NAME
assert — program verification

SYNOPSIS
#include <assert.h>

assert (expression)

DESCRIPTION
This macro is useful for putting diagnostics into programs. When it is executed, if expression is
false, it prints ‘‘Assertion failed: file xyz line nnn’’ on the standard error file and exits. Xyz is
the source file and nnn the source line number of the asserr statement. Compiling with the
option —DNDEBUG will cause assert to be ignored.

November 1979 Page 1 November 1979

ATOF (3C) CB—UNIX 2.1 ATOF (3C)

NAME
atof, atoi, atol — convert ASCII to numbers

SYNOPSIS
double atof (nptr)
char *nptr;
atoi (nptr)
char *nptr;
long atel (nptr)
char *nptr;
DESCRIPTION

These functions convert a string pointed to by nptr to floating, integer, and long integer
representation respectively. The first unrecognized character ends the string.

Atof recognizes an optional string of tabs and spaces, then an optional sign, then a string of
digits optionally containing a decimal point, then an optional e or E followed by an optionally
signed integer. . ‘
Atoi and arol recognize an optional string of tabs and spaces, then an optional sign, then a string
of digits.

SEE ALSO
scanf (3S)

BUGS
There are no provisions for overflow.

Page 1 November 1979

ATOF:0(3C) CB—-UNIX 2.1 ATOF:0(3C)

NAME

atof, atoi, atol — convert ASCII to numbers
SYNOPSIS

double atof (mptr)

char *nptr;

atoi (nptr)
char *nptr;

long atei (nptr)
char *nptr;

DESCRIPTION
These functions convert a string pointed to by npir to floating, integer, and long integer
representation respectively. The first unrecognized character ends the string.

Atof converts a string to a floating number. Nptr should point to a string containing an optional
minus sign followed by a string of digits optionally containing one decimal point, then followed
optionally by the letter e, followed by a signed integer.

9

Atoi and atol recognize an optional string of tabs and spaces, an optional ’-’ and then an unbro-

ken string of digits.

DIAGNOSTICS
There are none; overflow results in a very large number and garbage characters terminate the
scan.

BUGS
Atof should accept initial <+, initial blanks, and E for e. Overflow should be signaled.

Page 1 November 1979

BESSEL (3M) CB—-UNIX 2.1 BESSEL (3M)

NAME

j0, i1, jn, y0, y1, yn — bessel functions
SYNOPSIS

#include <math.h>

double j0 (x)
double x;

double j1 (x)
double x;

double jn (n, x)
double x;

double y0 (x)
double x;

double y1 (x)
double x;

double yn (n, x)

int n;

double x;
DESCRIPTION

These functions calculate Bessel functions of the first and second kinds for real arguments and
integer orders.

DIAGNOSTICS
Negative arguments cause y0, yI, and yn to return a huge negative value.

November 1979 * Page l November 1979

CALL:0(3C) CB-UNIX 2.1 CALL:0(3C)

NAME
lcall, vcall — create and execute a new process

SYNOPSIS
lcall (name, arg0, argl, ..., argn, 0)
char *name, *arg0, *argl, ..., =argn;
veall (name, argv)
char *name;

DESCRIPTION
The call system call has been removed from both the old and new C libraries. For compatibility
with existing code, library interfaces to lcall and vcall have been provided which simply cail Sork
and then execl or execv, respectively, with the appropriate arguments. The process id of the
new process is returned from a successful call.

NOTE
The use of call is discouraged; use fork and exec instead.

SEE ALSO
fork(2), exec(2)

Page 1 _ November 1979

CALLOC:0(38) CB—-UNIX 2.1 CALLOC:0(38)

NAME
calloc, cfree — core memory allocator

SYNOPSIS
scalloc (size)
int size;
cfree (ptr)
int =ptr;
DESCRIPTION

Calloc and cfree provide a simple general-purpose memory allocation package. Calloc returns a
pointer to a block containing zeros of at least size bytes beginning on a word boundary.

The argument to cfree is a pointer to an area previously allocated by calloc; this space is made
available for further allocation, but its contents are left undisturbed.

Needless to say, grave disorder will result if the space assigned by calloc is overrun or if some
random number is handed to ¢free.

Calloc allocates the first big enough contiguous reach of free space found in a circular search
from the last block allocated or freed, coalescing adjacent free blocks as it searches. It calls
malloc t0 get more core.

SEE ALSO
malloc(3C), break(2)

DIAGNOSTICS
Calloc returns a NULL (0) if there is no available memory.
Exit with the message corrupt arena means you have stored outside the bounds of a block. To
get a core dump, use adb(1) to plant a breakpoint on exit(2).

November 1979 . Page 1 ' November 1979

CLEARER:0(3S) CB—-UNIX 2.1 CLEARER:0(3S)

NAME
clearer — stream error reset

SYNOPSIS
#include <stdio.h>

clearer (stream)

DESCRIPTION
Clearer resets the error indication on the named stream.

SEE ALSO
fopen (3S), open(2)

Page 1 November 1979

CNVTIME (3C) CB—UNIX 2.1 CNVTIME (3C)

NAME

cnvtime, gtime — convert string to internal time

SYNOPSIS

#include <sys/types.h>

time_t cnvtime (year, month, day, hour, minute, second)
int year, month, day, hour, minute, second;

time_t gtime (str)
char *str;

SYNOPSIS

Cnvtime converts a time specified by year, month, day, hour, minuteandsecond to the
system’s internal time_t form of storing time. Cnvtime will correct as required for daylight
time and leap years. The time supplied as input must be a local time.

Gtime will also return a time_t but expects a string as input with the same format as the
string supplied to the date(1) command. To reiterate the form .of the string is
MMddhhmmyy where MM is the month of the year, dd is the day of the month, hh is -
the 24 hour hour of the day, mm is the minute of the hour, and the optional yy is the
last two digits of the year. If yy is not supplied the current year is assumed.

SEE ALSO

date(1), ctime(3C)

DIAGNOSTICS

A —1 is returned if the conversion can not be effected because of an invalid specification.

November 1979 Page 1 November 1979

.CONNS(3C) CB—UNIX 2.3 CONNS(3C)

NAME
conns — connect to a remote system

SYNOPSIS
conns (telno, speed, modes, Iname, class)
char =telno;
short speed, modes;
char #*Iname;
char =class;

DESCRIPTION
Conns will allocate the necessary hardware resources and attempt to place a phone call to the
telephone number specified. If the telephone number begins with a slash (*/’), conns assumes
that a hard wired connection is to be made and will not place a phone call. In either case, conns
will set the line to the speed and mode specified. (Speed should be the integer value of the
baud desired —e.g., 1200. Modes should be the desired initial line modes—see ioct/(2).)

If successful, conns will return a file desriptor that can be used to read and write from/to the
remote system and deposit in */name a pointer to the pathname of the line that was selected to
establish the connection. Conns will not return the file descriptor until carrier is detected.

For dialup calls conns will, if there is any equipment available, attempt to place the call twice
before giving up. If the user wants to make more or fewer attempts the global integer _con_try
should be assigned the number of attempts desired.

If conns returns a value less than zero, a connection could not be established. The possible
error returns and their associated meanings are listed below:

=1 No carrier, busy, or no answer.

-2 All equipment in use.

-3 Bad speed specification.

—4 Bad telephone number. \
~5 Joctl failed. ; ; N
—6 Bad L-devices file. (W\CW | & ff [‘A euices > e'ff :)M’% Wk\(\vg

= No equipment exists to make desired call.

The class argument is used to specify the type of equipment to be used for the call and what
special action, if any, should be taken by conns. Class is of the form [type/—flags/] where type is
a string that is required to match the first entry in the L-devices file if the entry is to be con-
sidered, flags, if present, may currently consist only of the letter I. If the call is a hard wired
call type is ignored. If the —I flag is present conns will not actually place the call but merely
determine if equipment to make the call is currently available. In this case the return value is
as normal except the file descriptor that is returned for a success indication is not open. By way
of example, to initiate a normal acu call class should be the string ACU. To inquire if such a
call could be made without actually making the call class should be the string ACU—L

Conns uses the uucp(1C) database to find available autodialers and datasets.

SEE ALSO
cu(1C), ct(1C), uucp(1C), cspeed(3¢)

FILES
Jusr/lib/uucp/L-devices

December 14, 1980 Page 1 December 14, 1980

CONY (3C) CB—-UNIX 2.1 CONY (3C)

NAME
toupper, tolower, toascii — character translation

SYNOPSIS
#include <ctype.h>

int toupper (c)
int c;

int tolower (c)
int ¢;

int _toupper (c)
int ¢;

int _tolower (c)
int ¢;

int toascii (¢)
int ¢;

DESCRIPTION
Toupper and rolower have as domain the range of gerc: the integers from —1 through 255. If
the argument of roupper represents a lower-case letter, the resuit is the corresponding upper-
case letter. If the argument of rolower represents an upper-case letter, the result is the
corresponding lower-case letter. All other arguments in the domain are returned unchanged.

_toupper and _tolower are macros that accomplish the same thing as roupper and rolower but have
restricted domains and are faster. _toupper requires a lower-case letter as its argument; its result
is the corresponding upper-case letter. _rolower requires an upper-case letter as its argument; its
result is the corresponding lower-case letter. Arguments outside the domain cause garbage
results.

Toascii yields its argument with all bits turned off that are not part of a standard ASCII charac-
ter; it is intended for compatibility with other systems.

SEE ALSO
ctype(3C)

Page | November 1979

CRYPT(3C) CB—UNIX 2.1 CRYPT (3C)

NAME

crypt, setkey, encrypt — DES encryption

SYNOPSIS

char scrypt (key, salt)
char =key, =salt;

setkey (key)
char *key;

encrypt (block, edflag)
char =block;
int edflag;

DESCRIPTION

Crypt is the password encryption routine. It is based on the NBS Data Encryption Standard,
with variations intended (among other things) to frustrate use of hardware implementations of
the DES for key search.

The first argument to crypt is a user’s typed password. The second is a 2-character string
chosen from the set [a-zA-Z0-9./]. The salr string is used to perturb the DES algorithm in one
of 4096 different ways, after which the password is used as the key to encrypt repeatedly a con-
stant string. The returned value points to the encrypted password, in the same aiphabet as the
salt. The first two characters are the salt itself.

The other entries provide (rather primitive) access to the actual DES algorithm. The argument
of setkey is a character array of length 64 containing only the characters with numerical value 0
and 1. If this string is divided into groups of 8, the low-order bit in each group is ignored,
leading to a 56-bit key which is set into the machine.

The argument to the encrypr entry is likewise a character array of length 64 containing 0’s and
1’'s. The argument array is modified in place to a similar array representing the bits of the argu-
ment after having been subjected to the DES algorithm using the key set by setkey. If edflag is
0, the argument is encrypted; if non-zero, it is decrypted.

SEE ALSO

BUGS

Page 1

passwd (1), passwd(5), login(1), getpass(3C)

The return value points to static data whose content is overwritten by each call.

November 1979

CSPEED (3C) CB—UNIX 2.1 CSPEED (3C)

NAME
cspeed — convert baud to speed number

SYNOPSIS
int cspeed (baud)
int baud;

DESCRIPTION
Cspeed will map its integer argument to a speed number that is suitable for use by ioctl(2).
Thus, for example, if its argument is 9600, its return value is 13. If the argument cannot be
mapped to a legal speed number, a =1 is returned.

SEE ALSO
ioctl (2)

Page 1 November 1979

CTERMID (3S) CB-UNIX 2.1 CTERMID(3S)

NAME
ctermid — generate file name for terminal

SYNOPSIS
#include <stdio.h>

char =ctermid (s)
char =s;

DESCRIPTION
Crermid generates a string that refers to the controlling terminal for the current process when
used as a file name.

If (int)s is zero, the string is stored in an internal static area, the contents of which are
overwritten at the next call to crermid, and the address of which is returned. If (int)s is
nonzero, then s is assumed to point to a character array of at least L_ctermid elements; the
string is placed in this array and the value of sis returned.

NOTES
The difference between crermid and rvname is that rryname must be handed a file descriptor, and
returns the actual name of the terminal associated with that file descriptor, where crermid

returns a magic string (/dev/In) that will refer to the terminal if used as a file name. Thus
trvname 1s useless unless the process already has at least one file open to a terminal.

SEE ALSO
ttyname (3C)

Page | November 1979

CTIME (3C) CB-UNIX 2.1 CTIME (3C)

NAME

ctime, localtime, gmtime, asctime, timezone — convert date and time to ASCII

SYNOPSIS

char *ctime(clock)
long *clock;

#include <time.h>

struct tm *localtime(clock)
long =clock;

struct tm *gmtime(clock)
long =clock;

char *asctime(tm)
struct tm *tm;

char stimezone(zone, dst)

DESCRIPTION

Page 1

Ctime converts a time pointed to by clock such as returned by ftime(2) into ASCII and returns a
pointer to a 26-character string in the following form. All the fields have constant width.

Sun Sep 16 01:03:52 1973\n\0

Localtime and gmtime return pointers to structures containing the broken-down time. Localtime
corrects for the time zone and possible daylight savings time; gmtime converts directly to GMT,
which is the time UNIX uses. Asctime converts a broken-down time to ASCII and returns a
pointer to a 26-character string.

The structure declaration from the include file is:

/* @ (#)time.h 2.1]
/!i

* A pointer to this structure is

* returned by localtime() and gmtime ()

*

/

struct tm {

int tm_sec;

int tm_min;

int tm_hour;
int tm_mday;
int tm_mon;
int tm_year;
int tm_wday;
int tm_yday,
int tm_isdst,

h
These quantities give the time on a 24-hour clock, day of month (1-31), month of year (0-11),

day of week (Sunday = 0), year — 1900, day of year (0-365), and a flag that is nonzero if day-
light saving time is in effect.

When local time is called for, the program consults the system to determine the time zone and
whether the standard U.S.A. daylight saving time adjustment is appropriate. The program
knows about the peculiarities of this conversion in 1974 and 1975; if necessary, a table for
these years can be extended.

Timezone returns the name of the time zone associated with its first argument, which is meas-
ured in minutes westward from Greenwich. If the second argument is 0, the standard name is
used, otherwise the Daylight Saving version. If the required name does not appear in a table
built into the routine, the difference from GMT is produced; e.g. in Afghanistan

November 1979

CTIME(3C) CB—-UNIX 2.1 CTIME (3C)

timezone(— (60(**4+30), 0) is appropriate because it is 4:30 ahead of GMT and the string
GMT +4:30 is produced.

SEE ALSO
ftime (2)

BUGS
The return values point to static data whose content is overwritten by each call.

November 1979 Page 2

CTIME:O (30) CB~-UNIX 2.1 CTIME:0 (30)

NAME
ctime — convert date and time to ASCII

SYNOPSIS
= char sctime (tvec)
int tvecl2];

int slocaltime (tvec)
int tvecl2l];

int *gmtime (tvec)
int tvecl2];

DESCRIPTION
= Ctime converts a time in the vector tvec such as returned by time(2) into ASCII and returns a
pointer to a character string in the form:

Sun Sep 16 01:03:52 1973
All the fields have constant width.

The localtime and gmtime entries return integer vectors to the broken-down time. Localtime
corrects for the time zone and possible Daylight Savings Time; gmtime converts directly to
GMT, which is the time UNIX uses. The value is a pointer to an integer array whose com-
ponents are:

seconds

minutes

hours

~day of the month (1-31)

month (0-11)

year 1900

day of the week (Sunday = 0)

day of the year (0-365)

Daylight Saving Time flag if non-zero

00 ~1Nnp WO

The external variable timezone contains the difference, in seconds, between GMT and local
standard time (in EST, is 5*60*60). The routine knows about Daylight Savings Time in the
U.S.A, including the peculiarities of the conversion in 1974 and 1975; if necesary, a table for
these years can be extended.

SEE ALSO
e time (2)

BUGS
The algorithm fails in Saudi Arabia, which runs on Solar Time.

November 1979 Page 1 November 1979

CTYPE (3C) CB—UNIX 2.1 CTYPE (3C)

NAME
isalpha, isupper, islower, isdigit, isalnum, isspace, ispunct, isprint, iscntrl, isascii — character
classification

SYNOPSIS

#include <ctype.h>

int isalpha (c)
int c;

DESCRIPTION
These macros classify ASCIi-coded integer values by tabie lookup. Each is a predicate returning
nonzero for true, zero for false. /sascii is defined on all integer values; the rest are defined only
where isasciiis true and on the single non-ASCIl value EOF (see sidio(35)).

isalpha ¢ is a letter
istpper ¢ is an upper case letter
islower c is a lower case letter
isdigit c is a digit
isalnum c is an alphanumeric
isspace ¢ is a space, tab, carriage return, new-line, or form-feed
ispunct ¢ is a punctuation character (neither control nor alphanumeric)
isprint ¢ is a printing character, code 040 (space) through 0176 (tilde)
iscntrl cis a delete character (0177(8)) or ordinary control character (less than 040).
isascii ¢ is an ASCII character, code less than 0200

SEE ALSO
ascii(7)

Page | November 1979

CUSERID (38) CB—-UNIX 2.1 CUSERID (3S)

NAME ,
cuserid — character user [D

SYNOPSIS
#include <stdio.h>

char +cuserid (s)
char ss;

DESCRIPTION
Cuserid generates a character representation of the user ID of the owner of the current process.
If (int)s is zero, this representation is generated in an internal static area, the address of which
is returned. If (int)s is nonzero, s is assumed to point to an array of at least L_cuserid charac-
ters; the representation is left in this array.

DIAGNOSTICS
If the user ID cannot be found, cuserid returns NULL. if s is nonzero in this case, \0 will be
placed at *s.

SEE ALSO
getlogin(3C), getpwuid(3C)

Page 1 November 1979

DTOL:0 (3C) CB—UNIX 2.1 DTOL:0(3C)

NAME
dtol, lItod — double precision integer to floating point conversion

SYNOPSIS
long dotl (d)
double d:

double ltod (t)
long t:

DESCRIPTION

Diol converts a floating point integer to the equivalent long number. Liod converts a long
integer to the equivalent floating point number.

NOTE

These routines have been replaced by the appropriate type casting operations in later versions
of the C libraries. Use (long) t and (double) d instead.

Page 1 November 1979

ECVT (3C)

NAME

CB—UNIX 2.1

ecvt, fcvt — output conversion
SYNOPSIS

char secvt (value,
double value;
int ndigit, »decpt,

char sfevt (value,
double value;
int ndigit, *decpt,

char =gcvt (value,
double value;
char *buf;

DESCRIPTION
Ecvr converts the value to a null-terminated string of ndigir ASCII digits and returns a pointer
thereto. The position of the decimal point relative to the beginning of the string-is stored
indirectly through decpr (negative means to the left of the returned digits). If the sign of the
result is negative, the word pointed to by sign is non-zero, otherwise it is zero. The low-order

digit is rounded.

ndigit, decpt, sign)

ssign;

ndigit, decpt, sign)

ssign;
ndigit, buf)

ECVT (3C)

Feve is identical to ecve, except that the correct digit has been rounded for Fortran F-format out-
put of the number of digits specified by *ndigir.

Geve converts the value to a null-terminated ASCII string in buf'and returns a pointer to buf. It
attempts to produce ndigit significant digits in Fortran F format if possible, otherwise E format,

ready for printing. Trailing zeros may be suppressed.

SEE ALSO

BUGS

printf(3S)

The return values point to static data whose content is overwritten by each call.

November 1979

e o o et S

END (3C) CB—UNIX 2.1 END (3C)

NAME
énd, etext, edata — last locations in program

SYNOPSIS
extern end;
extern etext;
extern edata;

DESCRIPTION
These names refer neither to routines nor to locations with interesting contents. The address
of etext is the first address above the program text, edara above the initialized data region, and
end above the uninitialized data region.

When execution begins, the program break coincides with end, but the program break may be
reset by the routines of brk(2). malioc(3C), standard input/output (sidio(3S)), the profile (—p)
option of cc(1), and so on. Thus, the current value of the program break should be deter-
mined by "sbrk(0)" (see brk(2)).

These symbols are accessible from assembly language if it is remembered that they should be
prefixed by _.

SEE ALSO
break(2), malloc(3C)

Page 1 November 1979

EXP (3M) CB—UNIX 2.1

NAME
exp, log, pow, sqrt — exponential, logarithm, power, square root

SYNOPSIS
#include <math.h>

double exp (x)
double x;

double log (x)
double x;

double pow (x, y)
double x, y;

double sqrt (x)
double x;

DESCRIPTION
Exp returns the exponential function of x.

Log returns the natural logarithm of x.
Pow returns .
Sqrt returns the square root of x.

SEE ALSO
hypot(3M), sinh(3M), intro(2)

DIAGNOSTICS

Exp and pow return a huge value when the correct value would overflow.

Log and pow return 0 when x is zero or negative.
Sqrtreturns 0 when x is negative.
BUGS

EXP (3M)

Pow indicates error ERANGE (see inro(2)) for nonpositive x regardless of the value of y.

Page 1

November 1979

EXPROG:0 (3C) ' CB—UNIX 2.1 EXPROG:0 (3C)

NAME

exprog — perform standard Shell execute sequence
SYNOPSIS

exprog(argyv)

char =argvll;

DESCRIPTION

Exprog has been replaced by execvp(2) in the newer versions of the compiler. Exprog attempts
to locate the file specified by argvl0] in the current directory. Argv should be an argument
string in the format required by execv (see exec(2)). If the file does not exist, exprog prepends
/bin/ to argvl0} and trys again. Upon failure it further prepends /usr and makes one last
attempt before returning with an error indication.

If the file is executable but the attempt to execute it fails (see exec(2) for reasons for failure)
exprog passes the file to the shell for interpretation as a command file.

In all cases all arguments given to exprog in the argument vector are passed to the program or
shell.

DIAGNOSTICS

BUGS

Page 1

A -1 is returned if there is no UNIX Shell. Otherwise if exprog returns, it returns the global sys-
tem error number (errno) which describes why the execute was unsuccessful.

Exprog uses the default command look-up strategy employed by the shell; however, if you have
specified an alternate look-up sequence, exprog will continue to use the default strategy. See
si(1) for details on the shell look-up. Only 100 arguments may be passed to the shell by
exprog, 2 generous but unnecessary restriction.

November 1979

FCLOSE (38) CB—UNIX 2.1 FCLOSE (3S)

NAME .
fclose, fllush — close or flush a stream

SYNOPSIS
#include <stdio.h>

int fclose (stream)
FILE =stream;

int fllush (stream)
FILE sstream;

DESCRIPTION
Fclose causes any buffers for the named siream to be emptied, and the file to be closed. Buffers
allocated by the standard input/output system are freed.

Fclose is performed automatically upon calling exir(2).

Fflush causes any buffered data for the named output stream to be written to that file. The
stream remains open.

These functions return 0 for success, and EOF if any errors were detected.

SEE ALSO
close(2), fopen(3S), setbuf(3S)

Page | November 1979

. FERROR(3S) CB—UNIX 2.3 FERROR(3S)

NAME
ferror, feof, clearerr, fileno — stream status inquiries

SYNOPSIS
#include <stdio.h>

int feof (stream)
FILE sstream;

int ferror (stream)
FILE =*stream;

clearerr (stream)
FILE =stream;

fileno(stream)
FILE =stream;

DESCRIPTION
Feof returns non-zero when end of file is read on the named input stream, otherwise zero.

Ferror returns non-zero when error has occurred reading or writing the named stream, otherwise
zero. Unless cleared by clearerr, the error indication lasts until the stream is closed.

Clearerr resets the error indication on the named stream.
Fileno returns the integer file descriptor associated with the stream, see open(2).
These functions are implemented as macros; they cannot be redeclared.

SEE ALSO
fopen(3S), open(2)

February 11, 1980 Page 1 February 11, 1980

FLOOR (3M) CB—-UNIX 2.1 FLOOR (3M)

NAME

floor, fabs, ceil, fmod — absolute value, floor, ceiling, remainder functions
SYNOPSIS

#include <math.h>

double floor (x)
double x;

double ceil (x)
double x;

double fmod (x, y)
double x, y;

double fabs (x)
double x;

DESCRIPTION
Fabs returns | x|.

Floor returns the largest integer (as a double precision number) not greater than x.
Ceil returns the smallest integer not less than x.
Fmod returns the number fsuch that x = jy + f for some integer /,and 0 < /< y.

SEE ALSO
abs(3C)

Page | November 1979

FOPEN (38) CB—UNIX 2.1 FOPEN (3S)

NAME
fopen, freopen, fdopen — open a stream

SYNOPSIS
#include <stdio.h>

FILE =fopen (filename, type)
char =filename, *type;

FILE »freopen (filename, type, stream)
char =filename, *type;
FILE +stream;

FILE *fdopen (fildes, type)
int fildes;
char =type;
DESCRIPTION
Fopen opens the file named by filename and associates a stream with it. Fopen returns a pointer
to be used to identify the stream in subsequent operations.

Type is a character string having one of the following values:

fnohn

T open for reading

"w" create for writing

"a" append; open for writing at end of file, or create for writing
"r+" open for update (reading and writing)

"w+" create for update

"a+" append; open or create for update at end of file

Freopen substitutes the named file in place of the open stream. It returns the original value of
stream. The original stream is closed, regardless of whether the open ultimately succeeds.

Freopen is typically used to attach the preopened constant names, stdin, stdout, stderr, to
specified files.

Fdopen associates a stream with a file descriptor obtained from open, dup, creat, or pipe(2). The
type of the stream must agree with the mode of the open file.

When a file is opened for update, both input and output may be done on the resulting stream.
However, output may not be directly followed by input without an intervening Jfseek or rewind,
and input may not be directly followed by output without an intervening fSeek , rewind , or an
input operation which encounters end of file.

SEE ALSO
open(2), fclose(3S)

DIAGNOSTICS
Fopen and freopen return the pointer NULL if filename cannot be accessed.

November 1979 Page 1 November 1979

FOPEN:0(3S) CB-UNIX 2.1 FOPEN:0 (38)

NAME

fopen, freopen — open a stream

SYNOPSIS

#include <stdio.h>

FILE =*fopen (filename, type)
char +filename, stype;

FILE *freopen (filename, type, stream)
char +filename, »type;
FILE sstream;

DESCRIPTION

Fopen opens the file named by filename and associates a stream with it. Fopen returns a pointer
to be used to identify the stream in subsequent operations.

Type is a character string having one of the following values:

"o

r" open for reading

w._.n

w" create for writing

n_1n

a" append; open for writing at end of file, or create for writing

Freopen substitutes the named file in place of the open swream. It returns the original vaiue of
stream. The original stream is closed, regardless of whether the open ultimately succeeds.

Freopen is typically used to attach the preopened constant names, stdin, stdout, stderr, to
specified files.

DIAGNOSTICS

Page 1

Fopen and freopen return the pointer NULL if filename cannot be accessed.

November 1979

FPEMUL (3C) CB—UNIX 2.1 FPEMUL (30)

NAME

fpemul — floating point interpreter

SYNOPSIS

SySs signal; 4; fptrap

DESCRIPTION

Fpemul is a simulator of the 11/45 FP11-B floating point unit. On a machine equipped with
floating point hardware, the module contains a dummy routine which simply re-executes the
trapped instruction. On machines without floating point hardware, it contains code to intercept
illegal instruction faults and examine the offending operation codes for possible floating point
operations, which are then emulated using non-floating instructions.

The emulation routines are automatically loaded only when required by modules using floating
point definitions or operations.

SEE ALSO

signal(2), cc(l)

DIAGNOSTICS

BUGS

Page 1

A breakpoint trap is given when a real illegal instruction trap occurs.

The emulation will not work with 411 (~i option) files, since fpemul needs to examine the
offending instruction.

Rounding mode is not interpreted. The inefficiencies of using illegal instruction traps to emu-
late floating point seriously compromise speed. fpemul is very slow.

November 1979

FREAD(3S) CB—UNIX 2.3 FREAD(3S)

NAME
fread, fwrite — buflered binary input/output

SYNOPSIS
#include <stdio.h>

int fread ((char) ptr, sizeof (*ptr), nitems, stream)
FILE =*stream;

int fwrite ((char =) ptr, sizeof (#ptr), nitems, stream)
FILE =*stream;

DESCRIPTION
Fread reads, into a block beginning at ptr, nitems of data of the type of *ptr from the named
input stream. It returns the number of items actually read.

Fwrite appends at most nitems of data of the type of #ptr beginning at ptr to the named output
stream. It returns the number of items actually written.

SEE ALSO
read(2), write(2), fopen(3S), getc(3S), putc(3S), gets(3S), puts(3S), printf(3S), scanf(3S)

DIAGNOSTICS
Fread and fwrite return the constant NULL upon end of file or error.

January 30, 1980 Page 1 January 30, 1980

FREXP (3C) : CB—UNIX 2.1 FREXP (3C)

NAME

frexp, ldexp, modf — split into mantissa and exponent

SYNOPSIS

double frexp (value, eptr)
double value;
int =eptr;

double ldexp (value, exp)
double value;

double modf (value, iptr)
double value, +iptr;

DESCRIPTION

Page |

Frexp returns the mantissa of a double value as a double quantity, x, of magnitude less than 1
and stores an integer s such that value = x=2++p indirectly through eprr.

Ldexp returns the quantity value*2«=exp.

Modf returns the positive fractional part of value and stores the integer part indirectly through
iprr.

November 1979

FSEEK (38) CB-—UNIX 2.1 FSEEK (3S)

NAME

fseek, ftell, rewind — reposition a stream

SYNOPSIS

#include <stdio.h>

int fseek (stream, offset, ptrname)
FILE =stream;

long offset;

int ptrname;

long ftell (stream)
FILE estream;

rewind (stream)

DESCRIPTION

Fseek sets the position of the next input or output operation on the siream. The new position is
at the signed distance offser bytes from the beginning, the current position, or the end of the
file, according as pwrname has the value 0, 1, or 2. '

Fseek undoes any effects of ungerc(3S).
After fseek or rewind, the next operation on an update file may be either input or output.

Frell returns the current value of the offset relative to the beginning of the file associated with
the named siream. [t is measured in bytes on UNIX; on some other systems it is a magic
cookie, and is the only foolproof way to obtain an offser for fseek.

Rewind(stream) is equivalent to fseek (siream, 0L, 0).

SEE ALSO

Iseek(2), fopen(3S)

DIAGNOSTICS

Fseek returns non-zero for improper seeks, otherwise zero.

November 1979

GAMMA (3M) “ CB—UNIX 2.1 GAMMA (3M)

NAME
gamma — log gamma function
SYNOPSIS
#include <math.h>
double gamma (x)
double x;
DESCRIPTION
Gamma returns In|UCIv])]. The sign of 1'([N) is returned in the exiernal integer signgam. The
following C program fragment might be used to calculate 1’

y = gamma (x);
i {(y > 88.0)
error ()
y = exp (y) * signgam;
DIAGNOSTICS
A huge value is returned for negative integer arguments.

BUGS
There should be a positive indication of error.

Page | November 1979

GETC(3S) CB—UNIX 2.1 GETC(3S)

NAME

getc, getchar, fgetc, getw — get character or word from stream

SYNOPSIS -

#include <stdio.h>

int getc (stream)
FILE sstream;

int getchar ()

int fgetc (stream)
FILE =sstream;

int getw (stream)
FILE sstream;

DESCRIPTION

Geie returns the next character from the named input swream.
Gerchar() is identical to getc(sidin).

Fgerc behaves like gere, but is a genuine function, not a a macro; it may be used as an argu-
ment, or to save on object text.

Germw returns the next word from the named input siream. [t returns the constant EOF upon
end of file or error, but since that is a good integer value, feofand ferror(3S) should be used to
check the success of gerw. Gerw assumes no special alignment in the file.

SEE ALSO

fopen(3S), putc(3S), gets(3S), scanf(3S), fread(3S), ferror(3S)

DIAGNOSTICS

BUGS

Page |

These functions return the integer constant EOF at end of file or upon read error.

A stop with message, ‘Reading bad file’, means an attempt has been made to read from a
stream that has not been opened for reading by fopen.

Gerc and its variant gerchar return EOF on end of file; this is wiser than, but incompatible with,
the older gerwchar(3S).

Because it is implemented as a macro, gerc treats a siream argument with side effects incorrectly.
In particular, ‘getc(*f+ +);" doesn’t work sensibly.

November 1979

GETC:0(3C) CB—-UNIX 2.1 GETC:0(3C)

NAME

getc — buffered input

SYNOPSIS

fopen (filename, iobuf)
char sfilename;
struct buf «iobuf;

gete (iobuf)
struct buf =iobuf;

getw (iobuf)
struct buf =iobuf;

DESCRIPTION

These routines are early versions of the standard 1/0 routines; they provide a buffered input
facility. /Jobufis the address of a buffer area whose contents are maintained by these routines.
Its format is:

struct buf {
int fildes; /= file descriptor
int nleft; /* characters left in buffer
char *nextp; /+ pointer to next character
char buffer{512}]; /* the buffer

I

Fopen may be called initially to open the file. —1 is returned if the open failed. If fopen is
never called, gerc and gerw will read from the standard input file.

Gerc returns the next byte from the file; —1 is returned on end-of-file or error.

Gemw returns the next word. Gerc and gerw may be used alternately; there are no odd/even
problems.

lobuf must be provided by the user; it must begin on a word boundary.

To reuse the same buffer for another file, it is sufficient to close the original file and call fopen
again.

SEE ALSO

open(2), read(2), putc(3C)

DIAGNOSTICS

Page 1

Negative return indicates error or EOF.

November 1979

GETCHAR:0(3C) CB—UNIX 2.1 GETCHAR:0 (3C)

NAME

getchar — read character
SYNOPSIS

getchar ()
DESCRIPTION

Getchar is a simple means of reading characters from the standard input. It remains in current
versions of the C library (however, see note below). Gerchar returns successive characters until
end-of-file, when it returns “\0”".

Associated with this routine is an external variable called fin, which is a structure containing a
buffer such as described under gerc:0(3C).

Generally speaking, gerchiar should be used only for the simplest applications; gerc is better
when there are multiple input files.

SEE ALSO
getc(3C)

DIAGNOSTICS
Null character returned on EOF or error.

BUGS
—1 should be returned on EOF; null is a legitimate character.

NOTE
In the occ version of the standard [/O library as well as later versions of the C libraries, gerchar
has been changed to return —1 on end-of-file.

Page | i November 1979

GETENYV (3C) CB—UNIX 2.1 GETENYV (3C)

NAME
getenv — value for environment name

SYNOPSIS
char #getenv (name)
char *name;
DESCRIPTION
Getenv searches the environment list (see environ(7)) for a string of the form name = value and
returns value if such a string is present, otherwise 0 (NULL).

SEE ALSO
environ (7)

Page | Novembgr 1979

GETGRENT (3C)

NAME

CB—-UNIX 2.1 GETGRENT (3C)

getgrent, getgrgid, getgrnam, setgrent, endgrent — get group file entry

SYNOPSIS

#include <grp.h>

struct group egetgrent ()
struct group *getgrgid (gid)
int gid;

struct group *getgrnam (name)
char *name;

int setgrent ();

int endgrent ();

DESCRIPTION

Geugrent, gergrgid and gergrnam each return pointers to an object with the following structure
containing the broken-out fields of a line in the group file.

Vi @ (#)grp.h 2.1 */
struct group {

char *gr_name;

char *gr_passwd,

int gr_gid;

char **gr_mem;

e

The members of this structure are:

gr_name The name of the group.

gr_passwd The encrypted password of the group.

gr_gid The numerical group-iD.
gr_mem Null-terminated vector of pointers to the individual member names.

Gergrent reads the next line of the file, so successive calls may be used to search the entire file.
Gergrgid and gergrnam search from the beginning of the file until a matching gid or name is
found, or EOF is encountered.

A call to sergrent has the effect of rewinding the group file to allow repeated searches. Endgrent

may be called to close the group file when processing is complete.

FILES
/etc/group

SEE ALSO

getlogin(3C), getpwent(3C), group(5)
DIAGNOSTICS

A null pointer (0) is returned on EOF or error.

BUGS

All information is contained in a static area so it must be copied if it is to be saved.

Page 1

November 1979

GETLOGIN (30) CB—UNIX 2.1 GETLOGIN (3C)

NAME

getlogin — get login name
SYNOPSIS

char =getlogin ()
DESCRIPTION

Getlogin returns a pointer to the login name as found in /etc/utmp. It may be used in conjunc-
tion with gerpwnam to locate the correct password file entry when the same userid is shared by
several login names.

If getlogin is called within a process that is not attached to a typewriter, it returns NULL. The
correct procedure for determining the login name is to call cuserid, or to call gerlogin and if it
fails, to call gepwuid.

FILES
/etc/utmp

SEE ALSO
cuserid(3S), getpwent(3C), getgrent(3C), utmp(5)

DIAGNOSTICS
Returns NULL (0) if name not found.

BUGS
The return values point to static data whose content is overwritten by each call.

Page 1 November 1979

GETOPT (30) CB—UNIX 2.1 GETOPT (3C)

NAME
getopt — get option letter from argv

SYNOPSIS
int getopt (argc, argv, optstring)
int argc;
char *»argv;
char »optstring;
extern char soptarg;
extern int optind;

DESCRIPTION
Geropt returns the next option letter in argv that matches a letter in oprsiring. Opistring is a
string of recognized option letters; if a letter is followed by a colon, the option is expected to
have an argument which may or may not be separated from it by white space. Oparg is set to
point to the start of the option argument on return from geropt.

Geropt places in oprind the argv index of the next argument to be processed. Since optind is
external, it is normally initialized to zero automatically before the first call to geropr.

When all options have been processed (i.e., up to the first non-option argument), getopr returns

EOF. The special option ‘“——"" may be used to delimit the end of the options; EOF will be
returned, and ‘‘— —’" will be skipped.
DIAGNOSTICS

Getopt prints an error message on siderr and returns a question mark ("?°) when it encounters
an option letter not included in opistring.

EXAMPLE
The following code fragment shows how one might process the arguments for a command that
can take the mutually exclusive options a and b, and the options f and o, which require argu-
ments.

main (argc, argv)
int argc;
char **argv;

int ¢;
extern int optind;
extern char *optarg;

while ((c = getopt (argc, argv, "abf:0:")) !'= EOF)
switch (c) {

case ‘a”:
if (bflg)
errflg+ +
else
aflg++;
break;

case 'b”:
if (aflg)
errflg+ +:
else
bproc();

Page 1] November 1979

GETOPT (3C) CB—UNIX 2.1

break;

case f:
ifile = optarg;
break;

case 0"
ofile = optarg;
bufsiza = 512;
break;

case 7"
errflg+ +;
!

if (errflg) {

fprintf (stderr, "usage: ... ");

exit (2);
}
for(; optind < argc; optind+ +) {

if (access (argvioptindl, 4)) |

November 1979

GETOPT (3C)

Page 2

GETPASS (3C) CB—-UNIX 2.1 GETPASS (3C)

NAME
getpass — read a password
SYNOPSIS
char sgetpass (prompt)
char sprompt;
DESCRIPTION , -
Gerpass reads a password from the file /dev/In, or if that cannot be opened, from the standard

input, after prompting with the null-terminated string prompt and disabling echoing.. A pointer
is returned to a nuil-terminated string of at most 8 characters.

FILES
/dev/in

SEE ALSO
crypt(3C)

BUGS
The return value points to static data whose content is overwritten by each call.

Page 1 November 1979

GETPW (3C) CB—-UNIX 2.1 GETPW (3C)

NAME
getpw — get name from UID

SYNOPSIS
getpw (uid, buf)
int uid;
char sbuf;
DESCRIPTION
Geipw searches the password file for the (numerical) wid, and fills in buf with the corresponding
line; it returns non-zero if wid could not be found. The line is null-terminated.

This routine is included only for compatibility with prior systems and should not be used; see
geipwent(3C) for routines to use instead.

FILES
/etc/passwd

SEE ALSO
getpwent(3C), passwd(5)

DIAGNOSTICS
Non-zero return on error.

Page 1 November 1979

GETPWENT (3C) CB—-UNIX 2.1 GETPWENT (3C)

NAME
getpwent, getpwuid, getpwnam, setpwent, endpwent — get password file entry

SYNOPSIS
#include <pwd.h>

struct passwd *getpwent ()
struct passwd *getpwuid (uid)
int uid;

struct passwd *getpwnam (name)
char *name;

int setpwent ()

int endpwent ()

DESCRIPTION
Getpwent, getpwuid, and getpwnam each returns a pointer to an object with the following struc-
ture containing the broken-out fields of a line in the password file.

/* @ (#pwd.h 22 */
struct passwd
A
char *pw_name;
char *pw_passwd;
int pw_uid;
int pw_gid;
char *pw_age;
char *pw_comment;
char *pw_gecos;
char *ow_dir;
char *pw_shell;

k
The pw_comment field is unused; the others have meanings described in passwd(5).

Getpwent reads the next line in the file, so successive calls can be used to search the entire file.
Getpwuid and getpwnam search from the beginning of the file until a matching uid or name is
found, or EOF is encountered.

A call to setpwemt has the effect of rewinding the password file to allow repeated searches.
Endpwent may be called to close the password file when processing is compiete.

FILES
/etc/passwd

SEE ALSO
getlogin(3C), getgrent(3C), passwd(5)

DIAGNOSTICS
Null pointer (0) returned on EOF or error.

BUGS
All information is contained in a static area so it must be copied if it is to be saved.

November 1979 Page 1 November 1979

GETS (3S) CB—UNIX 2.1 GETS (3S)

NAME
gets, fgets — get a string from a stream
SYNOPSIS
#include <stdio.h>
char sgets (s)
char =s;
char *fgets (s, n, stream)
char »s;
int n;
FILE =stream:
DESCRIPTION
Gers reads a string into s from the standard input stream stdin. The string is terminated by a
new-line character, which is replaced in s by a null character. Gers returns its argument.

Fgers reads n—1 characters, or up 1o a new-line character (which is retained), whichever comes
first, from the sircan into the string s. The last character read into s is followed by a null char-
acter. Fgers returns its first argument.

SEE ALSO

ferror(3S). fopen(3S). fread(3S), getc(3S), puts(3S), scanf(3S).
DIAGNOSTICS

Gers and fgets return the constant pointer NULL upon end-of-file or error.
NOTE

Gers deletes the new-line ending its input, but fzers keeps it.

Page 1 November 1979

GETUT(3C)

NAME

CB—UNIX 2.3

GETUT (3C)

getutent, getutid, getutline, pututline, setutent, endutent, utmpname — access utmp file entry

SYNOPSIS
#include

struct

struct
struct

struct
struct

utmp
utmp

utmp
utmp

<utmp.h>

utmp =getutent()

=getutid(id)

+id ;
sgetutline(line)
+line ;

pututline(utmp)
struct utmp *utmp ;

setutent()

endutent()

utmpname(file)

char =file
DESCRIPTION

Getutent, getutid, and getutline each return a pointer to a structure of the following type:

/‘
/.

#define
#define

struct utmp

{

s
/.

#define
#define
#define
#define
#define
#define
#define
#define
#define

#define

September 12, 1980

@(#)utmp.h 3.2 s/

<sys/types.h> must be included.

UTMP_FILE
WTMP_FILE

" /etc/utmp”
"/etc/wtmp®

/* User login name */

/* Jetc/lines id(usually line #) */
/* device name (console, Inxx) */
/* process id */

char ut_user{8]} ;
char ut_id{2]} ;
char ut_line[12] ;
short ut_pid ;
struct exit_status
{
char e_termination ;
char e_exit ;
}

ut_exit ;

/* Process termination status */
/* Process exit status */

/* The exit status of a process

* marked as DEAD_PROCESS.
*

/* type of entry */

/* time entry was made */

short ut_type ;
time_t ut_time ;

Definitions for ut_type

EMPTY 0

RUN_LVL 1

BOOT_TIME 2

OLD_TIME 3

NEW_TIME 4 i

INIT_PROCESS 5§ /* Process spawned by "init" ¢/

LOGIN_PROCESS 6
USER_PROCESS 7
DEAD_PROCESS 8

/* A "getty” process waiting for login */
/* A user process */

UTMAXTYPE DEAD_PROCESS

Page 1

*/

*/

/* Largest legal value of ut_type */

September 12, 1980

. GETUT (3C) CB—UNIX 2.3 GETUT (3C)

i Special strings or formats used in the "ut_line" field when */
/* accounting for something other than a process. */
/* ** Note ** ecach message is such that is takes exactly 11 &/
1 spaces + a null, so that it fills the "ut_line" array. */
define RUNLVL_MSG ‘run_level_%c"

#define BOOT_MSG "system_boot"

#define OTIME_MSG ‘old_time °*

#define NTIME_MSG "new_time °

Getutent reads in the next entry from a utmp like file. If the file is not already open, it opens it.
If it reaches the end of the file, it fails.

Gerutid searches forward from the current point in the utmp file until it finds an entry with a
ut_type matching id—>ut_type if the type specified is RUN_LVL, BOOT_TIME, OLD_TIME,
or NEW_TIME. If the type specified in id is INIT_PROCESS, LOGIN_PROCESS,
USER_PROCESS, or DEAD_PROCESS, then gerutid will return a pointer to the first entry
whose type is one of these four and whose wr_id field matches id—>uz_id. If the end of file is
reached without a match, it fails.

Getutline searches forward from the current point in the utmp file until it finds an entry of the
type LOGIN_PROCESS or USER_PROCESS which also has a uwt_line string matching
line—>ut_line string. If the end of file is reached without a match, it fails.

Pututline writes out the supplied utmp structure into the utmp file. It uses gerurid to search for-
ward for the proper place if it finds that it is not already at the proper place. It is expected that
normally the user of pututline will have searched for the proper entry using one of the get rou-
tines. If so, pututline will not search. If pututline does not find a matching slot for the new
entry, it will add a new entry to the end of the file.

Setutent resets the input stream to the beginning of the file. This should be done inbetween
each search for a new entry if it is desired that the entire file be examined.

Endutent closes the currently open file.

Utmpname allows the user to change the name of the file examined from /etc/utmp to any
other file. It is most often expected that this other file will be /etc/wtmp. If the file doesn’t
exist, this will not be apparent until the first attempt to reference the file is made. Utmpname
does not open the file. It just closes the old file if it is currently open and saves the new file
name.

FILES
/etc/utmp,
/etc/wtmp

SEE ALSO
utmp(5)

DIAGNOSTICS
A NULL pointer is returned upon failure to read, whether for permissions or having reached
the end of file, or upon failure to write.

COMMENTS
The most current entry 1s saved in a static structure. Multiple accesses require that it be copied
before further accesses are made. Each call to either gerutid or getutline sees the routine exam-
ine the static structure before performing more io. If the contents of the static structure match
what it is searching for, it looks no further. For this reason to use gerutline to scarch for multi-
ple occurances, it would be necessary to zero out the static after each success, or gerutline would
just return the same pointer over and over again. There is one exception to the rule about
removing the structure before further reads are done. The implicit read done by purutline if it
finds that it isn’t already at the correct place in the file will not hurt the contents of the static

September 12, 1980 Page 2 September 12, 1980

GETUT (3C) CB—UNIX 2.3 GETUT(3C)

structure returned by the getutent, getutid, or getutline routines, if the user has just modified
those contents and passed the pointer back to pututline.

These routines use buffered standand io for input, but pututline uses an unbuffered non-
standard write to avoid race conditions between processes trying to modify the utmp and wimp
files.

September 12, 1980 Page 3 September 12, 1980

HMUL:0(3C) CB—-UNIX 2.1 HMUL:O (3C)

NAME
hmul — high-order product

SYNOPSIS
hmul (x, y)

DESCRIPTION

Hmul returns the high-order 16 bits of the product of x and y. (The binary multiplication
operator generates the low-order 16 bits of a product.)

NOTE
This routine has been deleted from later versions of the library. Use long variables instead.

Page 1 November 1979

HYPOT (3M) CB-UNIX 2.1 HYPOT (3M)

NAME
hypot — euclidean distance

SYNOPSIS
#include <math.h>

double hypot (x, ¥)
double x, y;

DESCRIPTION
Hypot returns

sart(x=x + y=y),
taking precautions against unwarranted overflows.

SEE ALSO
sqri(3M)

Page 1 November 1979

ITOL:0(3C) CB—UNIX 2.1 ITOL:0(3C)

NAME
itol — integer to long integer conversion

SYNOPSIS
long itol(hi, lo)
int hi, lo;
DESCRIPTION
[to/ combines the two integers /i and /o to form a long integer. This allows integers to be con-
verted to long integers without sign extension.

SEE ALSO
1toi(3C)

Page | November 1979

L3TOL (3C) CB—-UNIX 2.1 L3TOL (3C)

NAME
13tol, ltol3 — convert between 3-byte integers and long integers

SYNOPSIS
13tol (Ip, cp, n)
long =lp;
char =cp;
int n;
1tol3 (cp, Ip, n)
char =cp;
long =lp;
int n;
DESCRIPTION
L3l converts a list of » three-byte integers packed into a character string pointed to by cp into
a list of jong integers pointed to by p.

L1ol3 performs the reverse conversion from long integers (/p) to three-byte integers (cp).

These functions are useful for file-system maintenance where the i-numbers are three bytes
long.

SEE ALSO
fs(5)

Page | November 1979

