INTRO (4) CB—UNIX 2.1 INTRO (4)

NAME
intro — introduction to special files

DESCRIPTION
This section describes various special files that refer to specific DEC peripherals and UNIX dev-
ice drivers. The names of the entries generally derive from DEC names for the hardware, as
opposed to the names of the special files themselves. Characteristics of both the hardware dev-
ice and the corresponding UNIX device driver are discussed where applicable.

BUGS
While the names of the entries generally refer to DEC hardware names, in certain cases these
names are seemingly arbitrary for various historical reasons.

Page 1 November 1979

DH (4) CB—UNIX 2.1 DH (4)

NAME
dh, dz — asynchronous multiplexers

DESCRIPTION
Each line attached to a DH-11 or DZ-11 communications multiplexer behaves as described in
1v{(4). Input and output for each line may independently be set to run at any of 16 speeds; see
ioctl (2) for the encoding. (For DZ-11 lines, output speed is always the same as input speed.
The 200 speed and the two externally clocked speeds (exta, extb) are missing on the DZ-11.)

FILES
/dev/in*

SEE ALSO
ioctl(2), tty(4)

November 1979 Page 1 November 1979

DN(4)

NAME

CB-UNIX 2.3 DN(4)

dn — DN-11 ACU interface

DESCRIPTION

FILES

BUGS

The dn?? files are write-only. The permissible codes are:

0-9 dial 0-9

® dial »

dial # ’

. 4 second delay for secondary dial tone (for use with older ACU’s)
end-of-number

forces ACU to wait for secondary dial tone (for use with newer ACU’s)
flashes switchhook if a flasher card is installed (HOBIS application)
drop call ‘

return from write leaving call request on

N aTtg o

The entire telephone number should be presented in a single write system call unless a flasher
card is used in special applications.

A write call returns the number of digits sent when the answer tone is detected and control is
given to the data set. If the digit string is terminated with an ‘e’, the write call returns the
number of digits sent without waiting for answer tone. An error condition causes a —1 to be
returned.

The dn interface is divided into two mutually exclusive functions. The first function provides an
ACU interface when the ACU is associated with only one data set. The second function pro-
vides an ACU interface when the ACU is associated with multiple data sets (maximum of 12).
Minor device numbers in the range of 0 — 15 inclusive are interpreted by the dn to be of the
single ACU/single data set arrangement. Minor device numbers greater than 15 are interpreted
by the dn to be a single ACU sharing up to 12 data sets. Dn’s with a minor device number
greater than 15 generate a data set select code to the ACU interface prior to returning from an
open. The following algorithm must be used in assigning minor device numbers to insure that
proper data set select codes are generated by the ACU.

(minor device number modulo 16) + 1 = data set select number

NOTE: Data set select numbers 7,8,15, and 16 are illegal and therefore so are the minor device
numbers that generate them.

Also, it should be noted that minor device numbers in the range of 16 —31 inclusive will actu-
ally perform auto calling functions using the first physical dn in the system. those in the range
of 32—47 inclusive will perform auto calling using the second physical dn in the system, and so
on. This implies that either minor device 0 is implemented for a single ACU/single data set
arrangement or minor devices 16 —~31 are implemented to provide data set selection for up to
12 data sets associated with the dn that normally would be accessed via minor device 0.

/dev/dn?

The reception of a signal which is being ignored during an open or write of the dn may cause an
incorrect phone number to be dialed without returning an error indication.

SEE ALSO

May 11,

dh(4)

1981 Page } May 11, 1981

ERR (4) CB-UNIX 2.1 ERR(4)

NAME
err — error-logging interface

DESCRIPTION
Minor device 0 of the err driver is the interface between a process and the system’s error-
record collection routines. The driver may be opened only for reading by a single process with
super-user permissions. Each read causes an entire error record to be retrieved; the record is
truncated if the read request is for less than the record’s length.
FILES

/dev/error
SEE ALSO

errdemon(1)

Page 1 November 1979

HP (4)

NAME

CB—UNIX 2.1 HP (4)

hp — RP04/RPO5/RP06 moving-head disk

DESCRIPTION

FILES

. November 1979 Page 1

The files hp0, ..., hp31 refer to sections of the RP0O4/RP0O5/RP06 disk drive 0. The files hp32,
..., hp63 refer to drive 1, etc. This slicing allows the pack to be broken up into more manage-
able pieces.

A sample of the origin and size of the sections on each drive are as follows:
NCYL = 418 (22*19)

blocks offset section
120*NCYL 0 hp0 overiaps 8,9,10,11
120*NCYL 120 hpl overlaps 12,13
120*"NCYL 240 hp2
120*NCYL 360 hp3
120*NCYL 480 hp4
120*NCYL 600 hps
95*NCYL 720 hpé
‘ (end of RP06)
SI*NCYL 360 hp?
(end of RP04/RP0OS5)
12*NCYL 0 hp8 util
11*NCYL 12 hp9
97*NCYL 23 hpl0
0 0 hpll spare
65*NCYL 120 hpl2 source
S5*NCYL 185 hpl3 rootdev
ete.

Blocks are the number of cylinders assigned to a section of the disk times 418 blocks per
cylinder. Offset is in muitiple of cylinders and indicates where each section of the disk begins.
Section refers to the #p number found in /dev/hp*. [t should be noted that /dev/hp8 and
dev/util are linked together and therefore, describe the same section of the disk. Also and
/dev/rootdev are linked together and both refer to the root file svstem. This layout should be
made with discretion to allow for convenient backups (overlays) and future expansion.

The Ap files access the disk via the system’s normal buffering mechanism and may be read and
written without regard to physical disk records. There is also a *‘raw’’ interface which provides
for direct transmission between the disk and the user’s read or write buffer. A single read or
write call results in exactly one [/O operation and therefore raw I/O is considerably more
efficient when many words are transmitted. The names of the raw /P files begin with rhp and
end with a number which selects the same disk section as the corresponding #p file.

In raw [/O the buffer must begin on a word boundary, and counts should be a multipie of 512
bytes (a disk block). Likewise Iseek calls should specify a muitiple of 512 bytes.

By convention, programs never access the physical names deyv/hp* or /dev/rhp*, but access the
logical names such as /dev/musr or /dev/rmusr instead. These logical names are linked by the
system administrator to the physical device names.

/dev/hp*
/dev/rhp*

November 1979

KL (4) CB—UNIX 2.1 : KL (4)

NAME
kI — KL-11 or DL-11 asynchronous interface

DESCRIPTION
The discussion of typewriter 1/0 given in 17v(4) applies to these devices.
Since they run at a constant speed, attempts to change the speed via ioct/ (2) are ignored.
The on-line console typewriter is normally interfaced using a KL-11 or DL-11.

The system console can be accessed via three different methods. They are as follows:

Ln 00 is an entry in the lines file to allow a who (/) command to identify the line.
This entry is here for historical reasons only.

Swstty is the real system console that is physically attached to the KL-11 or DL-11.
This is where all the system error messages are printed.

Swscon is the virtual console that can be linked to another line for remote reboot.
hit (1M) and reboor (1M) 1alk to this device.

Normally, systty, syscon and In 00 are all linked together. Telinir (M) will change this arrange-
ment if changing run level to level 7 causes the current terminal to become syscon.

FILES
/dev/In00
/dev/systty
/dev/syscon

SEE ALSO
tty(4), who(1), telinit(1), reboot(1), init(1M)

BUGS
Modem control for the DL-11E is not implemented.

November 1979 Page 1 November 1979

KMC(4) CB—UNIX 2.3 KMC(4)

NAME

kme ~ KMC11/DMCI11 microprocessor

DESCRIPTION 4

The files kmc? are used to manipulate the KMC11 or DMCI11 microprocessors. The only
KMCI11 currently supported is the KMC11-B. The device handler provides the basic mechan-
ism needed to load, run, and debug programs on the microprocessor.

The open is exclusive; at most one open at a time is allowed. The first open can determine
whether the microprocessor is a KMCI11 or DMCI1 by testing for bit 8 of the microprocessor
memory address register; however, this test is disabled in the current implementation, and a
KMC11-B is assumed.

Addresses 0—8191 (2047 for the DMC) reference the 4096 (1024 for DMC) words of instruc-
tions in the control memory of the microprocessor. For the KMCI11, they may be read or writ-
ten; for the DMCI11, they are read-only. This portion is word oriented, that is, the address and
byte count must be even.

Addresses 8192-12287 (2048-2303 for DMC) reference the 4096 (256 for DMC) bytes of data
in the data memory of the KMC11. The data portion may be read or written with no restric-
tions on addressing.

The ioct] function is used to provide access to the basic microprocessor capabilities.
ioctl(kmefd, KIOCSETD, argkmcbuf)

struct
int code;
int *CST;
int value;
} skmcbuf;

The pointer csr contains the address of a 4 word buffer for the UNIBUS Control and Status
Registers associated with the microprocessor. The value of code determines the function:

1 single step and return CSRs in csr.
2 maintenance step: execute value and then return CSRs.
3 return CSRs.
4 stop: clear the run bit.
5 reset: set then clear the master clear bit.
6 run: set the run bit and set the software state to value and running.
7 line unit maintenance: set the line unit bits from value.

FILES

/dev/kme?
SEE ALSO

kasb(1), kunb(1).

February 9, 1981 Page | February 9, 1981

LP(4) | CB-UNIX 2.1 LP(4)

NAME
Ip — line printer

DESCRIPTION
Lp provides the interface to any of the standard Digital Equipment Corporation line printers.
When it is opened or closed, a suitable number of page ejects is generated. Bytes written are
printed.

An internal parameter within the driver determines whether or not the device is treated as hav-
ing a 96- or 64-character set. In half-ASCII mode, lower case letters are turned into upper case
and certain characters are escaped according to the following table:

{ £
} >
1 +

- ~

The driver correctly interprets carriage returns, backspaces, tabs, and form-feeds. A new-line
that extends over the end of a page is turned into a form-feed. The default line length is 80
characters; indent is 4 characters, and lines per page is 66. Lines longer than the line length
minus the indent (i.e. 76 characters, using the above defaults) are truncated.

FILES
/dev/lp

SEE ALSO
lpr(1)

Page | November 1979

MEM (4) ' CB-UNIX 2.1 MEM (4)

NAME
mem - COore memory

DESCRIPTION
Mem is a special file that is an image of the main memory of the computer. It may be used, for
example, to examine, and even to patch the system.

Byte addresses in mem are interpreted as memory addresses. References to non-existent loca-
tions cause errors to be returned.

Examining and patching device registers is likely to lead to unexpected results when read-only
or write-only bits are present.

FILES

/dev/mem

/dev/maus/* (minor devices > = 8)
RESTRICTIONS

A single read or write to this driver from the user may not request more than 8128 bytes.
BUGS

Reading minor device 0 will not return an EOF at end-of-file, but will return ENXIO instead.

Page 1 November 1979

MT (4) . CB—-UNIX 2.1 MT (4)

NAME

mt? — TE16/TU16 magnetic tape interface

DESCRIPTION

FILES

BUGS

The files mt0, ..., mtl15 refer to the Digital Equipment Corporation TU16 magnetic tape control
and transports. The files mt0, ..., mt7 are 800bpi, and the files mt8, ..., mt15 are 1600bpi.
The files mt0, ..., mt3, mt8, ..., mtll are designated normal-rewind on close, and the files
mtd, ..., mt7, mtl2, ..., mtl3 are no-rewind on close. When opened for reading or writing,
the tape is assumed to be positioned as desired. When a file is closed, a double end-of-file
(double tape mark) is written if the file was opened for writing. If the file was normal-rewind,
the tape is rewound. If it is no-rewind and the file was open for writing, the tape is positioned
before the second EOF just written. If the file was no-rewind and opened read-only, the tape is
positioned after the EOF following the data just read. Once opened, reading is restricted to
between the position when opened and the next EOF or the last write. The EOF is returned as a
zero-length read. By judiciously choosing m¢ files, it is possible to read and write multi-file
tapes.

A standard tape consists of several 512 byte records terminated by an EOF. To the extént possi-
ble, the system makes it possible, if inefficient, to treat the tape like any other file. Seeks have
their usual meaning and it is possible to read or write a byte at a time (although very inadvis-
able).

The mt files discussed above are useful when it is desired to access the tape in a way compatible
with ordinary files. When foreign tapes are to be dealt with, and especially when long records
are to be read or written, the ‘raw’ interface is appropriate. The associated files are named
rmt0, ..., rmtl3. Each read or wnte call reads or writes the next record on the tape. In the
write case the record has the same length as the buffer given. During a read, the record size is
passed back as the number of bytes read, up to the buffer size specified. In raw tape 1/0O, the
buffer must begin on a word boundary and the count must be even. Seeks are ignored. An
EOF is returned as a zero-length read, with the tape positioned after the EOF, so that the next
read will return the next record.

While doing raw /O, an EOT will cause a read or write to return error code ENOSPC, indicat-
ing that there is no space left on the device.

/dev/mt
/dev/rmt*

If any non-data error (ie. EOT) is encountered while doing block [/0, the driver refuses to do
anything more until closed. The driver is limited to four transports.

SEE ALSO

mtm({1)

November 1979 Page | November 1979

* NC(4)

NAME

CB—UNIX 2.3 NC(4)

nc — network control

DESCRIPTION

The network control pseudo-device provides a means by which a privileged user program can
install, remove, and get the status of a BX.25 Permanent Virtual Circuit (PVC) and start, stop,
and get the status of a BX.25 link. Additional functions are planned for this driver when the
virtual call feature and additional layers of BX.25 are added to the UNIX BX.25 implementation.
This driver supports open, close, and iocl.

The network control joct! system call has the following form:

ioctl (fildes, cmd, arg)

where fildes is the file descriptor returned by the open of the nc device and ¢md is one of the
following constants (defined in /usr/include/sys/nc.h):

NCPVCI

NCPVCR

NCSTART

January 30, 1981

Install 2 PVC. This command creates one end of a PYC by connecting a minor
device of the X25 driver (slot) to a particular logical channel on a specified
link. .4rgis a pointer to a structure defined as follows:

struct pve {
unsigned short slot;
unsigned short chno;
unsigned short link;
unsigned short options;

}

where slot is the minor device number of the slot to be used as the end point
of the PVC, chno is the logical channel number to be used, and link is the
number of the BX.25 link to be used. Links are numbered starding with 0.
Chno must be in the range 1 to 4,095 and must not be in use currently on the
link. The low-order two bits of options specify one of three possible session-
establishment protocols:

PVC_SESS session-layer open/close protocol
PVC_RST reset in-order/out-of-order protocol
PVC_NONE ““no-protocol’” session mode

The constants PVC_SESS, PVC_RST, and PVC_NONE are defined in
/usr/include/sys/x25u.h.

If the link on which the PVC is installed is currently active (not in the halted
state), the reset procedure will be initiated for the logical channel. When the
reset procedure is completed, the PVC is ready for data transfer.

Remove a PVC. If arg is the minor device number of a slot that is currently
associated with a PVC and not open, the local end of that PVC is removed, i.e.,
disconnected. The slot and logical channel number become available for reuse.

Start a link. Arg is a pointer to a structure defined as follows:

struct start {
unsigned short link;
unsigned short vpb;
unsigned short kmc;
unsigned short line;

Page 1 January 30, 1981

NC(4)

NCSTOP

NCPVCSTAT
NCLNKSTAT

SEE ALSO

CB—UNIX 2.3 NC(4)

unsigned short options;
unsigned char cmd[4];

}

where link is the number of a BX.25 link, vpb specifies a minor device number
of the VPM interface driver, and kmc specifies a minor device number of the
KMC driver. If a KMS is being used, line specifies which one of the eight syn-
chronous lines (0 through 7) of the KMS that is to be used. If a single-line
synchronous interface is being used, this argument must be zero. The four
bytes of cmd are passed to the protocol script via the vpmemd function.

BX.25 link to a VPM interface driver minor device, and the VPM interface
driver minor device to a synchronous line on the KMC. The restart procedure
is then initiated for the link.

Stop a BX.25 link. This command stops the link specified by arg. The link data
structure is initialized. The link, the associated VPM interface driver, and the
KMC synchronous line become availeble for reuse. While in the halted state
packets received for this link are discarded.

Get the status of a PVC. This command gets the connections and status infor-
mation for slot slot and places it in the pvc data structure pointed to by arg.

Get the status of a link. This command gets the connections and status infor-
mation for link /ink and places it in the szart data structure pointed to by arg.

x25pve(1C), vpm(4), x25(4).

January 30, 1981

Page 2 January 30, 1981

NULL(4) . . CB—UNIX 2.1 NULL (4)

NAME
null — the null file

DESCRIPTION
Data written on a null special file is discarded.

Reads from a null special file always return EOF.

FILES
/dev/null

Page 1 November 1979

PCS(4) CB—UNIX 2.3 PCS(4)

NAME
pcs — program counter sampling device

DESCRIPTION

Pcs provides an interface to program counter sampling, allowing for a statistical approach to
user and kernel process profiling. Pcs is a read-only pseudo device supporting open, read,
close, and ioctl functions. An open of pcs obtains exclusive use of the profiling device and
starts the profiling clock. The profiling clock is assumed to be a TCU-100 (battery clock) or a
KW11-K, if no TCU-100 clock exists. The clock should run at hardware and software priority
7. Thereafter, it is necessary to do an ioctl function to start gathering data. Pcs supports the
following ioctl requests:

ioctl(fd, PROF_KERNEL, NULL)
requests that sample points for the unix kernel be output. The third argument is
unused.

ioctl(fd, PROF_ALL, NULL)
requests that sample points be generated whenever any user or kernel process is
interrupted. Again, the third argument is unused.

ioctl(fd, PROF_LIST, list)
requests that sample points for the user level processes specified by the list argu-
ment be output. The list argument points to an array of integers; the first element is
the number of processes to be sampled, and the remaining values are their process
ids. The number of processes in the list is bounded by the number MAX_LIST in
pes.h.

ioctl(fd, PROF_GROUP, groupid)
requests that sample points be output for all of the processes in process group
groupid.

ioctl{fd, BUF_INCR, incr)
requests that incr more system buffers be allocated for the collection of data. By
default, DEF_BUFNO buffers are assigned to the device. Incr must be positive, and
small enough so that no more than MAX_BUFS are be allocated to the device. (See
pcs.h for default and max values).

Reads from pcs may be for an arbitrary number of bytes, although, in general, partial buffers
are not made available to the user until filled with sample points. Pcs internally works in terms
of standard UNIX buffers, BSIZE bytes in size. Such a buffer is described by the "LOGBUF"
structure in pes.h. It is a general layout, envisioned as being useful in reporting kernel and
user generated "records" as well as miscellaneous and idle records. Basically, such a buffer con-
sists of a header and several data records. A record is constrained to be no larger than one
buffer (minus a buffer header), and in fact, a record is never split across buffers. For this rea-
son, one entry in the header identifies the number of "unused” bytes at the end of the buffer.
The unused count should be a small number (less than 12) for all blocks. Anticipating that the
operafing system will be able to generate records faster than a user process will be able con-
sume them, the header also identifies the number of records "lost” since the last buffer was
sent. For streams whose records are generated more slowly than the reading process’ ability to
consume them, this count should be 0. For high volume data, e.g. pc sampling at a very fast
rate, or recording all type of hits on a busy system, this count may be non-zero, and although
the data is lost, a count of lost data is provided. To further reduce the possibility of losing data,
all system idle counts are stored internally and output every 100 clock cycles. The idle data is
identified by sample type IDLE. The same technique is used to gather unasked-for kernel and
user data. This data is stored internally and also output every 100 clock cycles as MKERNEL,
MKERNELI or MUSER type of sample. 1f the profiling clock interrupted the processor when
it was servicing an interrupt, this data will be output as KERNELI data or it may be stored

April 16, 1981 Page 1 April 16, 1981

4) CB—UNIX 2.3 PCS(4)

internally and output every 100 clock cycles as MKERNELI samples.

At the end of sampling, any data that remains in a system buffer is thrown away. This means
that as many as three buffers worth of data may be lost when the close routine is called.

The data records generated by pecs are defined by the structure PSAMPLE or MSAMPLE in
pes.h. For PSAMPLE data, the pid field gives the process id of the interrupted process, and pc
the value of its program counter. Also given is the type of sample, kernel or user, and the text
space, meaningful only for kernel samples. The cpu interrupt priority level is included in the
high 4 bits of sspace which again is only meaningful for kernel samples. MSAMPLE records
are MKERNEL, MKERNELI, MUSER and IDLE data, rype identifies the type of data in the
sample and count is the actual number of hits that were recorded for this type of sample. The
pes.h header is as follows:

/* @(#)pes.h 3.1 */
r*)
- These structures and macros are used by the SYSTEM PROFILING (pc)
* special character device, the data-gathering command getpc,
¥ and the analysis commands analpc.
*
. The pe driver never generates records of types START, STOP, or 10CTL;
. these are created by getpc for the benefit of the analpc routines.
* The data stream presented by getpc will contain a START record, an
L JOCTL record, an arbitrary number of KERNEL, USER, MKERNEL, and
* MUSR records, and, finally, a STOP record.
hd The IOCTL record is an indication of the ioct! system call made by
* the getpc program to the pe driver, indicating what data is available
* to analpc for reporting.
*/
/A pc stream record types */
#define KERNEL 1
#define USER 2
#define IDLE 3
#define MKERNEL 4
#define MUSER 5
#define START 6
define STOP 7
#define JOCTL 8
#define KERNELI 9
#define MKERNELI 10
#define DEF_BUFNO 3 /* default number of system buffers used */
#define MAX_BUFS 10 /* max buffers allowed to pc for profiling */
#define MAX_LIST 5 /* max number in process list for profiling */
struct PSAMPLE { /* pc profile sample record %/
char type; /* KERNEL, KERNELI, or USER space */
char sspace; /* Kernel switchable space number */
/* high 4 bits have CPU priority level */
short pid; /* pid of current user process */
unsigned pc; /* program counter */
J;
struct MSAMPLE { /* misc. or merged profile sample record */
char type; /* MKERNEL. MKERNELI, MUSER, or IDLE hit count */
char cfilly /* (structure pad) */
short count; /* number of type of misc. records merged since

last such count */
unsigned ufill; /* (structure pad) */

April 16, 1981 Page 2 April 16, 1981

. PCS(4) CB—UNIX 2.3 PCS(4)

struct SSAMPLE { /* start or stop getpc-produced record */
char type; /* START or STOP */
char cfill; /* (structure pad) */
time_t stime; /* start or stop time */
3
struct ISAMPLE { /* ioctl record produced by getpe */
char type: /* IOCTL */
char cfill; /* (structure pad) */
int cmd; /* pcioctl call command */
short datalMAX_LIST}; /* ioctl arg., depends on cmd */
I
/* pc ioctl commands */
#define BUF_INCR (('P‘<<8)bl) /* incr. number of bufs for /dev/pc */
#define PROF_KERNEL (CP’<<8)02) /* profile the kernel */
#define PROF_ALL (('P'<<8)b4) /* profile all user processes */
#define PROF_GROUP (CP'<<8)010) /* profile a user group */
#define PROF_LIST (CP'<<8)l020) /* profile a small list of processes */
#define PROF_MASK 0177 /* used to mask out high byte */
#define WAIT 1
define NOWAIT 2
#define SAMPPRI (PZERO+1)
#define NO_CLOCK 0
#define TCU100_CLOCK 1
#define KW11K_CLOCK 2
#define FILLING 1
#define NOT_FILLING 2
struct LOGBUF_HDR { /* pc buffer header info */
ushort h_unused; /* num unused bytes at end of buf */
short h_numlost; /* num samples lost between buffers */

5
#define NUMSAMPS ((BSIZE-sizeof(struct LOGBUF_HDR))/sizeof(struct PSAMPLE))

#define NUMWASTE (BSIZE-sizeof(struct LOGBUF_HDR)-(NUMSAMPS?®sizeof(struct

PSAMPLE)}))
struct LOGBUF { /* layout of pc system buffer */
struct LOGBUF_HDR 1b_buf_hdr; /* pc buffer header counts */
struct PSAMPLE Ib_data[NUMSAMPS]; /* pc data samples */
char 1b_wasted[NUMWASTE],; /* buffer bytes wasted */
b
struct samp_cntl { /* pc queue and buffer control info #/
ushort flag; /* control flag */
struct buf *cursbuf; /* current output buffer for sample data */
caddr_t currptr; /* address in block for next sample */
struct buf *rq; /* ready queue (filled for user 10 read) */
struct buf *fg; /* free queue of empty buffers */
struct LOGBUF_HDR sbuf_hdr; /* unused buffer bytes; lost recs count */
I
struct pid_list { /* pids of processes to be profiled */
short p_count; /* number in list */
short p_listt MAX_LIST}; /* list of pids for profiling */
h
April 16, 1981 Page 3 April 16, 1981

PCS (4)

struct DEVPC {

H
FILES

/dev/pcs
SEE ALSO

CB—UNIX 2.3 PCS(4)

/* pc pseudo-device pseudo-registers b

short d_clock; /* type of profiling clock */
short d_runpid; /* pid of user running pc device;

this is 0 if no one profiling */
ushort d_flag; /* type of profiling being done */
short d_group; /* group id profiling for */

struct pid_list d_list; /* list of pids for profiling */
struct samp_cntl d_smple; /* queue and buffer control info */

getpe(1), pestat(1)

April 16, 1981

Page 4 April 16, 1981

PIPE (4) CB=UNIX 2.1 PIPE (4)

NAME

pipe — named pipe

DESCRIPTION

FILES

The files identified under /dev/pipe/* are cailed named pipes, and are used for one way com-
munications between processes. When a named pipe is written, using the file descriptor
returned from the open, up to 4096 bytes of data are buffered before the writing process is
suspended. A read using the descriptor returned from the open will remove data from the pipe.
Reading an empty pipe will put the process to sleep until there is data available. Since a write to
a pipe is guarenteed to be atomic, several processes may write a pipe simultaneously without
their individual writes intermixing.

As long as at least one process has either the reading or the writing end of a pipe open, any
data that is in the pipe is preserved. When the last reference to a pipe is gone {(closed), any
data that is in the pipe is discarded.

foctl (2) can be used to cause the process not to sleep when an empty or full pipe is encoun-
tered. [t is used as follows: .

#include <sys/ioctl.h>
iocti(fd, FIOSPIPE, &addr); /* used to set the mode */
iocti(fd, FIOGPIPE, &addr); /* used to get the mode */

Addr is a two byte structure; the first byte is the read flag and the second byte is the
write flag. The flag set to 0 means do not sieep on a write to a full pipe or a read of
an empty pipe. This causes a 0 to be returned from the respective system call. A 1
in the flag indicates the process will sleep on the above conditions.

/dev/pipe/*

SEE ALSO

ioctl(2)

November 1979 Page | November 1979

RK4) CB-UNIX 2.1 RK (4)

NAME
rk? — RK11/RK03 or RKOS disk

DESCRIPTION .
Rk ? refers to an entire RK03 disk as a single sequentially-addressed file. Its 256-word blocks
are numbered 0 to 4871.

The rk files access the disk via the system's normal buffering mechanism and may be read and
written without regard to physical disk records. There is also a ‘raw’ interface which provides
for direct transmission between the disk and the user's read or write buffer. A single read or
write call results in exactly one 1/Q operation and therefore raw I/O is considerably more
efficient when many words are transmitted. The names of the raw RKX files begin with rrk and
end with a number which selects the same disk as the corresponding rk file.

In raw 170, the buffer must begin on a word boundary, and counts should be a multipie of 512
bytes (a disk block). Likewise, calls to /seek (2) should specify a multiple of 512 bytes.

FILES
/dev/rke
/dev/rrke

November 1979 Page | November 1979

ROOTDEY (4) CB-UNIX 2.1 ROOTDEYV (4)

NAME
rootdev — root file system

DESCRIPTION
The root file system is the heart of all UNIX activity. [Its size and location on the disk are
determined when UNIX is compiled. The root file system must be present at boot time since
all files are referenced in some way from the root file system. When unix.util is booted, the
root file system is redefined to be in util (the very first few cylinders of the disk).

FILES
/dev/rootdev

SEE ALSO
hp(4)

November 1979 ' Page 1 November 1979

RX (4) CB—UNIX 2.1 RX(4)

NAME
rx? — floppy disk

DESCRIPTION
The floppy disk is an easily dismountable block storage device that will hold 500 blocks of data
or 1000 blocks, if dual density. In single density mode, there is an extra 256 byte half block.
This is because there are 2002 sectors of data on every floppy disk and 128 bytes of data in each
sector of a single density floppy. The current devices are:

BLOCK CHARACTER DEVICE
/dev/rx0 /dev/rrx0 rx01
/dev/rx1 /dev/rrxl rx01
/dev/rx2 /dev/rrx2 rx02
/dev/rx3 /dev/rrx3 rx02

The block interface is useful for installing file systems. The character interface must be used to
read or set the density of the current diskette. The variable density feature is only available on
the rx02.

The command flopden (1) is useful for manipulating the density of a diskette. To either read
the current density or change the density from an application program, the character device
interface is opened, and an ioct/ (2) system call is made. (See /usr/include/sys/rx.h for the
correct define symbols.)

The driver has only one queue, and thus simultaneous reads on multiple controilers are not
possible. However it is not limited to the number of controllers. the only action necessary to
add another controller is a simple addition of another device address in the list of device
addresses within the source of the driver. The driver dynamically determines whether the con-
troller is an rx01 or rx02.

FILES
/dev/rx?
/dev/rrx?
/usr/include/sys/rx.h

SEE ALSO
flopden(1), ioctl(2)

November 1979 Page 1 November 1979

SWAPDEY (4) CB-UNIX 2.1 SWAPDEV (4)

NAME
swapdev — location for swapping
DESCRIPTION

The swap area of the disk is used by UNIX when it has to remove an active process from core
to make room for others. The swap area is initialized at boot up. [ts size and location on the
disk are determined when UNIX is compiled. When unix.util is booted, the swap area may or
may not be redefined

FILES
/dev/swapdev

SEE ALSO
hp(4)

November 1979 Page 1 ' November 1979

™(@) : CB—UNIX 2.1 T™(4)

NAME
tm? — TM11/TU10 magnetic tape interface

DESCRIPTION

The files tm0, ..., tm7 refer to the Digital Equipment Corporation TM11/TU10 magnetic tape
control and transports at 800bpi. The files tm0, ..., tm3 are designated normal-rewind on close,
and the files tmd, ..., tm7 are no-rewind on close. When opened for reading or writing. the
lape is assumed to be positioned as desired. When a file is closed, a double end-of-file (double
tape mark) is written if the file was opened for writing. If the file was normal-rewind, the tape
is rewound. If it is no-rewind and the file was open for writing, the tape is positioned before
the second EOF just written. If the file was no-rewind and opened read-only, the tape is posi-
tioned after the EOF foliowing the data just read. Once opened, reading is restricted to between
the position when opened and the next EOF or the last write. The EOF is returned as a zero-
length read. By judiciously choosing ! files, it is possible to read and write multi-file tapes.

A standard tape consists of several 512 byte records terminated by an EOF. To the extent pos-
sible, the system makes it possible, if inefficient, to treat the tape like any other file. Seeks
have their usual meaning and it is possible to read or write a byte at a time (although very
inadvisabie).

The tm files discussed above are useful when it is desired to access the tape in a way compatible
with ordinary files. When foreign tapes are to be dealt with, and especially when long records
are 10 be read or written, the ‘raw’ interface is appropriate. The associated files are named
rtm0, ..., rtm7 Each read or write call reads or writes the next record on the tape. In the write
case the record has the same length as the buffer given. During a read, the record size is
passed back as the number of bytes read, up to the buffer size specified. In raw tape 1/0. the
buffer must begin on a word boundary and the count must be even. Seeks are ignored. An
EOF is returned as a zero-length read. with the tape positioned after the EOF. so that the next
read will return the next record.

While doing raw 1/0 an EOT will return a error indicating that there is no space left on the dev-
ice.

FILES
/dev/mux*
/dev/rtm+

BUGS
If any non-data error (ie. EOT) is encountered while doing block 1/0 it refuses to do anything
more until closed: The driver is limited to four transports.

_SEE ALSO
mtm(1)

November 1979 Page 1| November 1979

* TRACE(4) CB—UNIX 2.3 TRACE (4)

NAME
trace — event-tracing driver

DESCRIPTION
Trace is a special file that allows event records generated within the UNIX kernel to be passed
to a user program so that the activity of a driver or other system routines can be monitored for

debugging purposes.

An event record is generated from within a kernel driver or system routine by invoking the
trsave function:

trsave(dev, chno, buf, cnt)
char dev, chno, *buf, cnt;

‘Dev is a minor device number of the trace driver; chno is an integer between 0 and 15 inclusive
that identifies the data stream (channel) to which the record belongs; buf is a buffer containing
the bytes that make up a single event record, and cnt is the number of bytes in buf. Calls to
trsave will result in data being placed on a queue, provided that some user program has opened
the trace minor device dev and has enabled channel chno. Event records prefaced by chno and
cnt are stored on a queue until a system-defined maximum (TRQMAX) is reached; an event
record is discarded if there is not sufficient room on the queue for the entire record. This
implies that event records with cmt > TRQMAX — 2 are discarded. The queue is emptied by a
user program reading the trace driver. Each read returns an integral number of event records;
the read count must, therefore, be at least equal to the size of a record plus two.

The trace driver supports open, close, read, and ioctl system calls. The ioctl system call is
invoked as follows:

#include <<sys/vpm.h>

int fildes, cmd, arg;

joctl(fildes, cmd, arg);
The trace ioctl commands are:

VPMSETC Enable trace channels. This command enables the channels indicated by a 1 in
the bit mask found in arg. The low-order bit (bit 0) corresponds to channel zero,
the next bit (bit 1) corresponds to channel 1, etc..

VPMGETC Get enabled channels. This command returns in arg a bit mask containing a 1 for
each channel that is currently enabied.

VPMCLRC Disable channels. This command disables the channels indicated by a 1 in the bit
mask found in arg.

SEE ALSO
vpmstart(1C), vpm(4).

February 9, 1981 Page 1 February 9, 1981

TTY (4)° CB-UNIX 2.1 TTY (D

NAME
tty — general interface for terminals

DESCRIPTION

This section describes both a particular special file and the gencral nature of the terminal inter-
face.

The file /dev/ln is, in each process, a synonym for the control terminal associated with that
process. It is useful for programs or shell sequences that wish to be sure of writing messages
on the terminal no matter how output has been redirected. It can also be used for programs
that demand the name of a file for output, when typed output is desired and it is tiresome to
find out what terminal is currently in use.

As for terminals in general: all of the low-speed asynchronous communications ports use the
same general interface, no matter what hardware is involved. The remainder of this section
discusses the common features of the interface; dh (4) and k/(4) describe peculiarities of the
individual devices.

When a terminal file is opened, it causes a wait to take place at the first read or write. In prac-
tice, user’s programs seldom open these files: they are opened by /nir (1M) and become a user’s
input and output files. The very first terminal file open in a process becomes the conirol termi-
nal for that process. The control terminal plays a special role in handling quit and interrupt sig-
nals. as discussed below. The control terminal is inherited by a child process during a fork (2).

A terminal associated with one of these files ordinarily operates in full-duplex mode. Charac-
ters may be typed at any time, even while output is occurring, and are only lost when the
svstem's character input buffers become completely choked, which is rare, or when the user has
accumulated the maximum allowed number of input characters that have not yet been read by
some program. Currently, this limit is 256 characters. When the input limit is reached, all the
saved characters are thrown away without notice.

These special files have a number of modes that can be changed by use of the ioc! (2) system
call. When first opened, the interface mode is 300 baud. either parity accepted. and 10
bits/character (one stop bit). Subsequent opens do not change the modes or speeds even if ail
the processes referencing the line have closed the line. Modes that can be changed by ioct!
include the interface speed (if the hardware permits); number of data and stop bits; acceptance
of even parity, odd parity, or both; a raw mode in which all characters may be read. and all 8
bits are sent on output (see ioar/(2)); a carriage return (CR) mode in which CR is mapped into
new-line on input and in which both CR and line-feed (LF) cause the echoing of the sequence
CR-LF; mapping of upper-case letters into lower case; suppression of echoing: a variety of
delays after function characters; and the printing of tabs as spaces.

Normally, terminal input is processed in units of lines. This means that a program attempting
to read will be suspended until an entire line has been typed. Also. no matter how many char-
acters are requested in the read call, at most one line will be returned. [t is not, however,
necessary to read a whole line at once; any number of characters may be requested in a read,
even one, without losing information.

During input. erase and kill processing is normally done. By defauit, the character # erases the
last character typed, except that it will not erase beyond the beginning of a line or an ASCII
EOT. By default, the character @ kills the entire line up to the point where it was typed. but
not bevond an EOT, and causes a carriage return. Both these characters operate on a key-stroke
basis. independently of any backspacing or tabbing that may have been done. Both @ and #
may be entered literally by preceding them with a \; the @ and # remain, but the \ disappeurs.
These erase and kill characters may be changed.

When desired, all upper-case letters are mapped into the corresponding lower-case letters. In
this made, an upper-case letter may be generated by preceding it with \. I[n addition, the

November 1979 Page 1 November 1979

TTY (4) . : CB—-UNIX 2.1 TTY (4)

following escape sequences are generated on output and accepted on input:

for: use:
. e
I \!
- \"
{ \ (
) \)

In raw mode, no erase or kill processing is done for the reading program; and the EOT, quit,
and interrupt characters are not treated specially. Control is returned to the reading program
only when the read (2) character count has been satisfied (as well as if an alarm (2) signal
occurs, or if the line hangs up). The input parity bit is passed back to the reader. On output,
all 8-bits are sent if parity is set to even and odd and the number of data bits is set to 8.

The ASCIlI EOT (control-d) character may be used to generate an end-of-file from a terminal.
When an EOT is received, all the characters waiting to be read are immediately passed to the
program. without waiting for a new-line, and the EOT is discarded. Thus, if there are no char-
acters waiting, which is to say the EOT occurred at the beginning of a line, zero characters will
be passed back. and this is the standard end-of-file indication. The EOT is passed back
unchanged in raw mode.

The ASCII DC3 (control-s) character can be used to temporarily stop output. It is useful with
CRT terminals to prevent output from disappearing before it can be read. Output is resumed
when the ASCII DC! (control-g) character is typed. These start/stop characters are not passed
to any other program when used in this manner. Output may also be stopped by typing an ESC
character. In this case output is resumed by tvping any character. A BREAK character is
treated like an ESC character when not in raw mode.

When the carrier signal from the data-set drops (usually because the user has hung up his ter-
minal), a hangup signal is sent to all processes that have this terminal as the control terminal.
Unless other arrangements have been made, this signal causes the processes to terminate. If
the hangup signal is ignored, any read returns with an end-of-file indication. Thus programs
that read a terminal and test for end-of-file on their input can terminate appropriately when
hung up on.

Two characters have a special meaning when typed. The ASCIlI DEL character (sometimes
called ‘‘rubout’) is not passed to a program, but generates an inrerrupl signal that is sent to all
processes associated with the control terminal. Normaily. each such process is forced to ter-
minate. but arrangements may be made either to ignore the signal or to receive a trap to an
agreed-upon location; see signal (2).

The ASCII FS character generates the quit signal. Its treatment is identical to the interrupt sig-
nal except that, unless a receiving process has made other arrangements, it will not only be ter-
minated but a core image file (called core) will be generated in the working directory.

When one or more characters are written, they are actually transmitted to the terminal as soon
as previously-written characters have finished typing. Input characters are echoed by putting
them in the output queue as they arrive. When a process produces characters more rapidly
than they can be typed. it will be suspended when its output queue exceeds some limit. When
the queue has drained down to some threshold, the program is resumed.

FILES
/dev/In=

SEE ALSO
ioctl(2), signal(2), dh(4), ki(4).

November 1979 Page 2 November 1979

VP(4)

CB-UNIX 2.1 VP (4)

NAME
vp — Versatec printer-plotter

DESCRIPTION
Vp0 is the interface to a Versatec D1200A printer-plotter with a Versatec C-PDP11(DMA) con-
troller. Ordinarily bytes written on it are interpreted as ASCII characters and printed. As a
printer, it writes 64 lines of 132 characters each on 11 by 8.5 inch paper. Only some of the
ASCII control characters are interpreted.
NL performs the usual new-line function, i.e. spaces up the paper and resets to the left

margin. It is ignored however following a CR which ends a non-empty line.

CR is ignored if the current line is empty but is otherwise like NL.

FILES

FF resets to the left margin and then to the top of the next page.
EOT resets to the left margin, advances 8 inches, and then performs a FF.
The ioct! (2) system cail may be used to change the mode of the device as follows:

#include <sys/ioctl.h>
short omd = 0XXX;

ioctl(t'd..VIOCSETD, &cmd); /* used to set the mode */
or
ioctl(fd. VIOCGETD, &cmd); /* used to get the mode */

The bits (XXX) mean:

0400 Enter simultaneous print/plot mode.
0200 Enter plot mode.

0100 Enter print mode (default on open).
040 Send remote terminate.

020 Send remote form-feed.

010 Send remote EOT.

04 Send remote clear.

02 Send remote reset.

When opened, a reset, clear, and torm-feed are performed automaticaily. Notice that the mode
bits are not encoded, so that it is required that exactly one be set.

In plot mode each byte is interpreted as 8 bits of which the high-order is piotted to the left; a
*1" leaves a visible dot. A full line of dots is produced by 264 bytes; lines are terminated only
by count or by a remote terminate function. There are 200 dots per inch both vertically and
horizontally.

When simultaneous print-plot mode is 2ntered exactly one line of characters. terminated by
NL., CR, or the remote terminate function, should be written. Then the device enters piot
mode and at least 20 lines of plotting bvtes shouid be sent. As the line of characters (which is
20 dots high) is printed. the piotting bytes overlay the characters. Notice that it is impossible to
print characters on baselines that differ by fewer than 20 dot-lines.

In print, mode lines may be terminated either with an appropriate ASCII character or by using
the remote terminate function.

/dev/vpd

November 1979 Page | November 1979

YPM(4) CB—UNIX 23 VPM(4)

NAME .
vpm, vpb — Virtual Protocol Machine Protocol and Interface Drivers

DESCRIPTION
This entry describes the vpm and vpb drivers and gives an introduction to the Virtual Protocol

Machine (VPM).

VPM is a software package for implementing link-level protocols on the DEC KMC11 microcom- ‘
puter in a high-level-language. This is accomplished by a compiler that runs on UNIX and
translates a high-level language description of a protocol into an intermediate language that is
executed by an interpreter running in the KMC. VPM also provides a framework for implement-
ing higher levels of protocols (levels 3 and above) as UNIX drivers.

The VPM software consists of the following components:

1. A compiler (vpmc(1C)) for the protocol description language; it runs on UNIX.

2. An interpreter that controls the overall operation of the KMC and interprets the —
protocol script.

3x Two UNIX drivers: A Protocol driver and an Interface driver.

4, vpmstart(1C): a UNIX command that copies a load module into the KMC and
starts it.

5. vpmset (1C): a UNIX command that logically connects VPM minor devices and

KMC synchronous links. x25pvc(1C) and x25Ink(1C) may also be used to con-
nect things up.

6. vpmsnap(1C): a UNIX command that prints a time-stamped event trace while
the protocol is running.

7. vpmtrace(1C): a UNIX command that prints an event trace for debugging pur-
poses while the protocol is running.

8. vpmsave(1C): a UNIX command that writes unformated trace data to its stan-
dard output.

9. vpmfmt(1C): a UNIX command that formats the output of vpmsave.

The VPM protocol driver provides a simple user interface to a synchronous line controlled by a
link-level protocol executed by the VPM interpreter in the KMC. It supports the following UNIX
system calls: open, read, write, close, and ioctl. If higher levels of protocol are required, the
VPM protocol driver may be modified or replaced. The VPM interface driver provides a com-
mon interface to a synchronous line controlled by a link-level protocol executed by the VPM
interpreter. This common interface can be shared by several different protocol modules (see
x25(4)).

Before a protocol driver minor device can be used, it must be logically connected to a VPM
interface driver; the interface driver minor device must in turn be logically connected to a syn-
chronous line of a KMC microprocesser or a KMS11 communication multiplexor. These correc-—
tions can be made by means of ioct! commands (see below). The command vpmset (1C) uses
these ioctl commands to make these connections.

The VPM Interface Driver.

The VPM interface driver provides a general purpose interface between level 3 protocols execut-
ing in the UNIX kernel and level 2 protocols being executed by the VPM interpreter in the
KMC. This interface is used by the VPM Protocol driver as well other protocol drivers such as
the LEAP, X253, and ST.

The Interface Driver supports open, close, and ioct! systems calls. These calls are used to set-up
connections between the interface driver and a synchronous line on a KMC or KMS and to set
interpreter options. The system Joct/ call has the following form:

ioctl (fildes, cmd, arg)

February 9, 1981 Page 1 February 9, 1981

VPM (4)

CB—UNIX 2.3 VPM(4)

Possible values for the ¢md argument are:

VPMSDEV

VPMGETM

VPMSETM

VPMCLRM

Connect an interface driver minor device to a synchronous line on a
KMC or KMS. Bits 6 and 7 of arg contain the minor device number of
the KMC or KMS. Bits 0-2 of arg contain the line number (0-7) if a
KMS is being used; for a single-line KMC they must be zero.

Get the interpreter modes. The currently available modes are the nor-
mal mode and the X.25 mode. The normal mode is indicated by an
arg of all zeros. In this mode, the entire information field of an I
frame is copied by the interpreter to the assigned buffer. The X.25
mode is indicated by a 1 in bit 0. In this mode, the VPM interpreter
copies the first three bytes of the information field of level 2 I frames
into the buffer descriptor of the buffer assigned to receive the frame.
These three bytes are the X.25 level 3 header. The remaining bytes, if
any, are copied to the buffer pointed to by the buffer descriptor.

Set the interpreter modes. The modes specifed by a 1 in the mask arg
are set.

Clear interpreter modes. The modes specified by a 1 in the mask arg
are cleared.

The routines that make up the VPM interface are:

vpmstart
vpmstop
vpmxmtq

ypmempty

vpmcmd
vpmrpt

vypmenqg

vpmdeq

ypmrmy

vpmerr

vpmsave

vpmsnap

Start the level 2 protocol.
Stop the level 2 protocol.
Place a transmit buffer descriptor pointer on the level 2 transmit queue.

Place a empty receive buffer descriptor pointer on the level 2 empty
receive queue.

Send a four byte command to the level 2 protocol.
Receive a four byte report from the level 2 protocol.

Place a buffer descriptor pointer at the end of the indicator VPM linked list
queue.

Remove the buffer descriptor at the head of the indicated VPM linked list
queue.

Search the indicated VPM linked list queue for the given buffer descriptor
pointer and remove it if found.

Get the error counters maintain by the VPM interpreter. After the inter-
preter has passed the counters to the driver it resets its copy of the
counters.

Save an event record using the trace driver minor device zero.

Save a time-stamped event record using the trace driver minor device 1.

Operation of the Standard Protocol Driver.

UNIX user processes transfer data to or from a remote terminal or computer system through
VPM using normal open, read, write, and close operations. Flow control and error recovery are
provided by the protocol executed by the interpreter in the KMC.

The VPM open for reading-and-writing is exclusive; opens for reading-only or writing-only are
not exclusive. The VPM open checks that the correct interpreter is running in the KMC and
then sends a command to the interpreter which causes it to start interpreting the protocol script.
The driver then supplies one or more 512-byte receive buffers to the interpreter.

February 9, 1981

Page 2 February 9, 1981

YPM(4) CB—-UNIX 2.3 VPM(4)

The VPM read returns either the number of bytes requested or the number remaining in the
current receive buffer, whichever is less; any bytes remaining in the current receive buffer are
used to satisfy subsequent reads. The VPM write copies the user data into 512-byte system
buffers and passes them to the VPM interpreter in the KMC for transmission.

The VPM close arranges for the return of system buffers and for a general cleanup when the last
transmit buffer has been returned by the interpreter. It also stops the execution of the protocol

script.
The VPM protocol driver supports the following ioct! commands:

VPMCMD Send 2 command to the protocol script. The first four bytes of the
array pointed to by arg are passed to the VPM interpreter which saves
them and passes them to the protocol script when it executes a gefcmd
primitive. Only the most recent command is kept by the VPM inter-
preter.

VPMERRS "Get and then reset the interpreter’s error counters. The interpreter’s
four, two-bytes error counters are copied to the array pointed to by
arg. The interpreter’s copy of the counters is then set to zero.

VPMRPT Get the latest script report. When the protocol script executes a 71n/pt
primitive, a four-byte report is passed from the protocol script to the
VPM protocol driver. Only the most recent script report is kept by the
driver. If there is a script report that has not previously been passed to
a user via this ioct! command, that report is copied to the array pointed
to by arg and a non-zero value (one) is passed as the return value. If
no script report is available, a zero is passed as the return value.

VPMSDEV Connect a protocol driver to an interface driver. Arg is the minor dev-
ice number of the interface driver to be connected to this protocol
driver. To invoke this ioctl command, the file status flag, O_NDELAY
must be set.

The VPM Event Trace

The VPM drivers generates a number of event records to allow the activity of the drivers and
protocol script to be monitored for debugging purposes. If a program such as vpmtrace(1C) or
vpmsave(1C) has opened minor device 0 of the trace driver and has enabled the appropriate
channels on that device, these event records are queued for reading; otherwise, the event
records are discarded by the trace driver. Event records associated with interface driver minor
device n are put on the read queue for minor device 0 of the trace driver with a channel
number of n. Calls to the system functions vpmopen, vpmread, vpmwrite, and vpmclose generate
event records identified respectively by o, r, w, and c. Calls to the vpmc(1C) primitive
trace(argl ,arg?) cause the VPM interpreter to pass argl and arg? along with the current valur
of the script location counter to the VPM driver, which generates an event record identified by a—
T. Each event record is structured as follows:

struct event {

short e_seqn; /* sequence number */
char e_type; /* record identifier */

char e_dev; /* minor device number */
short e_shortl; /% data */

short e_short2; /¥ data */

When the script terminates for any reason, the driver is notified and generates an event record

identified by an E. This record also contains the minor device number, the script location
counter, and a termination code defined as follows:

February 9, 198! Page 3 February 9, 1981

VPM (4)

SEE ALSO

[« QN W, T~ PL I N6 B

11
12

13
14
15
16
17
18
19
20
21
22
23

CB—UNIX 2.3 VPM(4)

Normal termination; the interpreter received a HALT command from the
driver.

Undefined virtual-machine operation code.

Script program counter out of bounds.

Interpreter stack overflow or underflow.

Jump address not even.

UNIBUS error.

Transmit buffer has an odd address; the driver tried to give the interpreter too
many transmit buffers; or a ger or rinxbuf was executed while no transmit
buffer was open, i.e., no getxbuf was executed prior to the get or rtnxbuf.
Receive buffer has an odd address; the driver tried to give the interpreter too
many receive buffers; or a put or rinrbuf was executed while no receive buffer
was open, i.e., no getrbuf was executed prior to the get or rtnxbuf.

The script executed an exit primitive.

A crcl6 was executed without a preceding crcloc execution.

The interpreter detected loss of the modem-ready signal at the modem inter-
face.

Transmit-buffer sequence-number error.

Command error: an invalid command or an improper sequence of commands
was received from the driver.

Not used.

Invalid transmit state (internal error).

Invalid receive state (internal error).

Not used.

Xmitctl or setct] attempted while transmitter was still busy.

Not used.

Same as error code 6.

Same as error code 7.

Script too large.

Used for debugging the interpreter.

The driver’s OK-check has timed out.

vpmc(1C), vpmset(1C), vpmstart(1C), x25Ink(1C), x25pve(1C), trace(4).

February 9, 1981

Page 4 February 9, 1981

VT(4) CB-UNIX 2.1 YT (4)

NAME
vt — graphics interface

DESCRIPTION
OUTPUT: /dev/vt (crt — only one user)
Data may be displayed on a vtll graphics tube by a write system call:

write (fdo, out_buf, count);

where fdo is an integer file descriptor, out_buf is an integer array containing the display list
and count is an integer containing the number of bytes in the display list and must be
even. The display list is a sequence of octal numbers that define the image to be drawn.
(These octal numbers are a mixture of control words and data that are given to the vtll
Microprocessor.)

Prior to the write, the device must have been opened by
fdo = open ("/dev/vt1l", 1); '

and a seek must have been made to the prope'r frame
1seek (fdo, n, 0);

where nis long and indicates the frame number (0 thru 9). A frame is an independently
modifiable overlay which when overlayed with other frames complete the image.

The following is an example of a user program that will draw a 0200 by 0200 unit box at
location 0500,0500 on the screen:

main()
{
char *file;
int fd;
static int bufl]{0117124, 0500, 0500, 0110000, 040200,
0, 040000, 0200, 060200, 0, 040000, 020200};

file = "/dev/vt";
fd = openffile, 1);
if(fd < 0) {
printf(“failed to open %s0, file);
} exit(0);
Iseek (fd, OL, 0);
write(fd, buf, sizeof (buf));
for(;)
} sleep(3600);

INPUT: /dev/vtlp (light pen) or /dev/vtjy (joy stick)
(only one user each device)
After an open system call: fdi = open ("/dev/vtlp",0) or fdi = open ("/dev/vtjy",0))
input data can be obtained by a read system call:

in_count = read (fdi, in_buf, count);
where in_bufis a 3 element integer array.
If countis 0. the process will sleep until input occurs (event 1 or 2).

-

If countis 6, the read will return immediately and the 3 integers of in_buf contain:
event, x, y. Where x and y are integers and contain the x and y coordinates respec-
tively.

November 1979 Page 1 November 1979

VT (4)

CB-—-UNIX 2.1

VT (4)

If eventis 0, there is no unserviced input (event 1 or 2).

If eventis 1, tracking start or a button is released.

If eventis 2, tracking is stopped.

SYSTEM: (system proc table)
When a user graphics program is not running, the vtll may be used to display the
operating system proc table. A sample of the proc table is shown below:

CB-UNIX Release 2.1

0000:07:46
100 procs 30 texts

S fl wchan sg pri ptm c¢tm clock group pid ppid size name
s u 22656 -100 127 127 0 0 0 20 UNIX Scheduler
s 24756 0 40 127 127 O pl 0 131 init
s 25014 O 10 127 3 722 0 4 1 111 su
r 0 0 10 3 2 4 10 4 216 s —I
FILES
/dev/vt
/dev/vilp
/dev/vijy
SEE ALSO
Iseek(2), open(2), read(2), write(2)
RESTRICTIONS)
Double word vtll instructions must NOT begin at out_bufli] where i % 254 == 253 or grave
disorder will result.
November 1979 Page 2 November 1979

VTP (4) CB—UNIX 2.3 VTP(4)

NAME
vtp — virtual terminal protocol

DESCRIPTION ‘
This section describes how to use the virtual terminal protocol feature that can be optionally

enabled in the operating system.

The virtual terminal protocol provides a means whereby user programs can be written to
interact with CRT terminals in a language which is independent of the actual type of terminal.
The operating system provides translation of standard sequences of characters into the
sequences necessary to cause the desired behavior on each type of terminal. It also translates
what the terminal sends to the system so that the user program sees the standard sequence for
all terminals regardless of the terminal actually in use.

An ioal() is necessary to enable a specific terminal handler and that terminal handler must have
been compiled into the operating system. The ioct! call is described in <sys/termio.h>:

/t

* structure of ioctl arg for LDGETT and LDSETT

*

/

struct termcb {
char st_flgs; /* term flags */
char st_termt; /* term type */
char st_crow; /* gtty only - current row */
char st_ccol; /* gtty only - current col */
char st_vrow; /* variable row */
char st_lrow; /* gtty only - last row */ :

k
Terminals for which drivers are currently available are the DEC vt61 and vti00, the TEC
scope, the Teletype D40, the Hewlett Packard hp26xx terminals, and the Concept 100.

The terminal flags are automatically set by the ioct/() on a LDSETT command to appropriate
values for a specific terminal unless the user overrides these defaults by setting the TM_SET
bit. If the user does this, then the terminal flags are set according to the other flags found in
"st_flgs".

TM_SNL The special newline flag means that the newline character will be treated specially.
Currently this is used by the Dataspeed 40 terminals. When this flag is set, new-
line characters are converted to "load cursor address sequences” so that the printed
newline character doesn’t appear on the screen.

TM_ANL Causes an automatic newline whenever the cursor attempts to pass the 80t!
column. ‘

TM_LCF The "last column function" flag causes scrolling to be emulated on dumb termi-
nals, such as the TEC, which do not have scrolling hardware. Scrolling is emu-
lated by moving the cursor to the first row of the terminal, deleting the line, and
then moving the cursor to the bottom of the screen again.

TM_CECHO .
Causes the cursor motion keys to function without user software intervention br
causing the codes generated by the cursor control keys to be immediately echoeu-
back to the terminal when they are received. This flag is usually used in conjunc-
tion with the TM_CINVIS flag.

TM_CINYVIS
Inhibits the translation and tranmission of the cursor motion sequences to the
user program. If this flag and the TM_CECHO flag are on, that the cursor

May 1, 1981 Page 1 May 1, 1981

VTP (4) CB—UNIX 2.3 VTP (4)

motion keys work without intervention by the user process.

TM_SET Causes tne values of the preceeding flags to be set or cleared if the LDSETT
ioctl() command is being done.

"st_vrow" specifies the row at which scrolling will take place. This means that everything on the
screen above that row will be unaffected as material scrolls upwards from the bottom. This
allows split screen operation. "st_crow" and "st_ccol” contain the system’s idea of the current
row and column when a LDGETT command is done. "st_lrow" contains the system’s idea of
which row is the last row visible on the CRT screen. To assure that the system and the termi-
nal both agree on the cursor position, a VHOME escape sequence should be transmitted to the
terminal after the terminal handler is enabled. Columns and rows are numbered from (0,0).

Once the terminal type is set, user programs use the escape sequences described in
Jusr/include/sys/crtctl.h to control the behavior of the terminal.

/* @(#)ertctlh 3.2 ¢/
/‘
Define the cursor control codes
b d
/
#define ESC 033 /* Escape for command */
/* Commands */
#define CUP 0101 /* Cursor up */
#define CDN 0102 /* Cursor down */
#define CRI 0103 /* Cursor right */
#define CLE 0104 /* Cursor left */
#define HOME 0105 /* Cursor home */
#define VHOMEO0106 /* cursor home to variable portion */
#define LCA 0107 /* Load cursor, followed by (x,y) in (col,row) */
#define STB 0110 /* Start blink */
define SPB 0111 /* Stop blink */
#define CS 0112 /* Clear Screen */
#define EEOL 0113 /* Erase to end of line */
#define EEOP 0114 /* Erase to end of page */
#define DC 0115 /* Delete character */
#define DL 0116 /* Delete line */
#define IC 0117 /* Insert character */
#define IL 0120 /* Insert line */
#define KBL 0121 /* keyboard lock */
#define KBU 0122 /* keyboard unlock */
F#define ATAB 0123 /* Set Column of tabs on all lines */
#define STAB 0124 /* Set single tab on current line only */
#define CTAB 0125 /* Clear all tabs */
#define CSTAB 0144 /* Clear tab at current column, all lines */
#define USCRL 0126 /* Scroll up one line */
#define DSCRL 0127 /* Scroll down one line */
#define ASEG 0130 /* Advance segment */
#define BPRT 0131 /* Begin protect */
#define EPRT 0132 /® End protect */
#define CRTN 0133 /* Return cursor to beginning of line ®/
#define NL 0134 /* Terminal newline function */
#define CM 0135 /* Clear Memory (Terminal Reset) */
#define SVSCN 0136 /* Define variable portion of screen (OS only) */
#define UVSCN 0137 /* Scroll Up variable portion of screen */
#define DVSCN 0140 /® Scroll Down variable portion of screen */

May 1, 1981 Page 2 May 1, 1981

VTP (4)

CB—UNIX 2.3 VTP (4)

#define SVID 0141 /* Set Video Attributes */

#define CVID 0142 /* Clear Video Attributes */

#define DVID 0143 /* Define Video Attributes */

/* Video Attribute Definitions */

#define VID_NORM 000 /* normal */
#define VID_UL 001 /* underline */
#define VID_BLNK 002 /* blink */

#define VID_REV 004 /® reverse video */
#define VID_DIM 010 /* dim intensity */
#define VID_BOLD 020 /* bright intensity */
define VID_OFF 040 /* blank out field */
#define BRK 000 /* transmit break */

#define HIQ 001 /* Put remainder of this write on the high

priority queue, saving current cursor and restoring
when done. */

When sending escape sequences to the terminal, it is necessary that the writes be atomic. In__
other words, if it is desired to move the cursor to column 10 and row 5, it is necessary to send
the four characters, ESC LCA 10 5, to the terminal in a single write system call. If standard
I/O is being used, the stream to the terminal must be buffered, and then flushed after the
escape sequence is written so that the write is atomic.

Note that some of these functions will not work with every terminal. Whether a function
works or not is dependent on how smart the terminal handler code in the operating system is
and what capabilities the terminal itself has. Basically you can expect that all terminal handlers
can manage the cursor motion commands, CUP, CDN, CRI, CLE, HOME, VHOME, and
LCA. Most terminal handlers can also do the scrolling of the variable portion of the screen,
UVSCN and DVSCN, though sometimes the terminal handler emulates scrolling by deleting a
line at the top of the region and then writing a new one at the bottom.

If a terminal has advanced video features such as blinking, underlining, and reverse video, it is
possible to turn these features on and off with the SVID, CVID, and DVID commands. The
"set video attributes”, SVID, logically ors in the features specified by the next character. "Clear
video attributes”, CVID, and complements out the features specified by the next character.
"Define video attributes”, DVID, replaces the current video attributes with those specified by
the next character.

Of particular utility is the "hi-queue write", HIQ. When combined with the variable scroll
feature, it is possible to prevent some section at the top of the screen from being changed by
normal writes and then have a special program perform hi-queue writes, which contain a "load
cursor address" function (LCA) to modify the contents at the top of the screen. This allows
the possibility of having a background process keep a display at the top of the screen updated
while the user continues working in the lower portion of the screen. Hi-queue writes are lim-
ited to 512 bytes.

DEFICIENCIES

One annoying fact is that the HIQ string is terminated by the end of the write system call.

May 1, 1981 Page 3 May 1, 1981

_ X25(4) CB—UNIX 2.3 X25(4)

NAME
X25 — BX.25 network interface

DESCRIPTION
The X25 driver provides multiplexed channels over one or more synchronous communications
lines using the Bell System standard BX.25 Level 3 protocol. The current release supports per-
manent virtual circuits (PVCs) only; the call set-up features needed to support virtual calls have
not yet been implemented. There is a separate and independent Level 3 interface for each
communications line. Point-to-point connections between hosts are supported as well as con-
nections via an X.25 network.

The X25 driver is implemented as a VPM protocol module (see vprmi(4)). The X25 driver uses
the VPM interface module to access communications lines controlled by KMC11-B microproces-
sors. Level 2 of BX.2S5, the link level, is implemented by a VPM protocol script in the KMC.

The special files /dev/x25/s? refer to the minor devices of the X25 driver. Fach such minor
device, also referred to as a slot, can be connected by means of a network control device (see
nc(4)) to an arbitrary logical channel (1-4095) on a specified X25 interface. When the other
end of the logical channel has been connected in an analogous fashion, each slot so connected
is the terminus of a permanent virtual circuit, which is a full-duplex connection over a BX.25 log-
ical channel between a set of user processes on the local host and another set of user processes
on a remote host. A logical channel is a connection which may be multiplexed with other chan-
nels over a physical link to a remote host or an X.25 network. Each X25 interface (also
referred to as a l/ink) must be connected via the network-control device to a particular KMC
microprocessor or to a particular line on a KMSI1 communications multiplexor.

A user process accesses a BX.25 minor device (slot) using open, close, read, write, and ioctl sys-
tem calls.

There are several internal flags that are maintained by the X25 driver for each slot. The values
of these flags can be read and in some cases modified by means of the ioctl system call (see
below).

An open will fail and return the error EJO if the specified slot does not exist, if the slot is not
currently connected to a logical channel on some link, or if the link to which the slot is con-
nected is not currently active. The user may request the normal open options O_RDONLY,
O_WRONLY, and O_RDWR. The user may also request that reads with no data available should
not sleep, writes with no transmit queue space return immediately, and that open should not
wait for faropen to be set, using the O_NDELAY open flag. The open, and all use of the slot, can
be made exclusive, using the O_EXCL open flag. If an exclusive open is requested and cannot
be granted, the error EBUSY will be returned. A successful open will clear the isreset status bit
(see the discussion of ioct! below). If O_NDELAY is specified, the user is responsible for insur-
ing that the remote end of the slot is ready to receive data before any is sent via writes. Note
that O_NDELAY can be set via the fentl(2) system call after a successful open (via the iocl call
X25FCNTL for CB-UNIX), which insures that the open will not return until the other end is fully
connected.

An open may or may not block until the far end is also open, depending on the session-
establishment protocol requested. There are three choices for the session-establishment proto-
col. The choice is made by means of the network-control device at the time the permanent vir-
tual circuit is installed. The first mode, referred to as the ‘‘no-protocol’’ session mode, is for
the open to return immediately. This puts the burden on the user program to determine
whether the far end is actually open. The reset session mode, designed mainly for compatibility
with certain non-UNIX implementations of BX.25, uses a RESET in-order packet to indicate to
the far end that a slot has been opened and a RESET out-of-order packet to indicate to the far
end that the slot has been closed. In the current implementation, the RESET in-order and
RESET out-of-order packets are recognized when they are received, but are not transmitted

April 1, 1981 Page 1 April 1, 1981

