LDIV:0(3C) CB—-UNIX 2.1 LDIV:0 (3C)

NAME

Idiv — long division

SYNOPSIS

Idiv (hidividend, lodividend, divisor)
lrem (hidividend, lodividend, divisor)

DESCRIPTION

NOTE

BUGS

Page |

These routines are provided for compatibillity with existing programs only; the long C variable
type should be used instead.

The concatenation of the signed 16-bit #idividend and the unsigned 16-bit lodividend is divided
by divisor. The 16-bit signed quotient is returned by /div and the 16-bit signed remainder is
returned by /rem. Divide check and erroneous results will occur unless the magnitude of the
divisor is greater than that of the high-order dividend.

An integer division of an unsigned dividend by a signed divisor may be accomplished by:
quo = ldiv(0, dividend, divisor);
and similarly for the remainder operation.

Often both the quotient and the remainder are wanted. Therefore /div leaves a remainder in
the external cell /divr.

These routines are obsolete and should not be used. Use long variable types instead.

To reiterate. /div will not work if the magnitude of the divisor is less than the high order divi-
dend. There is no check for this condition.

November 1979

LFS(3C) CB—-UNIX 2.3 LFS(3C)

NAME
Ifs — Logical File System operations

SYNOPSIS
#include <Ifsh.h>
Ifmount (name, bname, flag)
Hfumount (name)
Ifopen (name, mode)
Ifclose ()
Ifcreate (fd, Ifn, nsectors)
Ifdelete (fd, 1fn, nsectors)
Ifread (fd, Ifn, sector, buf, size)
lfwrite (fd, Ifn, sector, buf, size)
Hswitch (fd, lfn, 1fn2)
Ifsize (fd, lfn)
ifide(fd, ifn, buf)
lfufde(fd, Ifn, buf)
Ifstat ()
Ifistat ()
Ifupdate()

unsigned short Ifn, Ifn2;
char *name, *bname, *buf;

DESCRIPTION
The Logical File System is a pseudo device which provides a fast-access file system imple-
mented through the UNIX raw 1/O facility. It uses the ioctl(2), open(2), and close(2) system
calls to interface to the user process level.

The file system provided by Ifs consists of a set of contiguously allocated files, specified by their
file number (Ifn), which are manipulated by the Logical File System operations. The Ifn is
used as an index into a file definition table stored on disk whose entries record the physical
location and size of each file. File definition entries are read into memory when referenced and
remain there if frequently used. The 512 byte block (i.e. one disk sector) is the basic unit of
size for operations with the Logical File System.

The calling parameter definitions are:

name The name of the character-special file by which the LFS driver is accessed.
bname The name of the block-special file for the LFS disk area desired.

fag If non-zero, indicates that the file system is to be mounted read-only.

mode The mode to be used when the Logical File System is opened (see open(2)); the__
user must have the requested access permissions with respect to the UNIX file name.

ifn The file number of the file within the logical file system to be manipulated. Up to
65,535 files are permitted per file system.

nsectors The number of 512 byte blocks.

sector Position within a logical file in terms of 512 byte disk blocks.
buf Buffer address for reading or writing data.
size Buffer size in S12 byvte blocks.

The Ifs operations are:

fmount Associates character device name used to access the LFS driver with the block dev-
ice bname corresponding to the LFS disk area. This operation can be thought of as

May 15, 1981 Page 1 May 15, 1981

LFS(3C)

Ifumount

Ifopen

fclose

Ifcreate

Ifdelete

Ifread

Ifwrite

Ifswitch

Ifsize
iffde

Ifufde

Ifstat

1fistat

May 15, 1981

CB—UNIX 2.3 LFS(3C)

"mounting" brname on name. 1f flag is non-zero, bname is mounted read-only. If
either name is already in the internal mount table, or if the LFS header for bname
cannot be accessed or contains the wrong magic number, a —1 is returned.

Disassociates name with its current block device. If the device is not in the mount
table, or is currently open, a —1 is returned.

Opens the Logical File System associated with name. Normally, a file descriptor is
returned; however, if name does not exist or does not appear in the mount table, a
—1 is returned.

Closes the passed file descriptor previously returned by lfopen. All modified file
definition entries for the specified device are flushed to disk.

Creates logical file Ifn in the LFS specified by fd. Nsectors is the initial size in sectors
of the file. If nsectors is 0, a file 0 sectors long is created (whereas [fdelete deletes
the file given the same input). All storage is allocated to Ifn and remains so (even if
never written to) until [fcreate or [fdelete is called to change the file size. Legal Ifn’s
start with 1; if /fn is 0 in an [fcreate call, the number of a ‘scratch’ logical file is
returned. By convention, scratch files are allocated starting from the end of the
range of legal Ifn’s and proceed downward. Lfcreate may be used to decrease or
increase the size of an existing file. Because all /fn’s are contiguous, increasing the
size of an [fn may force a copy of the entire file. Increasing or decreasing file sizes
may also lead to fragmentation of the storage freelist. Normally, Lfcreate returns the
Ifn of the file created; a —1 returned indicates an error.

Changes the size of logical file Jfn in the LFS specified by fd to be nsectors. If nsec-
tors is 0 the file is deleted. Normally, the /fn of the file deleted is returned; a —1
returned indicates an error.

Size sectors are read from logical file Ifn in the LFS specified by fd and placed into
buf. Sector is the starting position within /fn for the read. Normally, the number of
sectors read is returned; this can be less than size if the end of the file is encoun-
tered. A —1 returned indicates an error.

Size sectors are written from buf to logical file Ifn in the LFS specified by fd. Sector
is the starting position within [fn for the write. Normally the number of blocks writ-
ten is returned; this can be less than size if the end of the file is encountered. A —1
returned indicates an error, e.g., if sector is beyond the end of the file.

Switches the physical storage allocated for logical files /fn and [fn2 in the LFS
specified by fd without copying. This enables files to be replaced on-line very
quickly. A —1 returned indicates an error.

Returns the size in sectors of Ifn. A —1 returned indicates an error.

Retrieves the file definition entry for logical file Ifn in the LFS specified by fd . This
includes flag bits, the file starting location and size, and user information stored
therein.

Stores the user portion of the file definition entry for logical file /fn in the LFS
specified by fd. This information is arbitrary and may be changed by the user.

Prints several statistics about LFS operations. These counts are summed over all
mounted LFS. The statistics printed are: the number of /fs calls, the number of raw
read and write calls, the number of raw read and write blocks transferred, the
number of file definition entrjes found in memory, the number of such entries
retrieved from disk, the hit ratio for retrieving such entries, and the number of calls
to the UNIX block I/O system for administering the raw disk area.

Zeroes all Ifs statistics counts.

Page 2 May 15, 1981

LFS(3C) CB—UNIX 2.3 LFS(3C)

SEE ALSO
mkifs(1M), close(2), ioctl(2), open(2), Ifs(5)

The Logical File System — A Fast-Access File System Using UNIX Raw 1/O, TM 79-9471-1,
J. R. McSkimin.

AUTHOR
J. C. Kaufeld Jr.
J. R. McSkimin

May 15, 1981 Page 3 May 15, 1981

LIB7(3X) CB—UNIX 2.1 LIB7(3X)

NAME

lib7 — Version 7 library
SYNOPSIS

occ ... -i7 /
DESCRIPTION

This library provides conversion routines which allow a C program written assuming a version 7
file system environment to execute in an actual version 6 environment. It is designed for use
in conjunction with the old C compiler and libraries in adapting a recent program for executing
on an older operating system.

The conversions provided give the system interface indicated in the :o0 pages of the manual,
while maintaining the user interface indicated in the regular manual pages. A list of the
conversions included follows:

chgrp
chown
fstat
getgid
getuid
gtty
ioctl
isatty
longjmp
Iseek
stty
setjmp
stat
ttyname
utime

FILES
/lib/1ib7.a

SEE ALSO
intro (3C), libil (3X).

November 1979 Page | November 1979

LIBil (3X)

NAME

CB—UNIX 2.1 : LIBil (3X)

libil — CB UNIX Release 1 Conversion Library
SYNOPSIS

oce ... -17

DESCRIPTION
This library provides conversion routines which allow a C program written assuming a version 7
file system environment 1o execule in an environment identical to that provided in CB UNIX
Release 1.0, It is designed for use in conjunction with /ib7.a together with the old C compiler
and libraries in adapting a recent program for executing on the previous release, perhaps in field
systems. In particular, this library disables some newly added features which were not available
on the Release 1.0 system, so that possible incompatibilities can be detected at link time.

FILES

The lollowing conversions are made:

execle
execve

fentl

chroot
setesw
getu

rebhoot
sprofil
lock
noulk
rdsem
setsem
unlock

umash

/lib/libit.a

SEE ALSO

imro(3‘C),

DIAGNOSTICS

Messages of the form "‘undefined: _noreboo’ are generated from the loader if an unimple-
mented subrouline is used.

Page |

Converted to execl and execy with no environment variables.

Converted 10 use dup for file descriptor duplication; emulate autoclose where possi-
ble.

CB UNIX Release | system call interface provided (differs from that in CB UNIX
Release 2).

Functions disabled (unavailable in CB UNIX Release 1).

Dummy routine supplied.

lib7(3X).

November 1979

LNXX:0(30) CB—-UNIX 2.1 LNXX:0(3C)

NAME
lnxx — return name of current terminal

SYNOPSIS
Inxx (filedes)

DESCRIPTION
L nxx searches for the last two characters (if 2 char field option elected) or the last character (if
1 char field selected) of the terminal’s name which is specified by the argument filedes (file
descriptor of a file). If kk is returned, the terminal name is then “/dev/Inkk”. 1If k is
returned, the terminal name is then *‘/dev/Ink”".

xX is returned if the indicated file does not correspond to a terminal.

NOTE
This routine has been replaced in newer versions of the library by tyname(3C).

Page | November 1979

LOCV:0(3C) CB—UNIX 2.1 LOCY:0(3C)

NAME

locv — long output conversion
SYNOPSIS

char =locv (hi, lo)

int hi, lo;
DESCRIPTION

Locy converts a signed double-precision integer, whose parts are passed as arguments, to the
equivalent ASCII character string and returns a pointer 1o that string.

NOTE
This routine has been dropped from newer versions of the library. Use scanf(3S) instead.

Page 1 November 1979

LPDATA (3C) CB-UNIX 2.1 LPDATA (3C)

NAME

SYNOPSIS

lpdata — decode line printer data files (printers and qmap)

Ipdata (name,group,type,buffer,fp)

char *name; /* printer or queue name */

int-group; ———/* group associated with prmter orquene e
char type; /* °p’ for the printers file, or ’q’ for qmap file */
union

{
struct printers *buffer;
struct qmap *buffer;
/* buffer for decoded data */
FILE *fp; /* file pointer to qmap or printers */

DESCRIPTION

FILES

Lpdata retrieves the information from the printers and gmap files, and places it in a structured
format as given by Ipss.h. If name is not zero, lpdata seeks to the beginning of the file fp and
searches for the specified name. Ttresearch-will-be successful only-in-the cases-where-the entry
has been assigned to group-orto ANYGID or hasbeen defaulted. If name is zero, the next
entry assigned—to-group is returned. Upon exhaustion-of assigned-entries; /pdata-begins teturn-
ing-entries for-the-default group- It is necessary to seek to the beginning of /p in order to cause
Ipdata to reinitiate its search path. The space for buffer should be reserved in the calling pro-
gram by declaring buffer to be either struct printer (in the case of the printers file) or struct
gmap (in the case of the qmap file).

/usr/lpd/.qmap
/usr/lpd/ .printers

SEE ALSO

Ipr(1)

DIAGNOSTICS

Ipdata returns —1 if the queue in question cannot be found, or the end of file is reached. In
cases of syntax errors in the file, —2 is returned.

November 1979 Page 1 November 1979

LPROPEN (3C) CB-UNIX 2.1 LPROPEN (3C)

NAME
Ipropen — open pipe to the line printer
SYNOPSIS
FILE *ipropen (lprstr,ofp)
char *lprstr;
FILE *ofp;
DESCRIPTION
Lpropen returns a file pointer used to write to the line printer queue specified by lprstr. If Iprstr
is 0, a default queue is used. Ofp is the file pointer used to report any errors encountered as
well as the spooling system JOB ID. If ofpis 0, all messages are discarded.
Since Ipropen spins off the lpr program, to insure that the output from the Ipr program is not

intermixed with other output, it is recommended that the file pointer returned be explicitly
closed, and that a wait be executed when all output for the printer has been generated.

SEE ALSO
lpr(1)

DIAGNOSTICS
0 is returned if the specified queue does not exist, a pipe cannot be created, or a fork cannot be
executed.

BUGS
Though Ipropen only returns one file pointer, two descriptors are required for a short time in

order ro set up a pipe to the spooling system.

November 1979 Page 1 November 1979

LTOD:0(3C) CB—-UNIX 2.1 LTOD:0(3C)

NAME
Itod — double precision integer to floating point conversion
SYNOPSIS
double 1tod (t)
int ti2];
DESCRIPTION
Ltod converts a signed double precision (i.e.long) integer to the equivalent floating point
number.

LIBRARY
/lib/libc.a

November 1979 Page 1 November 1979

LTOL:O(3C) CB—UNIX 2.1 LTO1:0 (3C)

NAME
ltoi — long inleger to integer conversion
SYNOPSIS
loi (ing)
long Ing:
DESCRIPTION
Liorconverts a long integer 1o a single precision integer by truncating the high order word.
NOTE
This routine has been dropped from later libraries: use type casting instead:

long a:

Lo bno a

Page | November 1979

MALLOC (3C) CB—-UNIX 2.1 MALLOC (3C)

NAME

malloc, free, realloc, calloc — main memory allocator

SYNOPSIS

char *malloc (size) unsigned size;

free (ptr)
char =ptr;

char =*realloc (ptr, size)
char =ptr;
unsigned size;

char =*calloc (nelem, elsize)
unsigned elem, elsize;

DESCRIPTION

Malloc and free provide a simple general-purpose memory allocation package. Malloc returns a
pointer to a block of at least size bytes beginning on a word boundary.

The argument to free is a pointer to a block previously allocated by malloc; this spacé is made
available for further allocation, but its contents are left undisturbed.

Needless to say, grave disorder will result if the space assigned by malloc is overrun or if some
random number is handed to free.

Malloc allocates the first big enough contiguous reach of free space found in a circular search
from the last block allocated or freed, coalescing adjacent free blocks as it searches. [t calls sbrk
(see break(2)) to get more memory from the system when there is no suitable space already
free.

Realloc changes the size of the block pointed to by pir to size bytes and returns a pointer to the
(possibly moved) block. The contents will be unchanged up to the lesser of the new and oid
sizes.

Realloc also works if per points to a block freed since the last call of malloc reafloc, or calloc;
thus sequences of free, malloc and realloc can exploit the search strategy of malloc to do storage
compaction.

Calloc ailocates space for an array of nelem elements of size efsize. The space is initialized to
Zeros.

Each of the allocation routines returns a pointer to space suitably aligned (after possible pointer
coercion) for storage of any type of object.

SEE ALSO

break(2)

DIAGNOSTICS

Page |

Malloc, realloc and calloc return a null pointer (0) if there is no available memory or if the
arena has been detectably corrupted by storing outside the bounds of a block. When reailoc
returns 0, the block pointed to by prr may be destroyed.

November 1979

MALLOC:0(3C) CB—UNIX 2.1 MALLOC:0 (3C)

NAME

malloc. free — core memory allocator

SYNOPSIS

char =malloc(size)

free(ptr)
int *ptr:

DESCRIPTION

Malloc and fiee provide a simple general-purpose memory allocation package. Malloc returns a
pointer (o a block of at least siz¢ bytes beginning on a word boundary.

The argument o free is a pointer (o an area previously allocated by malioc; this space is made
available for further allocation, but its contents are left undisturbed.

Needless o say, grave disorder will result if the space assigned by malloc is overrun or if some
random number is handed (o free .

Malloc allocates the first sufficiently large contiguous area of free space found in a circular
search from the last block allocated or freed, coualescing adjacent free blocks as it searches. It
calls shrk (see hreak(2)) 1o get more core from the system when there is no suitable space
already free.

DIAGNOSTICS

Page |

Malloc returns a NULL (0) if there is no available memory.
Exit with the message "corrupt arena" means you have stored outside the bounds of a block.
To get a core dump, use wdh(1) to plant a breakpoint on exir(2).

November 1979

MKDIR:0 (3C) CB—-UNIX 2.1 MKDIR:0 (3C)

NAME
mkdir — make directory

SYNOPSIS
mkdir (file,owner,mode,group)
char =file;
int owner, mode, group;

DESCRIPTION
Mkdir will make a directory, link the necessary -}and .. pointers and set the specified mode,
owner, and group based on the following arguments:

file A pointer to a string representing a full or partial pathname of a directory to be
made.

owner An integer representing the owner of the made directory.

mode An integer representing the mode of the directory. The mode represents a value
acceptable to a chmod system call.

group An integer representing the group id of the made directory.
MKkdir returns:

0 directory successfully made.

-1 file already exists.

-2 Cannot do a mknod, link, chown, chmod or chgrp or the effective uid is not super
user. :

The subroutines chgrp(2), chmod(2), chown(2), getid(2), link(2), mknod(2) and sar(2) are
used by mékdir.

If mkdir returns with a —2, then any work it has done is still there, e.g. if it cannot do a
chown, the directory that the mknod and linking has created prior to the chown still exists.

SEE ALSO
rmdir(3C)

DIAGNOSTICS

A return code of —2 is serious because it means that mknod has done some but not all of its
work.

BUGS
Mkdir should not require the effective user id to be super user.

If the requested action cannot be performed, mkdir should undo whatever has been done.

Page 1 November 1979

MKTEMP (3C) CB—UNIX 2.} MKTEMP (3C)

NAME
mkiemp — make a unique file name

SYNOPSIS
char »mktemp (template)
char stemplate;

DESCRIPTION -
Mhiemp replaces wemplawe by a unique file name, and returns the address of the template. The
template shouid look like a file name with six trailing Xs, which will be replaced with a letter
and the current process 1D. The letter will be chosen so that the resulting name does not dupli-
cate an existing file.

SEE ALSO
getpid(2)

BUGS
It is possible to run out of letters.

Page 1 November 1979

MKTEMP:0 (3C) ' CB—UNIX 2.1 MKTEMP:0 (3C)

NAME
mktemp — make temporary file name

SYNOPSIS
char *mktemp (str)
char sstr;

DESCRIPTION
Mbkiemp creates a unique temporary file name from its argument. The string must contain a
substring of trailing capital X’s. These X’s are replaced by the users process id. A star(2) is
then performed to see if the file exists. If it does, another name is generated, and the process
is repeated. (Normally this should only be necessary if the system’s process ids have wrapped
around). In any case, mkiemp returns a string containing the temporary file name.

SEE ALSO
mktmp(3)

DIAGNOSTICS
Mkitemp returns the string / if it is unable to find a usable

Page 1 . November 1979

MKTMP:0 (3C) CB~UNIX 2.1 MKTMP:0 (3C)

NAME

mktmp — make a temporary file
SYNOPSIS

mktmp ()
DESCRIPTION

Mkimp returns a file descriptor of an unnamed file which may be used as a read-write scratch
file. When closed all traces of the file disappear.

FILES

tmp/ < pid> < pid> is the process id of the calling process.
NOTE

Mkump has been replaced in newer libraries by rempfile(3S).

DIAGNOSTICS
A —1 is returned if the file cannot be created.

Page | November 1979

MONITOR (30) CB-UNIX 2.1 MONITOR (3C)

NAME
monitor — prepare execution profile

SYNOPSIS
monitor (lowpe, highpe, buffer, bufsize, nfunc)
int (slowpc) (), (shighpc)();
short buffer! |;
int bufsize, nfunc;

DESCRIPTION
An executable program created by cc —p automatically includes calls for monitor with default
parameters; monitor needn’t be called explicitly except to gain fine control over profiling.

Monitor is an interface to profil(2). Lowpc and highpe are the addresses of two functions; buffer
is the address of a (user supplied) array of bufsize short integers. Monitor arranges to record a
histogram of periodically sampled values of the program counter, and of counts of calls of cer-
tain functions, in the buffer. The lowest address sampled is that of /lowpc and the highest is just
below highpc. At most afinc call counts can be kept; only calls of functions compiled with the
profiling option —p of cc(1) are recorded. For the results to be significant, especially where
there are small, heavily used routines, it is suggested that the buffer be no more than a few
times smaller than the range of locations sampled.

To profile the entire program, it is sufficient to use
extern etext();

can

monitor (2, etext, buf, bufsize, nfunc);

Etext lies just above all the program text, see end(3C).

To stop execution monitoring and write the results on the file mon.our, use
monitor(0);

then prof(1) can be used to examine the results.

FILES
mon.out

SEE ALSO
prof(1), profil(2), cc(l)

Page 1 November 1979

MSG(3)

NAME

CB—UNIX 2.3 MSG(3)

msg, msgenab, msgdisab, send, sendw, recv, recvw, msgstat, msgetl — old message veneer for
sending and receiving messages.

SYNOPSIS

include <sys/ipcomm.h>
msgenab ()
msgdisab ()

send (buf, size, topid, type)
sendw (buf, size, topid, type)
char sbuf;

recv (buf, size, &mstruct, type)
recvw (buf, size, &mstruct, type)
char sbuf;

struct mstruct mstruct;

msgstat (&mstat, sizeof (mstat), pid)
struct mstat mstat;

msgctl (pid, command, arg)

DESCRIPTION

The routines described here implement the old message interface. They are now implemented
as a veneer using the new message implementation. (See message(2)).

A process that has enabled message reception has a message queue on which are placed mes-
sages sent to it by other processes. Messages are placed on the queue in the order of arrival.
The process actually receives a message by requesting a one from the queue. A process may
send a message to any other process that has enabled message reception, as long as the receiver
does not have an excessive number of messages pending on its queue.

msgenab ()
Enable message reception by creating a message queue with the name equal to the process
id.

msgdisab ()
Disable message reception. Any messages still on the queue are destroyed or returned to
sender depending upon the npe.

send (buf, size, topid, type)
Send the message in buf and of size bytes to the process whose process id is topid. The
message is stored with the specified fype, which ranges from J to 128. 1f the queue for the
receiving process is full or if there is no more message space in the operating system,
return immediately to the sending process with an appropriate error. When send is success-
ful, it returns the number of bytes actually sent in the message.

sendw (buf, size, topid, type)
Send a message in the same fashion as send, but if there isn’t room for the message,
suspend execution until the message can be sent. When sendw is successful, it returns the
number of bytes actually sent in the message.

recv (buf, size, &mstruct, type)

Receive the first message on the queue if npe is 0, otherwise receive the first message on

the queue whose type matches rype. Store the message in buf, truncating it if the message
is larger than size. mstruct will be filled with the queue name that the sending process has
enabled and the actual type of the message. If the sending process did not have messages
enabled the queue name in the mstruct structure will be 0. If there is no message of the
specified type, return immediately with an appropriate error message. Upon a successful

December 1, 1980 Page 1 December 1, 1980

MSG(3) CB—UNIX 2.3 MSG(3)

recv, the size of the message received is returned.

recvw (buf, size, &mstruct, type)
Receive a message in the same fashion as recv, but if there isn’t a message satisfying the
requested fype, suspend execution until one arrives. Upon a successful recvw, the size of
the message received is returned.

msgstat (&mstat, sizeof(mstat), pid)
Retreive the number of messages currently present on the queue pid and the maximum
allowable number of messages for this queue. Put the results in the structure mstat.

msgctl (pid, command, arg)
Perform the specified command on queue pid. The only command currently available is
SETMQLEN, which allows the maximum number of messages that may queue up for a
specific process to be adjusted to arg.

The number of bytes actually sent or received is returned by send, sendw, recv, and recvw.

The type argument is used by a sender to assign a type number (1 to 128) to a message. By
convention, types 1 to 63 imply that an acknowledgement message is desired; types 64 to 128
imply no acknowledgement is necessary; type 128 is an acknowledgement message. If a process
disables messages (or exits) with any messages still on its queue, those of type 1 to 63 are
changed to type 128 and, if possible, returned to the sender; those of type 64 to 128 are dis-
carded.

ipcomm.h is included here for convenience.

/* @(#)ipcomm.k 3.3 */

/‘
* Interprocess Communication Control Structures

*/

#ifdef KERNEL
/‘
* common flags

*/

#define IP_PERM 03 /* scope permission mask ®/
#define IP_ANY 0 /* system scope */

#define IP_UID 01 /* userid scope */

#define IP_GID 02 /* groupid scope */

define IP_QWANT 0100 /* entry in msg queue wanted */

#define IP_WANTED 0200 /* resource is desired */

struct ipaword
{ char ip_flag;
char ip_id; 1;

/‘
* message control

*/

#define PMSG 5 /* message sleep priority */

#define MSGIO 02 /* tell iomove() this is msg */

#define MSGIN 0 /* same as B_WRITE */

#define MSGOUT 01 /* same as B_LREAD */

#define MDISAB 0

#define MENAB I
#define MSEND 2

December 1, 1980 Page 2 December 1, 1980

MSG(3)

CB—UNIX 2.3 MSG(3)
#define MSENDW 3
#define MRECV 4
#define MRECYW 5
#define MSTAT 6
#define MSGCTL 7
struct msghdr
{ struct msghdr *mgq_forw;
int mq_size;
int mq_sender;
int mg_type;
b
struct msgqhdr
{ struct msghdr *mq_forw; /* note same position as in msghdr */
struct msghdr *mq_last;
int *mq_procp;
char mq_flag;
char mgq_cnt;
int mq_meslim;

L
endif

/* commands for msgctl call here */

define SETMQLEN 0 /*set mes q length command®*/

struct mstat {

unsigned ms_cnt;
unsigned ms_maxm;
1
struct mstruct {
int ms_frompid;
int ms_type;

1

DIAGNOSTICS

An error occurs when enabling messages if no queue is available for use; it is also erroneous to
attempt to disable message reception if it is not enabled. When trying to send messages, errors
occur because the message is too long, the receiver has not enabled message reception, the type
specified is not valid, the receiver has an excessive number of messages outstanding on its
queue, or, for send, the system message buffers are temporarily full. When receiving messages,
errors may occur because the process has not enabled message reception, the requested type or
size are invalid, or, for recv, a message of the requested type is not on the queue. It is also ille-
gal to set the message limit (via msgctl) to a value larger than defined by MAXMSGDEF in
param.h.

FILES
Jusr/include/sys/ipcomm.h

BUGS
There is one noticable difference between this veneer and the real old messages. The process
id of the sender was always given to the message receiving process even if the sender didn’t
have messages enabled. Now, if the sender doesn’t have messages enabled. the receiver gets a
0.

SEE ALSO

December 1, 1980

message(2)

Page 3 December 1, 1980

NARGS:O(3C) CB—UNIX 2.1 NARGS:0(3C)

NAME
nargs = argument count
SYNOPSIES
= nargs ()
OESCRIPTION
Nargs rewurns the number of actual parameters supplied by the caller of the routine which calls
aryes.
The argument count is accurate only when none ol the actual parameters i1s floar or doubic.
Such parameters count as lour arguments instcad of one. Similarlv. array arguments will be
misinterpreted.
~NOTE
Nargs has been dropped from newer libraries due 1o its limitations. There is no currently avaii-
able replacement.
BUGS
This routine does not work at all for programs which run with separated 1&D space.

Page | November 1979

NLIST(3C) CB—-UNIX 2.3 NLIST (3C)

NAME
nlist — get entries from name list

SYNOPSIS
#include <a.out.h>
nlist (filename, nl)
char #filename;
struct nlist nll];

DESCRIPTION
Nlist examines the name list in the given executable output file and selectively extracts a list of
values. The name list consists of an array of structures containing names, types, locations and
values. The list is terminated with a null name. Each name is looked up in the name list of
the file. If the name is found, the type, location and value of the name are inserted in the next
three fields. If the name is not found, all three entries are set to 0. See a.our(5) for a discus-
sion of the symbol table structure.
This subroutine is useful for examining the system name list kept in the file /unix. In this way
programs can obtain system addresses that are up to date.

SEE ALSO
a.out(s)

DIAGNOSTICS
All type entries are set to O if the file cannot be found or if it is not a valid namelist.

November 4, 1980 Page 1 November 4, 1980

NLIST:0(3C) CB—UNIX 2.3 NLIST:0(3C)

NAME
nlist — get entries from name list

SYNOPSIS
#include <a.out>
nlist (filename, nl)
char =filename;

DESCRIPTION
NMlist examines the name list in the given executable output file and selectively extracts a list of
values. The name list consists of a list of 8-character names (null padded) each followed by
two bytes and a word. The list is terminated with a null name. Each name is looked up in the
name list of the file. If the name is found, the type, location and value of the name are placed
in the two bytes and word following the name. If the name is not found, the type and location
entries are set to —1.

This subroutine is useful for examining the system name list kept in the file /unix. In this way
programs can obtain system addresses that are up to date.

SEE ALSO
a.out(5)

DIAGNOSTICS
All type and location entries are set to —1 if the file cannot be found or if it is not a valid
namelist. In addition, a —1 is returned.

November 4, 1980 Page 1 November 4, 1980

PERROR(30) CB—-UNIX 2.1 PERROR (30)

NAME
perror, sys_errlist, sys_nerr, errno — system error messages

SYNOPSIS
perror (s)
char =»s;
int sys_nerr;
char ssys_errlistl I;
int errno;

DESCRIPTION ,
Perror produces a short error message on the standard error file describing the last error
encountered during a call to the system from a C program. First the argument string s is
printed, then a colon, then the message and a new-line. Most usefully, the argument string is
the name of the program which incurred the error. The error number is taken from the exter-
nal variable errno, which is set when errors occur but not cleared when non-erroneous calls are
made. .
To simplify variant formatting of messages, the vector of message strings syé_errlist is provided;
errno can be used as an index in this table to get the message string without the new-line.
Sys_nerr is the largest message number provided for in the table; it should be checked because
new error codes may be added to the system before they are added to the table.

SEE ALSO
intro(2)

Page 1 November 1979

POPEN (38) CB—UNIX 2.1 POPEN (3S)

NAME

popen, pclose — initiate 1/O to/from a process

SYNOPSIS

#include <stdio.h>

FILE spopen (command, type)
char scommand, <type;

int pclose (stream)
FILE sstream;

DESCRIPTION

The arguments to popen are pointers to null-terminated strings containing respectively a shell
command line and an [/O mode, either “‘r”’ for reading or ‘“‘w’’ for writing. It creates a pipe
between the calling process and the command to be executed. The value returned is a stream
pointer that can be used (as appropriate) to write to the standard input of the command or read
from its standard output.

A stream opened by popen should be closed by pclose, which waits for the associated process to
terminate and returns the exit status of the command.

Because open files are shared, a type *‘r’” command may be used as an input filter, and a type
“w’" as an output filter.

SEE ALSO

pipe(2), fopen(3S), fclose(3S), system(3S), wait(2)

DIAGNOSTICS

BUGS

Page 1

Popen returns a null pointer if files or processes cannot be created, or the Shell cannot be
accessed.

Pclose returns —1 if sream is not associated with a ‘popened’ command.

Only one stream opened by popen can be in use at once.

Buffered reading before opening an input filter may leave the standard input of that filter
mispositioned. Similar problems with an output filter may be forestalled by careful buffer flush-
ing, e.g. with fflush, see fclose(3S).

November 1979

PRINTF (3S) CB—UNIX 2.1 PRINTF (38)

NAME

printf, fprintf, sprintf — formatted output conversion

SYNOPSIS

#include <stdio.h>

printf (format [, arg] ...)
char =format;

fprintf (stream, format [, arg] ...)
FILE »stream;
char *format;

sprintf (s, format [, arg | ...)
char »s, format;

DESCRIPTION

Page 1

Priny places output on the standard output stream stdout. Fprinif places output on the named
output siream. Sprinif places ‘output’ in the string s, followed by the character \0. The string s
must be long enough. . :

Each of these functions converts, formats, and prints each arg under control of the formar. The
Jormat is a character string which contains two types of objects: plain characters, which are sim-
ply copied to the output stream, and conversion specifications, each of which causes conversion
and printing of the next successive arg.

Each conversion specification is introduced by the character %. After the %, the following
appear in sequence:

- an optional minus sign — which specifies left adjusiment of the converted value in the
indicated field;

= an optional zero which specifies that zero-padding will be done instead of blank-
padding;

= an optional digit string specifying a field width, if the converted value has fewer charac-
ters than the field width, it will be padded on the left (or right, if the left-adjustment
indicator has been given) to make up the field width;

o an optionali period . which serves to separate the field width from the next digit string;

== an optional digit string specifying a precision which gives the number of digits to appear
after the decimal point, for e- and f-conversion; the maximum number of significant
figures, for g-conversion; or the maximum number of characters to be printed from a
string; it also serves as a modifier in 0- and x-conversion;

- an optional 1 or h, specifying that a following d, i, o, x, or u corresponds to a long
integer (for 1) or a short integer (for h) arg.

= a character which indicates the type of conversion to be applied.

A field width or precision may be * instead of a digit string. In this case an integer arg supplies
the field width or precision. If the integer corresponding to a precision has the value —1, the
effect is as if the precision and its preceding decimal point were both absent.

If the end of the formar occurs between a % and its following format code, that entire format
item is ignored.

November 1979

PRINTF (3S)

CB-UNIX 2.1 PRINTF (3S)

The conversion characters and their meanings are:

s © e A

(eI

Y%

The integer arg is converted to decimal (for either d or i),octal,or hexadecimal notation
respectively. The letters abedef are used for x- conversion, and the letters ABCDEF
for X- conversion. If the precision is present, a single leading zero will be prepended to
a non-zero value in o-conversion, and the string ‘0x’ (or ‘0X’) will be prepended to the
value in x- (X-) conversion.

The float or double arg is converted to decimal notation in the style ‘{—]ddd.ddd’
where the number of d’s after the decimal point is equal to the precision specification
for the argument. If the precision is missing, 6 digits are given; if the precision is
explicitly 0, no digits and no decimal point are printed, unless left-justification and
zero-padding are both specified, and the field width is strictly larger than the minimum
required.

The float or double arg is converted in the style ‘{—]d.dddexdd’ where there is one
digit before the decimal point and the number of digits after is equal to the precision
specification for the argument; when the precision is missing, 6 digits are produced.
The E format code will produce a number with E instead of e introducing the exponent.
If left-justification and zero-padding are both specified, any zeroes so generated will
appear before the e (or E). If the precision is zero and no padding zeroes are generated
on the right, no decimal point will appear.

The float or double arg is printed in style d, in style f, or in style e(or E in the case of a
G format code), whichever gives the requested precision in minimum space.

The character arg is printed if it is not \0.

Arg is taken to be a string (character pointer) and characters from the string are printed
until a null character or until the number of characters indicated by the precision
specification is reached; however if the precision is missing all characters up to a null
are printed.

The unsigned integer arg is converted to decimal and printed (the result will be in the
range 0 to 65535 for integer values, or 0 to 4294967296 for long values).

Print a %: no argument is converted.

In no case does a non-existent or small field width cause truncation of a field; padding takes
place only if the specified field width exceeds the actual width. Characters generated by prinif/
are printed by calling puichar(3S).

EXAMPLES

To print a date and time in the form ‘‘Sunday, July 3, 10:02”’, where weekday and mont/ are
pointers to null-terminated strings:

printf ("%s, %s %d, %02d:%02d", weekday, month, day, hour, min);

To print 7 to 5 decimals:

SEE ALSO

printf("pi = %.5f", 4~atan(1.0));

ecvt(3C), putchar(3S), scanf(3S), stdio(3S).

NOTES

For compatibility with earlier versions of printf, the format codes D, O, and U are currently im-
plemented to mean the same as Id, lo, and lu. These usages should be avoided.

BUGS

Qutrageous precision specifications on e, f, and g formats can cause failure.

November 1979

Page 2

PRINTF:0 (3C) CB—-UNIX 2.1 PRINTF:0 (3C)

NAME

SYNOPSIS

Page |

printf — formatted print

printf(fmt, arg,, ...);
char +fmt;

DESCRIPTION

Printf converts, formats, and prints its arguments after the first under control of the first argu-
ment. The first argument is a character string which contains two types of objects: plain charac-
ters, which are simply copied to the output stream, and conversion specifications, each of which
causes conversion and printing of the next successive argument to printf.

Each conversion specification is introduced by the character %. Following the %, there may be

an optional minus sign ** —" which specifies left adjustment of the converted argument in
the indicated field;

an optional digit string specifying a field width;, if the converted argument has fewer char-
acters than the field width it will be padded on the left (or right, if the left-adjustment
indicator has been given) to make up the field width; if the digit string is preceded with
the character “‘0’", the padding character will be the character “‘0’. In this case the
number is not interpreted as octal. If the digit string is not preceded with a zero, the pad-
ding character is the default character which is blank uniess the ““%>’" option has previ-
ously been used.

an optional period **.”’ which serves to separate the field width from the next digit string;

an optional digit string (precision) which specifies the number of digits to appear after the
decimal point, for e- and f-conversion, or the maximum number of characters to be
printed from a string;

a character which indicates the type of conversion to be applied.

The conversion characters and their meanings are

d
o

X

o

The integer argument is converted to decimal, octal, or hexadecimal notation respec-
tively.

The long integer argument is converted to decimal, octal, or hexadecimal notation
respectively.

The argument is converted to decimal notation in the style ““{—lddd.ddd”, where the
number of d’s after the decimal point is equal to the precision specification for the argu-
ment. If the precision is missing, 6 digits are given; if the precision is explicitly 0, no
digits and no decimal point are printed. The argument should be floar or double.

The argument is converted in the style “[-]d.ddde+=dd’’, where there is one digit
before the decimal point and the number after is equal to the precision specification for
the argument; when the precision is missing, 6 digits are produced. The argument
should be a float or double quantity.

The argument character or character-pair is printed if non-null.

The argument is taken to be a string (character pointer), and characters from the string
are printed until a null character or until the number of characters indicated by the

November 1979

PRINTF:0 (3C

If no

) CB—UNIX 2.1 PRINTF:0(3C)

precision specification is reached: however if the precision is 0 or missing all characters
up to a null are printed. If the string pointer itself is null, then the string ** (null)™” will
be printed.

The argument is taken o be an unsigned integer which is converted to decimal and
printed (the result will be in the range 0 to 65535).

The argument is taken to be the base address of a vector which contains a remole argu-
ment list. The first element in the list is a character string which replaces the current for-
mat. The remaining elements in the vector are accessed and converted as specified by the
new format. A reversion (o the original format will never occur; thus any characters in
the original format following the “*%r™ will be ignored.

The next character in the string ** /" will replace the default padding character for the
remainder of the string unless changed once more through the use of **>"".

The next argument is taken to be a field width specification and is used accordingly. For
example, “%*d"" with xand » as the corresponding arguments in the argument list would
be interpreted as specifying as decimal number v 10 be padded 10 a field width of

recognizable character appears after the %, that character is printed: thus % may be

printed by use of the string %%. In no case does a non-existent or small field width cause trun-

cation

of a field: padding takes place only if the specified field width exceeds the actual width.

Primt'is actually an interface to the C library formar subroutine which performs all the necessary
formatting. The formar subroutine is called identically to printf with the exception of an addi-
lional argument preceding mrin/'s fini argument. This new argument is the address of the sub-
routine to be called for every character of output generated by format.

If prinif'were written as a C subroutine it would thus appear as follows:

SEE ALSO

printf(fmt)
char *fmt;

{

extern putchar();

return (format (putchar, "%r", &fmt));

putchar(3)

BUGS

Very wide fields (> 128 characters) fail.

Formar, tand consequently prinif), is nol recursive.

November 1979

Page 2

PUTC(3S) CB—UNIX 2.1 PUTC(3S)

NAME
putc, putchar, fputc, putw — put character or word on a stream

SYNOPSIS
#include <stdio.h>

int putc (c, stream)
char c;
FILE sstream;

putchar (c)

fputc (c, stream)
FILE *stream;

putw (w, stream)
FILE =*stream;

DESCRIPTION
Putc appends the character ¢ to the named output srream. [t returns the character written.

Putchar(c) is defined as purc(c, stdout).

Fputc behaves like purc, but is a genuine function rather than a macro. [t may be used to save
on object text.

Purw appends word (i.e. int) w to the output sream. [t returns the word written. Pumw neither
assumes nor causes special alignment in the file.

The standard stream sidour is normally buffered if and only if the output does not refer to a ter-
minal; this default may be changed by serbuf(3S). The standard stream siderr is by default
unbuffered unconditionally, but use of freopen(3S) will cause it to become unbuffered; setbuf,
again, will set the state to whatever is desired. When an output stream is unbuffered informa-
tion appears on the destination file or terminal as soon as written; when it is buffered many
characters are saved up and written as a block. See also /fusn(3S).

SEE ALSO
putc(3S), fopen(3S), getc(3S), puts(3S), printf(3S), fwrite(3S), ferror(3S)

DIAGNOSTICS
These functions return the constant EOF upon error. Since this is a good integer, ferror(3S)
should be used to detect pusw errors.

BUGS
Because it is implemented as a macro, puic treats a swream argument with side effects improp-
o erly. In particular ‘putc(c, «f++);’ doesn’t work sensibly.

Page 1 November 1979

PUTC:0(3C) CB—UNIX 2.1 PUTC:0(3C)

NAME
putc — buffered output

SYNOPSIS
fereat(file, iobuf)
char +file; struct buf *iobuf;

putc(c, iobuf)
int c;
struct buf =icbuf;
putw (w, iobuf);
int w;
struct buf =iobuf;
flush (iobuf)
struct buf =iobuf;
DESCRIPTION
Fereat creates the given file (mode 666) and sets up the buffer iobuf (size 518 bytes); putc and
putw write a byte or word respectively onto the file; flush forces the contents of the buffer to be
written, but does not close the file. The format of the buffer is:

struct buf {
int fildes;
int nunused;
char *nxtfree;
char buffi512];

I
Fereat returns — 1 if file creation failed; none of the other routines returns error information.

Before terminating, a program should call flush to force out the last of the output (ffush from
Q).

The user must supply iobuf, which should begin on a word boundary.
To write a new file using the same buffer, it suffices to call [f1flush, close the file, and call fcreat
again.
SEE ALSO
creat(2), write(2), getc(3)

Page 1 . November 1979

PUTCHAR:0(3C) CB—UNIX 2.1 PUTCHAR:0(3C)

NAME
putchar — write character

SYNOPSIS
putchar (ch)
int ch;
flush ()

DESCRIPTION
Putchar writes out its argument and returns it unchanged. The low-order byte of the argument
is always written; the high-order byte is written only if it is non-null. Unless other arrange-
ments have been made, putchar writes in unbuffered fashion on the standard output file.

Associated with this routine is an external variable four which has the structure of a buffer dis-
cussed under purc:o(3). If the file descriptor part of this structure (first word) is greater than 2,
output via putchar is buffered. To achieve buffered output one may say, for example,

fout = dup(1); or
fout = creat(...);

In such a case flush must be called before the program terminates in order to flush out the
buffered output. Flush may be cailed at any time.

SEE ALSO
putc:o(3)

BUGS
The fout notion is kludgy.

Page 1 November 1979

PUTPWENT (3C) CB—UNIX 2.1 PUTPWENT (3C)

NAME
putpwent — write password file entry
SYNOPSIS
#include <pwd.h>
int putpwent (p, f)
struct passwd =p:
FILE =f:
DESCRIPTION
Pupwent is the inverse of gemwent(3C). Given a pointer 10 a passwd structure created by

cepwent (or gempwiid(3C) or gempwnam(3C)) . puipwuid writes a line on the stream / which
matches the formal of /ete/passwd.

DIAGNOSTICS
Puipwent returns nonzero il an error was detected during its operation, otherwise zero.

Page 1 November 1979

PUTS (3S) CB—-UNIX 2.1 PUTS (38)

NAME
puts, fputs — put a string on a stream

SYNOPSIS
#include <stdio.h>
int puts (s)
char »s;

int fputs (s, stream)
char »s;
FILE s*stream;

DESCRIPTION
Purs copies the null-terminated string s to the standard output stream stwdout and appends a
new-line character.

Fpurs copies the nuli-terminated string s to the named output stream.
Neither routine copies the terminal null character.

DIAGNOSTICS
Both routines return EQF on error.

SEE ALSO
fopen(38), gets(3S), putc(3S), printf(3S), fwrite(3S), ferror(3S)

NOTES
Puts appends a new-line, fpurs does not.

Page | November 1979

QSORT (3C) CB—UNIX 2.1 QSORT (3C)

NAME
gsort — quicker sort

SYNOPSIS
gsort (base, nel. width, compar)
char =base:
int nel, width:
int (=compar)();

DESCRIPTION
QOsori is an implementation of the quicker-sort algorithm. The first argument is a pointer (o the
hase of the data: the second is the number of elements; the third is the width of an element in
byies: the last is the name of the comparison routine. It is called with two arguments which are
pointers 1o the elements being compared. The routine must return an integer less than. equal
to. or greater than 0 according as the first argument is to be considered less than, equal to, or
greater thun the second.

SEE ALSO
sort{1}, stremp(3C)

Page 1 November 1979

RAND (3C) CB—-UNIX 2.1 RAND (3C)

NAME
rand, srand — random number generator

SYNOPSIS
srand (seed)
unsigned seed;

rand ()

DESCRIPTION
Rand uses a multiplicative congruential random number generator with period 2*2 10 return suc-
cessive pseudo-random numbers in the range from 0 to 2'°—1. 2322671

The generator is reinitialized by calling srand with 1 as argument. It can be set to a random
starting point by calling srand with whatever you like as argument.

Page 1 November 1979

RESET:0 (3C) CB—-UNIX 2.1 RESET:0(3C)

NAME
reset — execute non-local goto
SYNOPSIS
setexit ()
reset ()
DESCRIPTION
These routines are useful for dealing with errors discovered in a low-level subroutine of a pro-
gram.

Setexit is typically called just at the start of the main loop of a processing program. It stores cer-
tain parameters such as the call point and the stack level.

Reser is typically called after diagnosing an error in some subprocedure called from the main
loop. When resers is called, it pops the stack appropriately and generates a non-local return from
the last call to serexit.

It is erroneous, and generally disastrous, to call reser unless serexir has been called in a routine
which is an ancestor of reser.

NOTE
These routines have been replaced in the newer libraries with sezimp(3C) and longjmp(3C).

BUGS
Only one non-local goto may be set up through this mechanism at a time.

Page 1 November 1979

RMDIR:0 (3C) CB—UNIX 2.1 RMDIR:0(3C)

NAME
rmdir — remove directory

SYNOPSIS
rmdir (dirname)
char *dirname;

DESCRIPTION
Rmdir removes the directory specified by the partial or full pathname, dirname. Dirname is a
string pointer. Rmdir checks the effective user id before doing anything. If the effective uid is
not super user, control is returned to the caller with a —2 return value. Thereafter no checking

is done on any unlinks or closings. Hence if the process executing rmdir is aborted or killed in
the process of doing an unlink the file system could result in a bad link count.

Return codes:

0 successful rmdir.
-1 dirname not a directory or nonexistent.
-2 not allowed (could not open dirname or not super user).
-3 dirname not empty.

Rmdir calls close(2), getid(2), open(2), read(2), stai(2) and unlink(2) while removing dirname.

SEE ALSO
mkdir:0(3C)

BUGS
Rundir should not require the effective user id to be super-user.

Page 1 November 1979

SCANF (3S) CB—-UNIX 2.1 SCANF (38)

NAME
scanf, fscanf, sscanf — formatted input conversion

SYNOPSIS
#include <stdio.h>

scanf (format [, pointer] ...)
char =format;

fscanf (stream, format [, pointer] ...)
FILE sstream;
char sformat;

sscanf (s, format [, pointer] ...)
char *s, *format;

DESCRIPTION
Scanf reads from the standard input stream stdin. Fscanf reads from the named input stream.
Sscanf reads from the character string s. Each function reads characters, interprets them
according to a format, and stores the results in its arguments. Each expects as arguments a
control string format, described below, and a set of pointer arguments indicating where the con-
verted input should be stored.

The control string usually contains conversion specifications, which are used to direct interpre-
tation of input sequences. The control string may contain:

1. Blanks, tabs, or new-lines, which cause input to be read up to the next non-white-space
character.

An ordinary character (not %) which must match the next character of the input stream.

3. Conversion specifications, consisting of the character %, an optional assignment suppress-
ing character =, an optional numerical maximum field width, and a conversion character.

A conversion specification directs the conversion of the next input field; the result is placed in
the variable pointed to by the corresponding argument, uniess assignment suppression was indi-
cated by *. An input field is defined as a string of non-space characters; it extends to the next
inappropriate character or untii the field width, if specified, is exhausted.

The conversion character indicates the interpretation of the input field; the corresponding
pointer argument must usually be of a restricted type. The following conversion characters are
legal:

% a single % is expected in the input at this point; no assignment is done.
d adecimal integer is expected; the corresponding argument should be an integer pointer.
an octal integer is expected; the corresponding argument should be an integer pointer.

X a hexadecimal integer is expected; the corresponding argument should be an integer
pointer.

s a character string is expected; the corresponding argument should be a character pointer
pointing to an array of characters large enough to accept the string and a terminating \0,
which will be added. The input field is terminated by a space character or a new-line.

¢ a character is expected; the corresponding argument should be a character pointer. The
normal skip over space characters is suppressed in this case; to read the next non-space
character, try ‘%ls’. If a field width is given, the corresponding argument should refer to a
character array, and the indicated number of characters is read.

a floating point number is expected; the next field is converted accordingly and stored
through the corresponding argument, which should be a pointer to a ffoat. The input for-
mat for floating point numbers is an optionaily signed string of digits possibly containing a

~-n

November 1979 Page 1 November 1979

SCANF (3S) CB—UNIX 2.1 SCANF (38)

decimal point, followed by an optional exponent field consisting of an E or e followed by
an optionally signed integer.

[indicates a string not to be delimited by space characters. The left bracket is followed by a
set of characters and a right bracket; the characters between the brackets define a set of
characters making up the string. If the first character is not circumflex ("), the input field
is all characters until the first character not in the set between the brackets; if the first char-
acter after the left bracket is ", the input field is all characters until the first character which
is in the remaining set of characters between the brackets. The corresponding argument
must point to a character array. ’

The conversion characters d, o and X may be capitalized or preceded by 1 to indicate that a
pointer to long rather than int is in the argument list. Similarly, the conversion characters e or
f may be capitalized or preceded by I to indicate that a pointer to double rather than fleat is in
the argument list. The character h will function similarly in the future to indicate short data
items.

Scanf conversion terminates at EOF, at the end of the control string, or when an input character
conflicts with the control string. In the latter case, the offending character is left unread in the
input stream.

Scanf returns the number of successfully matched and assigned input items; this number can be
zero in the event of an early conflict between an input character and the control string. If the
input ends before the first conflict or conversion, EOF is returned.

EXAMPLES
The call:

int i; float x; char namel50l;
scanf ("%d%f%s", &i, &x, name);

with the input line
25 54.32E-1 thompson
will assign to i the value 25, x the value 5.432, and name will contain thompson\0. Or:
int i; float x; char namel50l;
scanf ("%2d%f%*d%|1234567890]", &i, &x, name);
with input:
56789 0123 56a72

will assign 56 to i, 789.0 to x, skip 0123, and place the string 56\0 in name. The next call to
getchar will return a.

SEE ALSO
atof (3C), getc(3S), printf(3S)

NOTE
Trailing white space (including a new-line) is left unread unless matched in the control string.

DIAGNOSTICS

The scanf functions return EOF on end of input, and a short count for missing or illegal data
items.

BUGS
The success of literal matches and suppressed assignments is not directly determinable.

November 1979 ‘ Page 2 November 1979

SETBUF(3S) CB-UNIX 2.3 SETBUF(3S)

NAME
setbuf — assign buffering to a stream

SYNOPSIS
Finclude <stdio.h>

setbuf (stream, buf)
FILE #stream;
char sbuf;

DESCRIPTION
' Setbuf is used after a stream has been opened but before it is read or written. It causes the
character array buf to be used instead of an automatically allocated buffer. If buf is the constant
pointer NULL, input/output will be completely unbuffered.

A manifest constant BUFSIZ tells how big an array is nceded:
char buf{BUFsIZ];

A buffer is normally obtained from malloc(3C) upon the first getc or putc(3S) on the file,
except that output streams directed to terminals, and the standard error stream stderr are nor-
mally not buffered.

SEE ALSO
fopen(3S), getc(3S), putc(3S), malloc(3C)

March 11, 1980 Page 1 March 11, 1980

SETJMP (3C) CB—-UNIX 2.1 SETIMP (3C)

NAME

setimp, longimp — non-local goto
SYNOPSIS

#include <setjmp.h>

int setjmp (env)

jmp_buf env;

longjmp (env, val)

jmp_buf env;
DESCRIPTION

These routines are useful for dealing with errors and interrupts encountered in a low-level sub-
routine of a program.

Setimp saves its stack environment in env for later use by longimp. It returns value 0.

Longjmp restores the environment saved by the last call of sejmp. It then returns in such a way
that execution continues as if the call of segmp had_just returned the value val to the function
that invoked setimp, which must not itself have returned in the interim. All accessible data
have values as of the time longimp was called.

SEE ALSO
signai(2)

November 1979 ‘ Page 1 November 1979

SINH (3M)

NAME

CB—UNIX 2.1

sinh, cosh, tanh — hyperbolic functions

SYNOPSIS

#include <math.h>

double
double

double
double

double
double

DESCRIPTION

These functions compute the designated hyperbolic functions for real arguments.

DIAGNOSTICS

sinh (x)
X3

cosh (x)
X5

tanh (x)
X3

SINH (3M)

Sinh and cosh return a huge value of appropriate sign when the correct value would overflow.

November 1979

SLEEP (3C) CB—UNIX 2.1 SLEEP (3C)

NAME

sleep — stop execution for interval

SYNOPSIS

sleep (seconds)
unsigned seconds;

DESCRIPTION

The current process is suspended from execution for the number of seconds specified by the
argument. Sleep is implemented by using signal(2) to catch the alarm clock signal, then using
alarm(2) and pause(2) to set up and wait for the alarm to occur after the number of seconds
specified by the argument. Sleep returns the number of seconds left of the sleep - always zero
unless the sleep is interrupted by a signal.

Sleep and alarm interact intelligently, i.e. the C interface to sleep is intelligent enough to
preserve the alarm signal vector and alarm timer while setting up a sleep. When a sleep is ter-
minated, either by a signal or by the sleep time expiring, the alarm vector is set back to the
value it had before the sleep and the alarm timer is set to the time it would have had taking
into account the time elapsed while sleeping. Of course, if the alarm is scheduled to go off
before the sleep time expires, sleep does not change the alarm vector or alarm timer. In that
case, the time returned by sleep will be the sleep time less the alarm time; assuming, of course,
that the alarm signal is the first signal to disturb sleep. Alarm timers will operate for the correct
number of “‘real”’ seconds no matter how long signal processing routines take.

One consequence of the above scheme that is not adequately explained is as follows; suppose
you set up to ignore alarms (signal(2)) set an alarm timer for 60 seconds, and then execute a
70 second sleep. After 60 seconds of time has elapsed, you will get a return from sleep of 10
seconds because the alarm time has expired. It might help in your understanding of sleep if you
considered sleep to be a ’timed’ pause function. Pause relinquishes the processor until the
alarm timer expires; sleep relinquishes the processor until the alarm timer expires or until the
requested sleep time expires, whichever comes first.

SEE ALSO

BUGS

Page |

sleep (1), alarm(2), pause(2), signai(2)

Sleep does not work correctly when called recursively. Only the last sleep called will return the
correct value. The other sleeps will return the same value as the last sleep. If you don’t particu-

“larly care what slegp returns, then sleep may be used recursively.

November 1979

SSIGNAL (3C) CB—UNIX 2.1 SSIGNAL (3C)

NAME
ssignal, gsignal — software signals
SYNOPSIS
#include <signal.h>
int (s+ssignal (sig, action))()
int sig, (+action)();
int gsignal (sig)
int sig;
DESCRIPTION
Ssignal and gsignal implement a software facility similar to signa/(2). This facility is used by the
Standard C Library to enable the user to indicate the disposition of error conditions, and is also
made available to the user for his own purposes.
Software signals made available to users are associated with integers in the inclusive range |
through 15. An action for a software signal is esiablished by a call to ssignal, and a software sig-
nal is raised by a call to gsignal. Raising a software signal causes the action ~estf.tblished for that
signal to be raken.
The first argument to ssignal is a number identifying the type of signal for which an action is to
be established. The second argument defines the action; it is either the name of a (user
defined) action function or one of the manifest constants SIG_DFL (default) or SIG_IGN
(ignore). Ssignal returns the action previously established for that signal type; if no action has
been established or the signal number is illegal, ssigna/returns SIG_DFL.
Gsignal raises the signal identified by its argument, sig.
If an action function has been established for sig, then that action is reset to SIG_DFL and
the action function is entered with argument sig. Gsignal returns the value returned to it
by the action function. ‘
If the action for sig is SIG_IGN, gsignal returns the value 1 and takes no other action.
If the action for sig is SIG_DFL, gsignalreturns the value 0 and takes no other action.
If sig has an illegal value or no action was ever specified tor sig, gsignal returns the value 0
and takes no other action.
NOTES

Page |

There are some additional signals with numbers outside the range | through 15 which are used
by the Standard C Library to indicate error conditions. Thus, some signal numbers outside the
range | through 15 are legal, although their use may interfere with the operation of the Stan-
dard C Library.

November 1979

STD1O(38) CB—UNIX 2.1 STDIO(3S)

NAME
stdio — standard buffered input/output package

SYNOPSIS
#include <stdio.h>
FILE =stdin, *stdout, *stderr;

DESCRIPTION
The functions described in the entries of sub-class 3S of this manual constitute an efficient,
user-level 1/0 buffering scheme. The in-line macros getc(3S) and putc(3S) handle characters
quickly. The macros getchar, putchar, and the higher-level routines fgetc, fgets, fprintf, fputc,
Jputs, fread, fscanf, fwrite, gets, getw, printf, puts, putw, and scanf all use getc and putc; they can
be freely intermixed.

A file with associated buffering is called a stream and is declared to be a pointer to a defined
type FILE. Fopen(3S) creates certain descriptive data for a stream and returns a pointer to
designate the stream in all further transactions. Normally, there are 3 open streams with con-
stant pointers declared in the “‘include’ file and associated with the standard open files:

stdin standard input file
stdout standard output file
stderr standard error file.

A constant ‘‘pointer’” NULL (0) designates the null stream.

An integer constant EOF (=—1) is returned upon end-of-file or error by most integer functions
that deal with streams (see the individual descriptions for details).

Any program that uses this package must include the header file of pertinent macro definitions,
as follows:

#include <stdio.h>

The functions and constants mentioned in the entries of sub-class 3S of this manual are
declared in that “‘include’’ file and need no further declaration. The constants and the follow-
ing ‘‘functions” are implemented as macros (redeclaration of these names is perilous): gerc,
getchar, putc, putchar, feof, ferror, and fileno.

SEE ALSO
open(2), close(2), read(2), write(2), ctermid(3S), cuserid(3S), fclose(3S), ferror(3S),
fopen(3S), fread(3S), fseek(3S), getc(3S), gets(3S), popen(3S), printf(3S), putc(3S), puts(3S),
scanf (3S), setbuf (3S), system(3S), tmpnam(3S).

DIAGNOSTICS
Invalid stream pointers will usually cause grave disorder, possibly including program termina-
tion. Individual function descriptions describe the possible error conditions.

Page 1 November 1979

STDIO:0 (38) CB—UNIX 2.1 STDIO:0(3S)

NAME

stdio — standard buffered input/output package

SYNOPSIS

#include <ostdio.h>

FILE sstdin;
FILE sstdout;
FILE sstderr;

DESCRIPTION

The functions described under subheading 3S constitute an efficient user-level buffering
scheme. The in-line macros gerc(3S) and putc(3S) handle characters quickly. The higher level
routines gers, fgets, scanf, fscanf, fread, puts, fputs, printf, fprintf, fwrite all use gerc and puic; they
can be freely intermixed.

A file with associated buffering is called a sweam, and is declared to be a pointer to a defined
type FILE. Fopen(3S) creates certain descriptive data for a stream and returns a pointer 1o
designate the stream in all further transactions. There are three normally open streams with
constant pointers declared in the include file and associated with the standard open files:

stdin standard input file

stdout standard output file

stderr standard error file

[n addition, there is a constant ‘pointer’ NULL (0) that designates the null stream.

An integer constant EOF (—1) is returned upon end of file or error by most integer functions
that deal with streams.

Any routine using occ that uses the standard input/output package must include the header file
of pertinent macro definitions this way:

#include <ostdio.h>
and must be loaded with a special library, obtained this way:
cc ... —loS

(Note that occ will convert any invocation of -IS to -loS automatically.) The functions and con-
stants mentioned in subheading 3S are appropriately declared in the include file, and need no
further declaration. The following ‘functions’ are implemented as macros; redeclaration of
these names is perilous: getc, gerchar, putc, putchar, feof, ferror, fileno.

SEE ALSO

open(2), close(2), read(2), write(2)

DIAGNOSTICS

Invalid swream pointers will usually cause grave disorder, possibly including program termina-
tion. See individuai function descriptions for possible error conditions.

Typical error conditions to watch for are a FILE pointer which has not been initialized with

Jopen, input (output) being attempted on an output (input) stream, or a FILE pointer which

designates corrupt or otherwise unintelligible FILE data.

November 1979

STRING (3C) CB—UNIX 2.1 STRING (3C)

NAME

strcat, strncat, stremp, strncmp, strepy, strnepy, strien, strchr, strrchr — string operations

SYNOPSIS

char estrcat (sl, s2)
char »sl, *s2;

char sstrncat (sl1, s2, n)
char =sl, =s2;

int n;

int stremp (s1, s2)
char =sl, *s2;

int strncmp (sl, s2, n)
char =sl, =s2;

int n;

char sstrepy (sl1, s2)
char =sl, »s2;

char sstrncpy (sl, s2, n)
char »sl, =s2;

int n;

int strien (s)

char =s;

char sstrchr (s, c)
char =s, c;

char sstrrchr (s, ¢
char =s, ¢;

DESCRIPTION

BUGS

Page 1

These functions operate on null-terminated strings. They do not check for overflow of any
receiving string.

Strcat appends a copy of string s2 to the end of string sI. Strncat copies at most n characters.
Both return a pointer to the nuil-terminated result.

Strcmp compares its arguments and returns an integer greater than, equal to, or less than 0,
according as s/ is lexicographically greater than, equal to, or less than s2. Strncmp makes the
same comparison but looks at at most n characters.

Strcpy copies string s2 to sl, stopping after the null character has been moved. Strncpy copies
exactly n characters, truncating or null-padding s2; the target may not be null-terminated if the
length of s2is n or more. Both return s/.

Strien returns the number of non-null characters in s.

Strchr (strrchr) returns a pointer to the first (last) occurrence of character cin string s, or NULL
if ¢ does not occur in the string. The null character terminating a string is considered to be part
of the string.

Strcmp uses native character comparison, which is signed on PDPlls, unsigned on other
machines.

November 1979

STTY(3C) CB—UNIX 2.3 STTY(3C)

NAME
stty, gtty — set and retrieve the modes of a terminal

SYNOPSIS
finclude <sgtty.h>

int stty (fildes, arg)
int fildes;
struct sgttyb =arg;
int gtty (fildes, arg)
int fildes;
struct sgttyb sarg;
DESCRIPTION
Sty and gty are used to set and get various characteristics of a character device referred to by
fildes. Fildes usually refers to a device associated with a typewriter, but may also refer to certain

special devices such as named pipes. The second argument, arg, should be a pointer to the
sgttyb structure defined in the include file <sgtty.h>.

NOTE
Stty and grry are now obsolete, having been replaced with the newer ioct/ command. These rou-

tines merely call ioct/ with the command requests IOCSETP and TIOCGETP. Joct should be
used for all new code.

SEE ALSO
stty(1), ioctl(2)

DIAGNOSTICS
Zero is returned if the call was successful; a —1 return indicates an error.

February 27, 1981 Page] February 27, 1981

SWAB(3C) CB-UNIX 2.1 SWAB (3C)

NAME
swab — swap bytes
SYNOPSIS
swab (from, to, nbytes)
char =from, =to;
int nbytes;
DESCRIPTION
Swab copies nbytes bytes pointed to by from to the position pointed to by 0, exchanging adja-

cent even and odd bytes. It is useful for carrying binary data between PDPlls and other
machines. Nbyresshould be even.

Page 1 November 1979

SYSTEM(3S) CB—UNIX 2.1 SYSTEM (3S)

NAME

system — issue a shell command
SYNOPSIS

#include <stdio.h>

int system (string)
char »string;
DESCRIPTION

System causes the swring to be given as input to the shell program specified in the environment
variable SHELL (or /bin/sh if SHELL is not set) as if the string had been typed as a com-

mand at a terminal. The current process waits until the shell has completed, then returns the
exit status of the shell.

SEE ALSO
environ(7), exec(2), sh(l)

DIAGNOSTICS
System stops if it can’t execute SSHELL or /bin/sh.

Page 1 November 1979

TELL (3C) CB—UNIX 2.1 TELL (3C)

NAME
tell — get file offset

SYNOPSIS
long tell (file)
int file;
DESCRIPTION

Tell returns the current read/write pointer associated with the open file whose descriptor is
specified as argument.

NOTE
Tell has been replaced by Iseek(file,0L,0), which should be used in all new code. Tell merely
calls Iseek with the proper arguments, and is provided only for compatibility with existing code.
SEE ALSO
Iseek (3)
DIAGNOSTICS

~1 returned for an unknown file descriptor.

Page 1 November 1979

TEMPFILE (38) CB—UNIX 2.1 TEMPFILE (3S)

NAME
tempfile — create a temporary file

SYNOPSIS
#include <stdio.h>

FILE stempfile ()

DESCRIPTION
Tempfile creates a temporary file, and returns a corresponding FILE pointer. Arrangements are
made so that the file will automatically be deleted when the process using it terminates. The
file is opened for update.

SEE ALSO
creat(2), unlink(2), fopen(3S), mktemp(3C), tmpnam(3S)

BUGS
If called more than 17,576 times in a single process, /mpnam will start recycling previously used
names.)
Between the time a file name is created and the file is opened, it is possible for some other pro-
cess to create a file with the same name. This can never happen if that other process is using
tmpnam or mktemp, and the file names are chosen so as to render duplication by other means
unlikely.

November 1979 Page | November 1979

TMPNAM (3S) CB—UNIX 2.1 TMPNAM (38)

NAME

tmpnam — create a name for a temporary file

SYNOPSIS

#include <stdio.h>

char *tmpnam (s)
char =s;

DESCRIPTION

Tmpnam generates a file name that can safely be used for a temporary file. If (int)s is zero,
tmpnam leaves its result in an internal static area and returns a pointer to that area. The next
call to tmpnam will destroy the contents of the area. If (int)s is nonzero, s is assumed to be the
address of an array of at least L_tmpnam bytes; tmpnam places its result in that array and
returns s as its value.

Tmpnam generates a different file name each time it is called.

Files created using tmpnam and either fopen or creat are only temporary in the sense that they
reside in a directory intended for temporary use, and their names are unique. It is the user’s
responsibility to use unlink to remove the file when its use is ended.

SEE ALSO

BUGS

Page 1

creat(2), unlink(2), fopen(3S), mktemp (3C)

If called more than 17,576 times in a single process, tmpnam will start recycling previously used
names.

Between the time a file name is created and the file is opened, it is possible for some other pro-
cess to create a file with the same name. This can never happen if that other process is using
tmpnam or mktemp, and the file names are chosen so as to render duplication by other means
unlikely.

November 1979

TRIG (3M) CB—-UNIX 2.1 TRIG (3M)

NAME
sin, cos, tan, asin, acos, atan, atan2 — trigonometric functions

SYNOPSIS
#include <math.h>

double sin (x)
double x;

double cos (x)
double x;

double asin (x)
double x;

double acos (x)
double x;

double atan (x)
double x;

double atan2 (x, y)
double x, y;

DESCRIPTION

Sin, cos, and an return trigonometric functions of radian arguments. The magnitude of the
argument should be checked by the caller to make sure the result is meaningful.

Asin returns the arc sin in the range —=/2 to =/2.

Acos returns the arc cosine in the range 0 to .

Atan returns the arc tangent of xin the range —=/2 to =/2.
Aran2 returns the arc tangent of x/ in the range —= to =.

DIAGNOSTICS
Arguments of magnitude greater than 1 cause asinand acos to return value 0.

November 1979 Page 1 November 1979

TTYNAME (3C) CB—UNIX 2.1 TTYNAME (3C)

NAME
ttyname, isatty — find name of a terminal

SYNOPSIS
char =ttyname (fildes)

int isatty (fildes)

DESCRIPTION
Ttyname returns a pointer to the null-terminated path name of the terminal device associated
with file descriptor fildes.

Isatty returns 1 if fildes is associated with a terminal device, 0 otherwise.

FILES
/dev/*

SEE ALSO
ioct1(2)

DIAGNOSTICS
Ttyname returns a null pointer (0) if fildes does not describe a terminal device in directory /dev.

BUGS
The return value points to static data whose content is overwritten by each call.

Page 1 November 1979

TTYSLOT (3C) CB—-UNIX 2.1 TTYSLOT (3C)

NAME

ttyslot — find the slot in the utmp file of the current user
SYNOPSIS

ttyslot ()
DESCRIPTION

Ttyslot returns the index of the current user’s entry in the wrmp file. This is accomplished by
actually scanning the file /etc/lines for the name of the terminal associated with the standard
input, the standard output, or the error output (0, 1 or 2). A value of 0 is returned if an error
was encountered while searching for the terminal name or if none of the above file descriptors
are associated with a terminal device.

SEE ALSO
ttyname (3C)

BUGS
Ttyslot returns O for errors while reading the lines file or if the file descnptors 0, 1 and 2 do not
describe a terminal device.

Nbvember 1979 Page 1 November 1979

UNGETC (3S) CB—UNIX 2.1 UNGETC(3S)

NAME
ungetc — push character back into input stream

SYNOPSIS
#include <stdio.h>
int ungetc (¢, stream)

char c;
FILE =»stream;

DESCRIPTION
Ungerc pushes the character ¢ back on an input stream. That character will be returned by the

next gei call on that stream. Ungerc returns c.
One character of pushback is guaranteed provided something has been read from the stream
and the stream is actually buffered. Atiempts to push EOF are rejected.

Fseek (3S) erases all memory of pushed back characters.

SEE ALSO
getc(3S), setbuf(3S), fseek(3S)

DIAGNOSTICS
Ungerc returns EOF if it can’t push a character back.

Page 1 November 1979

UTINDX (3C)

NAME

CB—UNIX 2.1

utindx, utline — access routines for utmp file

SYNOPSIS

#include <utmp.h>

int utindx (id)
char id(3l;

struct utmp *utline (id)

char id(3];
DESCRIPTION

UTINDX (3C)

These routines provide access to the utmp file (normally /etc/utmp). This file contains user
accounting information as maintained by login(1) and used by such commands as who(l).
Both routines take a single argument which is a pointer to a string containing the two-character
line id (from the /etc/lines file; see lines(6)) of interest.

Utindx returns the entry index of the most recent entry for the specified lme ID. ThlS index
can then be used as the basis for direct access to the utmp file.

- Utline returns the contents of the most recent entry for the specified line ID as a pointer to
structure of the format specified in /usr/include/utmp.h:

I* @ (#)utmp.h

/l

2.1

* Format of /etc/utmp and /usr/adm/wtmp

*

#define UTMP_FILE "/etc/utmp”
#define WTMP_FILE "/etc/ wtmp”

struct utmp {
char
char
long
int

)
SEE ALSO

ut_name{8};

ut_id[2];
ut_time;
ut_pid;

login(1), utmp(5), lines(S), who(1)

Page 1

*/

/* user id */
/* line id */
/* time on */

/* process id */

November 1979

o

