INTRO(5) CB~UNIX 2.1 INTRO(S)

NAME
intro — file format description
DESCRIPTION
This section provides a description of the various file formats and macros required by the sys-

tem. Where possible, the appropriate header file is included with the page. If not included
with the page, most of these can be found in the /usr/include or /usr/include/sys directories.

Page 1 November 1979

. L-DEVICES(S) CB—UNIX 2.3 L-DEVICES(5)

NAME
L-devices — auto-dialer device table

DESCRIPTION
The file contains a list of devices which may be used to connect to a remote unix. It consists of
one line per device, formatted as

name Inxx yyyy speed

where name is the device name as used in table L.sys(5) (i.e. ACU, switch, ...), Inxx is the
line number as specified in the inittab(5) file, yyyy represents the device number of auto-dialer
as specified in /dev (i.e. dn17, ...), and speed is the data link speed (300, 1200, etc).

FILES
/usr/lib/uucp/L-devices

SEE ALSO
cu(1C), uucp(1C), conns(3C), dn(4), L.sys(5)

]

T he W\a;t-\W\VLM #® o'f" N r‘~/5 ‘;or L’ACU!C"S ¢S
V\D\/‘A CaAfgx (\/\ +"\€. COV\V\éL) 5wbr‘ou\j“(yxe as
MAX OEV. C.ukrrea\-'\‘ }:mnf s 20.

NOTE:

April 24, 1981 Page 1 Aprii 24, 1981

. L-DIALCODES(S5) CB—UNIX 2.3 L-DIALCODES(5)

NAME
L-dialcodes — uucp system dialcodes

DESCRIPTION
This table contains a list of prefix dial codes to be used by uucp(1C) and cu(1C) in dialing the
remote unix. It consists of one line per each prefix code formatted as follows:

prefix-code digit-string

where prefix-code is the name referenced in table L.sys(5) and digit-string is an arbitrary length
string of digits. The letter w should be interspersed in the string where dial tone should be
received before dialing continues.

FILES
Jusr/lib/uucp/L-dialcodes

SEE ALSO
cu(1C), uucp(1C), conns(3C), L.sys(5)

May 5, 1981 Page 1 May §, 1981

. L.SYS(S) CB—UNIX 2.3 L.SYS(S5)

NAME

L.sys — table of connecting uucp systems

DESCRIPTION

FILES

This file is used by the uucp(1C) and cu(1C) commands to establish a connection to a remote
UNIX. It contains fields of data for each remote system indicating when a call can be made,
which auto dialers may be used (as specified in file L-devices), what speed to use, a possible
prefix plus digits to be used in conjunction with the L-dialcodes table, and the login sequence to
be used after carrier is received. For example, the entry:

cbosg Any ACU 1200 cb4712 LOGIN nuucp password: yyy

would direct uucp, in response to the system name cbosg, to try to make the call at Any time, to
use one of the available ACU’s that that is capable of making a 71200 baud call (defined in L-
devices), to interpret cb as a prefix code by reference to the file L-dialcodes(S), and dial the
prefix and the specified number to make the call. When the prompt LOGIN is received from
the remote system, uucp will respond with the login id nuucp; when the prompt password: is
received, uucp will respond with yyy; and so forth for each pair of prompts and responses.
Uucp(1C) can now look in the L.sys file for several entries to the same system. Starting with
the first entry for a system, uucp will try all entries until successful or all entries have failed.

Since this file contains clear (non-encrypted) passwords, the proper read only permission should
be assigned to prevent password disclosure.

/usr/lib/uucp/L.sys

SEE ALSO

NOTE

/usr/sr¢/cmd/uucp/UUCP_IMP_DESC
Jusr/src/cmd/uvcp/NETWORK_DESC
cu(1C), uucp(1C), conns(3C), L-devices(5), L-dialcodes(5)

The login procedure has been enhanced to permit special characters (i.e. ‘#7). It may take a
UUCP guru to decipher some of the newer features.

April 24, 1981 Page 1 April 24, 1981

A.OUT(5) CB—UNIX 2.3 A.OUT(5)

NAME
a.out — assembler and link editor output

DESCRIPTION
A.out is the output file of the assembler as and the link editor /d. Both programs make a.out

executable if there were no errors and no unresolved external references.

This file has four sections: a header, the program and data text, a symbol table, and relocation
bits (in that order). The last two may be empty if the program was loaded with the —s option
of Id or if the symbols and relocation have been removed by strip.

The structure of the entry as given in the include file is:

/* @(#)a.out.h 3.3 ¢/
struct exec { /* a.out header */
int a_magic; /* magic number */ =
unsigned a_text; /* size of text segment */
unsigned a_data; /* size of initialized data */
unsigned a_bss; /* size of unitialized data */
unsigned a_syms; /* size of symbol table */
unsigned a_entry; /* entry point */
char a_unused; /* not used */
char a_hitext,; /* text high bits */
char a_flag; /* relocation info stripped */
char a_stamp; /* System environment stamp */

I

/* macro to calculate text size of big files */
#define TSIZE(x) x.a_text + ({long)x.a_hitext << 16)

#define A_MAGICI 0407 /* normal */
#define A_MAGIC2 0410 /* read-only text */
define A_MAGIC3 0411 /* separated 1&D */
#define A_MAGIC4 0405 /* overlay */
#define A_MAGICO 0401 /* 1dp (UNIX/RT) */
/* ***** in invocation of BADMAG macro, argument should not be a function.***/
#define BADMAG(X) X.a_magic!=A_MAGIC] && X.a_magic!=A_MAGIC2 && X.a_magic!=A_MAGIC3 && - -
struct nlist { /* symbol table entry */
char n_name|8]; /* symbol name */
char n_type; /* type flag ®/
char n_loc; /* text area location */
unsigned n_value; /* value */

/* values for type flag */

#define N_UNDF 0 /® undefined */

#define N_ABS 01 /* absolute */

#define N_TEXT 02 /* text symbol */

#define N_DATA 03 /* data symbol */

#define N_BSS 04 /* bss symbol */

#define N_TYPE 037

#define N_REG 024 /® register name */

define N_FN 037 /* file name symbol */

#define N_EXT 040 /* external bit, or’ed in */ o
#define FORMAT "%060" /® 10 print a value */

/* values for loc flag */

#define N_SWSPO 1 /* text switchable space 0 */
#define N_SWSP1 2 /* text switchable space 1 */
#define N_SWSP2 3 /* text switchable space 2 */
#define N_SWSP3 4 /* text switchable space 3 */

November 4, 1980 Page 1 November 4, 1980

- A.OUT(5) CB—UNIX 2.3 A.OUT(5)

The sizes of each segment are in bytes but are even. The size of the header is not included in
any of the other sizes.

When a file produced by the assembler or loader is loaded into core for execution, three logical
segments are set up: the text segment, the data segment (initialized data followed by uninitial-
ized bss, the latter being initialized to all 0’s), and a stack. The text segment begins at 0 in the
core image; the header is not loaded. If the magic number (word 0) is 407, it indicates that the
text segment is not to be write-protected and shared, so the data segment is immediately con-
tiguous with the text segment. If the magic number is 410, the data segment begins at the first
0 mod 8K byte boundary following the text segment, and the text segment is not writable by
the program; if other processes are executing the same file, they will share the text segment. If
the magic number is 411, the text segment is again pure, write-protected, and shared, and
moreover instruction and data space are separated; the text and data segment both begin at
location 0. See the 11/70 handbook for restrictions which apply to this situation. The magic
number 405 indicates an overlay file. On execution, the current processes’ text segment is
replaced with the text segment from this module.

The stack will occupy the highest possible locations in the core image: from 177776(8) and
growing downward. The stack is automatically extended as required. The data segment is only
extended as requested by the break(2) system call.

The start of the text segment in the file is 20(8); the start of the data segment is 20+S, (the
size of the text) the start of the relocation information is 20+S,+S,; the start of the symbol
table is 20+2(S,+S,) if the relocation information is present, 20+S +S, if not.

The symbol table consists of 6-word entries. The first four words contain the ASCII name of
the symbol, null-padded(n_name). The next byte is a flag indicating the type of
symbol(n_type).

The next byte is a flag indicating the switchable text location for UNIX with switchable text
areas.

The last word of a symbol table entry contains the value of the symbol.

If the symbol’s type is undefined external, and the value field is non-zero, the symbol is inter-
preted by the loader /d as the name of a common region whose size is indicated by the value of
the symbol.

The value of a word in the text or data portions which is not a reference to an undefined exter-
nal symbol is exactly that value which will appear in core when the file is executed. If a word
in the text or data portion involves a reference to an undefined external symbol, as indicated by
the relocation bits for that word, then the value of the word as stored in the file is an offset
from the associated external symbol. When the file is processed by the link editor and the
external symbol becomes defined, the value of the symbol will be added into the word in the
file.

If relocation information is present, it amounts to one word per word of program text or initial-
ized data. There is no relocation information if the ‘suppress relocation’ flag in the header is
on.

Bits 3-1 of a relocation word indicate the segment referred to by the text or data word associ-
ated with the relocation word:

00 indicates the reference is absolute

02 indicates the reference is to the text segment

04 indicates the reference is to initialized data

06 indicates the reference is to bss (uninitialized data)

10 indicates the reference is to an undefined external symbol.

November 4, 1980 Page 2 November 4, 1980

. A.OUT(S) CB—UNIX 23 A.OUT(S)

Bit 0 of the relocation word indicates if on that the reference is relative to the pc (e.g. ‘clr x°);
if off, that the reference is to the actual symbol {e.g., ‘clr *$x’).

The remainder of the relocation word (bits 15-4) contains a symbol number in the case of
external references, and is unused otherwise. The first symbol is numbered O, the second 1,

etc.

The system environment stamp (see stamp(1)) determines which of several possible interpreta-
tions the operating system will give to system calls from the executing process.

SEE ALSO
as(1), 1d(1), nm(1), stamp(1), strip(1)

November 4, 1980 Page 3 November 4, 1980

_ACCT (5)

NAME

acct — accounting file

DESCRIPTION

CB—UNIX 2.3

ACCT (5)

When a process terminates, an accounting record is written into the accounting files
/usr/adm/acct if system accounting has been activated. This file may be summarized by using
sa(1). The format of this file is:

struct acct{

char
char
char
long
long
long
long
long
long
b
SEE ALSO

ac_comm/[14]
ac_flag
ac_uid
ac_date
ac_etime
ac_utime
ac_stime
ac_dread
ac_dwrit

/* name of command */

/* unused */

/* real userid */

/* start time of command */
/* elapsed time in seconds */
/* user cpu time (1/60 sec) */
/* system time (1/60 sec) */
/* disk reads */

/* disk writes */

accton(1), sa(1), acct(2)

January 9, 1981

Page 1

January 9, 1981

ARCHIVE ¢5)

NAME

ar — archive file format

DESCRIPTION
The archive command ar is used to combine several files into one. Archives are used mainly as
libraries to be searched by the link-editor /d.

FILES

Page |

CB—-UNIX 2.1 ARCHIVE (5)

A file produced by ar has a magic number at the start, followed by the constituent files, each
preceded by a file header. The magic number is 0177545(8) (it was chosen to be unlikely to
occur anywhere else). The header of each file is 26 bytes long:

/* @ (#)ar.h
#define ARMAG
struct ar_hdr |

char

long

char

char

int

long

IR

201 "/
0177545

ar_namel14];
ar_date;
ar_uid:
ar_gid:
ar_mode:
ar_size;

Each file begins on a word boundary. a null byte is inserted between files if necessary.
Nevertheless the size given reflects the actual size of the file exclusive of padding.

Notice there is no provision for empty areas in an archive file.
SEE ALSO

ar(1), 1d(1), strip(1)

fusr/include/ar.h

November 1979

CORE (5) CB—UNIX 2.1 | ~ CORE(5)

NAME

core — format of core image file

DESCRIPTION

UNIX writes out a core image of a terminated process when any of various errors occur. See
signal(2) for the list of reasons; the most common are memory violations, illegal instructions,
bus errors, and user-generated quit signals. The core image is called core and is written in the
process's working directory (provided it can be; normal access controls apply).

The first section of the core image is a copy of the system’s per-user data for the process,
including the registers as they were at the time of the fault. The size of this section depends on
the parameter usize, which is defined in /ust/include/sys/param.h. The remainder represents
the actual contents of the user’s core area when the core image was written. If the text seg-
ment s read-only and shared, or separated from data space, it is not dumped. Attached
mau@segments are not dumped.

The format of the information in the first section is described by the wuser structure of the sys-
tem. defined in /usr/include/sys/user.h. The important stuff not detailed therein is the loca-
tions of the registers, which are outlined in /usr/include/sys/reg.h.

In general, the debugger adb (1) is sufficient to deal with core images.

SEE ALSO

Page |

adb(1), signal(2)

November 1979

; CP10,5) CB—UNIX 2.3
i
|
| NAME
! cpio — format of cpio archive
DESCRIPTION
The header structure is:
struct {
short h_magic,
h_dev,
h_ino,
h_mode,
h_uid,
h_gid,
h_nlink,
h_rdev,

h_mtime[2],
h_namesize,
h_filesize[2]:
char h_name[h_namesize rounded to word]:
} Hdr;

CPIO(5)

: The contents of each file is recorded in an element of the array of varying length structures,
i archive, together with other items describing the file. Every instance of h_magic contains the

h_namesize.

The last record of the archive always contains the name TRAILER!!!.
and the trailer are recorded with h_filesize equal to zero.

SEE ALSO
cpio(1), find(1), stat(2).

i
‘ January 12, 1981 Page 1

/ constant 070707 (octal). The items h_dev through h_mtime have meanings explained in star(2).
The length of the null-terminated path name h_name,_including the null byte, is given by

Special files, directories,

January 12, 1981

CPI0 (@) UNIX .0 cPIC (@)

NAME
cplo ~ formet of cpic arckhiv

g3}

LESCRIPTION
The resder structure, when the —-c¢ ortion of cpic(l) is not

—— - ———

veed, is:

struct {
short h_reagic,
b_dev;
ushort h_ino,
h_mode,
b_uidy
f.__g‘id)
skert P nlink,
k_rdev,
k mtime[2],
h_namesize,
h_iilesize(2];
char L_name[h_namesize roundec tc wordl;
} Hdrs
wpen the —c¢ option is used, the header informetion ic

described by:
sscant (Chdr, %Eo0%&o%€c%€o
&HAr.h_magle, &HC
S&Edr.h_uid, &Hér.h_
&longtime, SEdr.h_n

Lorgtire end Lopafile are eyvivalent to E¢r.h_miime and
Fdr.r_filesize, respectively. Tre contents of eech file are
reccrded in an element of tre array of varying length
structures, archive, together witk other items describding
the file. Every instsnce of h_megic contains the constéent
¢rne7e7 (cctal). Tre items L _dev trrouvgh b_mtime rave
mnesnings explsined in stat(%) t

- b o
terminated peth neme §_rnamg, inclu
given by h_namesize.

jing the rull byte, is

ke arcpive alweys ccentains the neme

The lgst rececrd of the arcpive
! and the traller are

TERAILER!!
recorded with 1}

~ 1

) b= ot
[
-
}_J
M
n
Cu
s
L
m
(9]
ot
o
=3
e
m
n

SEE ALSO
cpic(1), find(1), stat(2).

(a b
Qs
~
0
‘._\
—~
'._l
m
mn
ot
=
(@]
Cu
-
lad}
\\
P.\
B
\\
o
o

S

CRONTAB(5) CB—UNIX 2.1 CRONTAB (5)

NAME
crontab — table of chronological events to be executed.

DESCRIPTION
Crontab is examined by the process cron at a specified intervals to determine if the system clock
contains the same time as any of the entries in the table. If it does, the file specified in the
table entry is executed. The file consists of one line per entry, with each entry consisting of 6
columns to be separated by spaces. The format is as follows:

minutes past hour (0-59)

hour of day (0-23)

day of month (0-31)

month (1-12)

day of week (0=Sunday 1 =Monday,etc)
command to be executed

An asterisk can be used in those columns where a “*don’t care’” condition is desired (except for
command to be executed).

FILES
/usr/lib/crontab

SEE ALSO
cron(1)

November 1979 Page | November 1979

D_PASSWD (5) CB—UNIX 2.1 D_PASSWD (5)

NAME

d_passwd — dial up password file

DESCRIPTION

FILES

D passwd contains the encrypted password to be entered by dialup terminals defined in
/ete/dialups. The file format is of the form

[/shell: encrypted passowrd:]

Where shell is the current shell process and password is added by editing in the encrypted pass-
word. This password may be obtained by adding the password to some entry in the password
file (using the passwd(1) command) and then copying the encrypted text into d_passwd.

LOGIN will choose the appropriate line from this file depending on the shell assigned to the
user identification in the passwd file. The entry for /bin/sh must always be present and is used
as the default if an entry for a non-standard shell is not present.

/etc/d_passwd

SEE ALSO

Page |

login(1), dialups(5)

November 1979

DIALUPS(5) - CB—UNIX 2.1 DIALUPS (5)

NAME
dialups — list of dialup lines

DESCRIPTION
/etc/dialups contains a list of terminals which should be prompted at login for a dialup passwd.
The file is formatted as one line per terminal as:

/dev/Inxx
where Inxx is the device associated with the terminal.

FILES
/etc/dialups

SEE ALSO
= login(1), d_passwd(5)

Page 1 November 1979

DIRECTORY (5) CB—UNIX 2.1 ' DIRECTORY (5)

NAME

dir — format of directories

DESCRIPTION

A directory behaves exactly like an ordinary file, save that no user may write into a directory.
The fact that a file is a directory is indicated by a bit in the flag word of its i-node entry (see

/5(5)). The structure of a directory entry as given in the include file is:

/* @ (#)dir.h 3.1 “f
#ifndef DIRSIZ
#define DIRSIZ : 14
#endif
struct direct
i
1
ino_t d_ino;
char d_name{DIRSIZ]:

.
fe
By convention, the first two entries in each directory are for *.” and ‘..". The first is an entry
for the directory itseif. The second is for the parent directory. The meaning of *.." is modified
for the root directory of the master file system: there is no parent., so *.." has the same meaning

“

as . .

SEE ALSO

FILES

Page |

fs(5)

/usr/include/sys/dir.h

November {979

DUMP(5) CB—-UNIX 2.1 DUMP (5)

NAME

dump — incremental dump tape format

DESCRIPTION

Page 1

The mhdump and mhrestor commands are used to write and read incremental dump magnetic
tapes.

The dump tape consists of a header record, some bit mask records, a group of records describ-
ing filesystem directories, a group of records describing filesystem files, and some records
describing a second bit mask.

The header record and the first record of each description have the format described by the
structure included by

#include <dumprestor.h>
This include file has the following contents.

/* @ (#)dumprestor.h 2.1 */

#define NTREC 20

#define MLEN 16

#define MSIZ 4096

#define TS_TAPE 1

#define TS_INODE 2

#define TS_BITS 3

#define TS_ADDR 4

#define TS_END 5

#define TS_CLRI 6

#define MAGIC (int)60011

#define CHECKSUM (int) 84446

struct spcl

{
int c_type;
time _t c_date;
time_t ¢_ddate;
int c_volume;
daddr_t ¢_lapea,
ino_t ¢_inumber;
int c_magic:
int c_checksum;
struct dinode ¢_dinode;
int c_count;
char ¢_addr(BSIZEI;

} spel;

struct idates

{
char id_name[16];
char id_incno;
time_t id_ddate:

B
NTREC is the number of 312 byte blocks in a physicai tape record. MLEN is the number of
bits in a bit map word. MS/Z is the number of bit map words.

The TS_ entries are used in the c_type field to indicate what sort of header this is. The types
and their meanings are as follows:

TS_TAPE
Tape volume labet

TS_INODE
A file or directory follows. The c_dinode field is a copy of the disk inode and contains

November 1979

DUMP(5) CB—UNIX 2.1 DUMP (5)

bits telling what sort of file this is.
TS_BITS A bit mask follows. This bit mask has a one bit for each inode that was dumped.

TS_ADDR
A subblock to a file (7S_INODE). See the description of c_count below.

TS_END End of tape record.

TS_CLRI A bit mask follows. This bit mask contains a one bit for all inodes that were empty
on the file system when dumped.

MAGIC All header blocks have this number in ¢_magic.

CHECKSUM
Header blocks checksum to this value.

The fields of the header structure are as follows:

c_type The type of the header.

c_date The date the dump was taken.

¢_ddate The date the file system was dumped from.

c_volume The current volume number of the dump.

c_tapea The current block number of this record. This is counting 512 byte blocks.

c_inumber
The number of the inode being dumped if this is of type 7S_INODE.

c_magic This contains the value MAGIC above, truncated as needed.

¢_checksum
This contains whatever value is needed to make the block sum to CHECKSUM.

c_dinode This is a copy of the inode as it appears on the file system.

c_count This is the count of characters following that describe the file. A character is zero if
the block associated with that character was not present on the file system, otherwise
the character is non-zero. If the block was not present on the file system no block
was dumped and it is replaced as a hole in the file. If there is not sufficient space in
this block to describe all of the blocks in a file, TS_4DDR blocks will be scattered
through the file, each one picking up where the last left off.

c_addr This is the array of characters that is used as described above.

Each voiume except the last ends with a tapemark (read as an end of file). The last volume
ends with a 7S_END block and then the tapemark.

The structure idates describes an entry of the file where dump history is kept.

SEE ALSO
mhdump (1), mhrestor(1), fs(5)

FILES
/usr/include/sys/types.h, /usr/include/sys/ino.h, /usr/include/dumprestor.h

November 1979 ; Page 2

ERRFILE (5)

NAME
errfile — error-log file format

DESCRIPTION

CB—UNIX 2.1

ERRFILE (5)

When hardware errors are detected by the system, an error record is generated and passed to
the error-logging daemon for recording in the error log for later analysis. The default error log

is /errlog/errfile.

The format of an error record depends on the type of error that was encountered. - Every
record, however, has a header with the following format:

struct errhdr {

int e_type;
int e_len;
time _t e_time;

)

/* record type */
/* bytes in record (inc hdr) */
/* time of day */

The permissible record types are as follows:

#define E_GOTS 010
#define E_GORT 0ll
#define E_STOP 012
#define E_ TCHG 013
#define E_ CCHG 0l4
#define E_BLK 020
#define E_STRAY 030
#define E_PRTY 031
#define E_OVFL 040
#define E_PRDEV 041
#defint E_POWER 042

/* Start for UNIX/TS */

/* Start for UNIX/RT */
/* Stop */

/* Time change */

/* Configuration change */
/* Block device error */

/* Stray interrupt */

/* Memory parity */

/* Software table overflow */
/* File system error */

/* Power-fail restart */

Some records in the error file are of an administrative nature. These include the startup record
that is entered into the file when logging is activated, the stop record that is written if the dae-
mon is terminated ‘‘gracefully’, and the time-change record that is used to account for changes
in the system’s time-of-day. These records have the following formats:

struct estart |
struct errhdr e_hdr:

int e_cpu;

int e_mmr3;
long e_syssize;
int e_bconf’

struct eend |
struct errhdr e_hdr;
int e_werr;
struct etimchg |

struct errhdr e_hdr;
time_t e_ntime;

Page |

/* record header */

/* cpu type */

/* contents mem mgmt reg 3 */
/* 11/70 system memory size */
/* block dev configuration */

/* record header */
/* number of daemon write errors */

/* record header */
/* new time */

November 1979

ERRFILE(5)

CB—UNIX 2.1 ERRFILE (5)

Stray interrupts cause a record with the following format to be logged in the file:

struct estray |
struct errhdr
physadr
int

R

e_hdr;
€_saddr;
e_sbacty;

/* record header */
/* stray loc or device addr */
/* active block devices */

Memory subsystem error on 11/70 processors cause the following record to be generated:

struct eparity {
struct errhdr
int

o

e_hdr;

e_parregl4];

/* record header */
/* memory subsys registers */

Error records for block devices have the following format:

struct eblock |
struct errhdr
dev_t
physadr
int
struct iostat |
long
long
| unsigned

int

int
daddr_t
unsigned
fong
unsigned
int

B

e_hdr;
e_dev;
e_regloc;
e_bacty:

io_ops;
10_misc;
io_unlog;
e_stats;
e_bflags;
e_cyloff;
e_bnum;
e_bytes:
e_memadd;
e_rtry;
e_nreg,

/* record header */

/* "true” major + minor dev no */
/* controller address */

/* other block 1/0 activity */

/* number read/writes */
/* number "other" operations */
/* number unlogged errors */

/* read/write, error, etc */

/* logical dev start cyl */

/* logical block number */

/* number bytes to transfer */
/* buffer memory address */
/* number retries */

/* number device registers */

The following values are used in the flags word:
#define E_WRITE 0

#define E READ
#define E_NOIO
#define E_PHYS
#define E_MAP

]
02
04
010

#define E_ ERROR 020

The “‘true’” major device numbers that identify the failing device are as follows:

#define RKO
#define RPO
#define RF0
#define TMO
#define TCO
#define HPO
#define HTO
#define HSO
#define RLO

November 1979

00 1O\ BN - O

/* Write operation */

/* Read operation */

/* No 1/0 pending */

/* Physical 1/0 */

/* Unibus map in use */
/* 1/0 failed */

Page 2

ERRFILE (5) CB—-UNIX 2.1 ERRFILE (5)

File system soft errors generate records of the following format:
struct eprdev {

struct errhdr e_hdr; /* record header */

short e_missed: /* errors not logged since preceding record */
dev_t e_fsdev; /* device with filesystem in error */

short e_fserr; /* type of error */

I
Values for e_fserr include:

#define E_FSBB 0 /* Bad biock */
#define E_ FSBC 1 /* Bad count */
#define E_FSNS 2 /* No space */
#define E_FSOI 3 /* Out of inodes */

Table overflow errors generate records of the following format:
struct eovfl {

struct errhdr e_hdr; /* record header */
short e_missed; /* errors not logged since preceeding record */
short e_tabt; /™ type of error */

I

Values for e_tabt are:

#define E_FILEO 0 /* File table overtlow */
#define E_PROCO 1 /* Process table overflow */
#define E_INODEO?2 /* Inode table overflow */
#define E_TEXTO 3 /* Text table overflow */

Powerfail — restart records have the format:

struct e_power {
struct errhdr e_hdr; /* record header */

i,
Is

SEE ALSO
errdemon (1M)

Page 3 November 1979

FS(5) CB—UNIX 2.3 FS(5)

NAME
filesystem — format of system volume

DESCRIPTION
Every file system storage volume (e.g. RP04 disk) has a common format for certain vital infor-
mation. Every such volume is divided into a certain number of 256 word (512 byte) blocks.
Block 0 is unused and is available to contain a bootstrap program or other information.

Block 1 is the super block. Starting from its first word, the format of a super-block is:

e @(#)lsys.h 3.1 %/
/.

* Definition of the unix super block.

* The root super block is allocated and

* read in iinit/alloc.c. Subsequently

* 2 super block is allocated and read

* with each mount (smount/sys3.c) and

* released with unmount (sumount/sys3.c).
* A disk block is ripped off for storage.

* See alloc.c for general alloc/free

* routines for free list and I list.

*/
struct filsys
{
char *s_isize; /* size in blocks of I list */
char *s_fsize; /* size in blocks of entire volume */
int s_nfree; /* number of in core free blocks (0-100) */
int s_free[100]; /* in core free blocks */
int s_ninode; /* number of in core I nodes (0-100) */
int s_inode[100]; /* in core free I nodes */
char s_flock; /* lock during free list manipulation */
char s_ilock; /* lock during I list manipulation */
char s_fmod; /* super block modified flag */
char s_ronly; /* mounted read-only flag */
long s_time; /* current date of last update */
int pad[40};
int s_tfree; /* Total free, for subsystem examination */
int s_tinode; /* Free inodes, for subsystem examination */
char s_fname{6]; /* File system name */
. char s_fpack[6]; /* File system pack name */

3

Isize is the number of blocks devoted to the i-list, which starts just after the super-block, in
block 2. Fsize is the first block not potentially available for allocation to a file. These numbers
are used by the system to check for bad block numbers; if an ‘impossible’ block number is allo-
cated from the free list or is freed, a diagnostic is written on the on-line console. Moreover,
the free array is cleared, so as to prevent further allocation from a presumably corrupted free
list.

The free list for each volume is maintained as follows. The free array contains, in free/1],
free[nfree—1], up to 49 numbers of free blocks. Free/0] is the block number of the head of a
chain of blocks constituting the free list. The first long in each free-chain block is the number
(up to 50) of free-block numbers listed in the next 50 Jongs of this chain member. The first of
these 50 blocks is the link to the next member of the chain. To allocate a block: decrement
nfree, and the new block is free/nfree/. If the new block number is 0, there are no blocks left, so
give an error. If nfree became 0, read in the block named by the new block number, replace
nfree by its first word, and copy the block numbers in the next 50 longs into the free array. To
free a block, check if nfree is 50; if so, copy nfree and the free array into it, write it out, and set
nfree to 0. In any event set free[nfree/ to the freed block's number and increment nfree.

January 28, 1981 Page 1 January 28, 1981

. FS(§) CB—UNIX 2.3 FS(5)
Tfree is the total free blocks available in the file system. .
Ninode is the number of free i-numbers in the inode array. To allocate an i-node: if ninode is
greater than 0, decrement it and return inode/ninode/. If it was 0, read the i-list and place the
numbers of all free inodes (up to 100) into the inode array, then try again. To free an i-node,
provided ninode is less than 100, place its number into inode[ninode] and increment ninode. If
ninode is already 100, do not bother to enter the freed i-node into any table. This list of i-
nodes is only to speed up the allocation process; the information as to whether the inode is
really free or not is maintained in the inode itself.
Tinode is the total free inodes available in the file system.
Flock and ilock are flags maintained in the core copy of the file system while it is mounted and
their values on disk are immaterial. The value of finod on disk is likewise immaterial; it is used
as a flag to indicate that the super-block has changed and should be copied to the disk during
the next periodic update of file system information.
Ronly is a read-only flag to indicate write-protection.
Time is the last time the super-block of the file system was changed, and is a double-precision
representation of the number of seconds that have elapsed since 0000 Jan. 1, 1970 (GMT).
During a reboot, the time of the super-block for the root file system is used to set the system’s
idea of the time.
Fname is the name of the file system and fpack is the name of the pack.
I-numbers begin at 1, and the storage for i-nodes begins in block 2. Also, i-nodes are 64 bytes
long, so 8 of them fit into a block. Therefore, i-node i is located in block (i + 15) /8, and
begins 64°((i + 15) (mod 8)) bytes from its start. I-node 1 is reserved for future use. I-node
2 is reserved for the root directory of the file system, but no other i-number has a built-in
meaning. Each i-node represents one file. For the format of an inode and its flags, see
inode(5).

FILES
/usr/include/sys/filsys.h
/usr/include/sys/stat.h
/Jusr/include/sys/types.h
/usr/include/sys/param.h
SEE ALSO

inode(1), mkfs(1M), stat(2), stat:0(2), inode(5)

January 28, 1981 Page 2 January 28, 1981

. GETTYDEFS(5) CB—UNIX 2.3 GETTYDEFS(S)

NAME
gettydefs — speed and terminal settings used by getty

DESCRIPTION
The getrydefs file contains information used by gerty(1M) to set up the speed and terminal set-
tings for a line. It also supplies information on what the ‘login’ message should look like and
which speed to try next if the user indicates the current speed in not correct by typing a _
<break> character.

Each entry in the gettydefs file has the following format:

label# inital flags # final flags # input speed # output speed # login message #nextlabel
Each entry is followed by a blank line. The various fields can contain quoted characters of the
form “\b’,“\n’,"\¢’, etc. as well as ‘\nnn’, where ‘nnn’ is the octal value of the desired character.
The various fields are:

label This is the string against which gerty is trying to match the second argument.
It is often just the speed, such as *1200°, at which the terminal is supposed to
run, but it needn’t be.

inital flags These flags are the initial ioct/ settings to which the terminal is to be set if a
terminal type is not specified to gerty. The flags that getty understands are the
same as the ones listed in /usr/include/sys/ioctl.h (see ioct/(2)) under the
commands TTIOCSETP and TTIOCSETO commands. They are HUPCL
XTABS LCASE ECHO CRMOD RAW ODDP EVENP ANYP NLDELAY
TBDELAY CRDELAY VIDELAY BSDELAY ALLDELAY TANDEMO
HDPLX NOHUP XCLUDE NOSLEEP TANDEMI and STDTTY. These
settings remain in effect until gerty exec’s login. For the initial modes the state
of three of these flags will be set regardless of what the table says, hence they
needn’t and shouldn’t be included in the initial flags. These flags are RAW
and HUPCL, which are set on, and ECHO, which is set off.

final flags These flags take the same values as the initial flags and are set just prior to
getty switching to login. The HUPCL flag is always set on and so shouldn’t
appear in the final flags at all.

input speed This specifies the input speed the terminal will be set at for this entry. It can
also set character width and number of stop bits. The words getty understands
in this field and the output speed also come from /usr/include/sys/ioctl.h.
The legal words are B0 B50 B75 B110 B134 B150 B200 B300 B600 B1200
B1800 B2400 B4800 B9600 EXTA EXTB ONESTOP TWOSTOP BITSS
BITS6 BITS7 and BITSS .

output speed This specifies the output speed the terminal will be set at for this entry. It can
also set character width and number of stop bits.

Jogin message This entire field is printed as the login message. Unlike the above fields where
white spaces are ignored (white spaces are * °, °\t’, and ‘\n’), they are included
in the login message field.

next label If this entry does not specify the correct speed, indicated by having the user
type a <break> character, then geity will search for the entry with "next label’
as its label field and set up the terminal for those settings. Usually a series of
speeds are linked together in this fashion into a closed set. For instance, 2400
linked to 1200, which in turn is linked to 300, which finally is linked by to
2400.

If getry is called without a second argument, then the first entry of /etc/gettydefs is used, thus
making the first entry of /etc/gettydefs the default entry. It is also used if getzy can’t find the

August 7, 1980 Page 1 August 7, 1980

 GETTYDEFS(5)

CB—UNIX 2.3 GETTYDEFS(5)

specified label. If /etc/gettydefs itself is missing, there is one built in entry inside genty itself,
which will bring up a terminal at 300 baud.

It is strongly recommended that after making or modifying /etc/gettydefs that it be run
through gerty with the test option to be sure that there are no errors. (see genty(1M))

FILES
/etc/gettydefs

SEE ALSO
getty(1M), ioctl(2)

August 7, 1980 Page 2 August 7, 1980

GROUP(5) CB—UNIX 2.1 GROUP(5).

NAME

group — group file

DESCRIPTION

FILES

Group contains for each group the following information:

group name

encrypted password

numerical group ID

comma-separated list of all users allowed in the group

This is an ASCII file. The fields are separated by colons; Each group is separated from the next
by a new-line. If the password field is null, no password is demanded by the newgrp(l) com-
mand.

This file resides in directory /etc. Because of the encrypted passwords, it can and does have
general read permission and can be used, for example, to map numerical group [D’s to names.

/etc/group

SEE ALSO

Page |

newgrp(1), passwd(1), crypt(3C), passwd(5)

November 1979

INI;I‘TAB(S) CB—UNIX 2.3 INITTAB(S)

NAME
inittab — script for the init process

DESCRIPTION
The inittab file supplies the script to init’s role as a general process dispatcher. The process that
constitutes the majority of init ’s process dispatching activities is the line process /etc/getty
which initiates individual terminal lines. Other processes typically dispatched by init are dae-
mons and the shell.

The lines file is composed of entries that are position dependent and have the following format:
id:rstate:action:process

Each entry is delimited by a newline, however a backslash (\) preceding a newline indicates a
continuation of the entry. Up to 512 characters per entry are permitted. Comments may be
inserted in the process field using the sh convention for comments. (See sh(1)) Comments for
lines which spawn getrys are displayed by the who command. It is expected that they will con-
tain some information about the line such as the location. There are no limits (other than
maximum entry size) imposed on the number of entries within the initab file. The entry fields

are:
id This is one or two characters used to uniquely identify an entry.
rstate This defines the run state in which this entry is to be processed. Run states

effectively correspond to a configuration of processes in the system. That is, each
process spawned by init is assigned a run state or run states in which it is allowed to
exist. The run states are represented by a number ranging from 0 through 6. As an
example, if the system is in run state 1, only those entries having a 1 in the run siate
field will be processed. When init is requested to change run states, all processes
which do not have an entry in the rstate field for the target run state will be sent the
warning signal and allowed a 20 second grace period before being forcibly terminated
by a kill signal. The rstate field can define multiple run states for a process by select-
ing more than one run state in any combination from O through 6. If no run state is
specified, then the process is assumed to be valid at all run states 0-6. There are
three other values a, b, and ¢ which can appear in the rsrare field even though they
are not true run states. Entries which have these characters in the rstate field are pro-
cessed only when the telinit process requests them to be run (regardless of the
current run state of the system). They differ from run states in that init can never
enter run state a, b or ¢. Also, a request for the execution of any of these processes
does not change the current run state. Furthermore, a process started by an a, b or ¢
command is not killed when init changes levels. They are only killed if their line in
/etc/inittab is marked off in the action field, their line is deleted entirely from
/etc/inittab, or init goes into the SINGLE USER state.

action Key words in this field tell init how to treat the process specified in the process field.
The actions recognized by init are as follows:

respawn If the process does not exist then start the process, do not wait for its ter-
mination (continue scanning the inittab file), and when it dies restart the
process. If the process currently exists then do nothing and continue
scanning the inittab file.

wait Upon init’s entering the run state that maiches the entry’s rstate, start the
process and wait for its termination. All subsequent reads of the inittab
file while init is in the same run state will cause init to ignore this entry.

once Upon init’s entering a run state that matches the entry’s rsiate, start the
process, do not wait for its termination and when it dies do not restart
the process. If upon entering a new run state the process is still running

February 24, 1980 Page 1 February 24, 1980

INITTAB(5)

process

FILES

CB—UNIX 2.3 INITTAB(5)

from a previous run state change the program will not be restarted.

boot The entry is to be processed only at init’s boot time read of the inittab
file. Init is to start the process, not wait for its termination, and when it
dies not restart the process. In order for this instruction to be meaning-

ful, the rstate should be the default or it must match init’s run state at —

boot time. This action is useful for an initialization function following a
hardware reboot of the system.

bootwait The entry is to be processed only at init’s boot time read of the inittab
file. Init is to start the process, wait for its termination and when it dies

not restart the process.

powerfail Execute the process assciated with this entry only when inif receives a
power fail signal (SIGPWR (signal(2))).

powerwait Execute the process associated with this entry only when init receives a
power fail siganl (SIGPWR (signal(2))) and wait until it terminates
before continuing any processing of inittab.

off If the process associated with this entry is currently running, send the
warning signal (SIGTRM (signal(2))) and wait 20 seconds before forcibly
terminating the process via the kill signal (SIGKIL (signal(2))). If the
process is nonexistent ignore the entry.

ondemand This instruction is really a synonym for the respawn action. It is func-
tionally identical to respawn but is given a different keyword in order to
divorce its association with run states. This is used only with the a, b, or
¢ values described in the ‘rstate’ field.

initdefault

An entry with this action verb is only scanned when init initially comes
up. [Init uses this entry, if it exists, to determine which run state to enter
initially. It does this by taking the highest run level specified in the
rstate field and using that as its initial state. Two points to note. If the
rstate field is empty, this in interpretted as ‘0123456’ and so init will
enter run state 6. The second point is that the initdefault entry cannot
specify that init start in the SINGLE USER state. Also to be noted is that
if init doesn’t find an initdefault entry in /etc/inittab, then it will request
an initial run srate from the user at reboot time.

This is a sh command to be executed. The entire process field is prepended with
exec and passed to a forked sh as sh -¢ ’exec command®. For this reason any legal sh
syntax can appear in the the process field. Comments can be inserted with the

/etc/inittab

SEE ALSO

getty(IM), init(1M), sh(1), who(1), exec(2), open(2), signal(2)

February 24, 1980

Page 2 February 24, 1980

CB—UNIX 2.3 INODE(S)

An i-node for a plain file or directory in a file system has the following structure defined by

INODE(5)
NAME

inode — format of an inode
SYNOPSIS

#include <sys/ino.h>
DESCRIPTION

<sys/ino.h>.

Tk @(#)ino.h

/'

32 Jl

* The inode layout as it appears on the disk.
* This header file in not used by the system, but by programs like

* ncheck.
*/
struct inode
{
int
char
char
char
char
char
int
int
int
15
/* modes */
#define IALLOC
#define IFMT
#define
#define
#define
#define ILARG
#define ISUID
#define 1ISGID
#define ISVTX
#define IREAD
#define IWRITE
define 1EXEC

FILES
Just/include/sys/ino.h

SEE ALSO
stat(2), fs(5).

April 28, 1981

i_mode;
i_nlink; /* directory entries */
i_uid; /* owner */
i_gid; /* group of owner */
i_sizeQ; /* most significant of size */
i_sizel; / least sig */
i_addr(8]; /* device addresses constituting file */
i_atime[2]; /* last access time */
i_mtime(2]; /* last modification time */
0100000 /* file is used */
060000 /* type of file */
IFDIR 040000 /* directory */
IFCHR 020000 /* character special */
IFBLK 060000 /* block special, 0 is regular */
010000 /* large addressing algorithm */
04000 /* set user id on execution */
02000 /* set group id on execution */
01000 /* save text, event when not current */
0400 /* read, write, execute permissions */
0200
0100
Page 1 Apnl 28, 1981

ISSUE(5) . : CB—UNIX 2.1 ISSUE (5)

NAME
issue — issue identification file

DESCRIPTION
/ete/issue contains the issue or project identification to be printed as a login prompt. This is an
ASCII file which is read by program getry(1M) and then written to any terminal spawned or
respawned from the lines file.

FILES
/etc/issue

SEE ALSO
getty (1IM), login(1M)

Page 1 November 1979

LFS(5)

NAME

CB—UNIX 2.3 LFS(5)

Ifs — format of Logical File System disk area

DESCRIPTION
As described in Ifs(3C), The Logical File System (LFS) is a fast-access file system that provides
contiguous file storage. The LFS disk area is configured by the mklfs(1) command. It is bro-
ken into several distinct areas:

FILES

Sector 0 is unused and could be used in the future for any purpose desired. It was left
empty to be consistent with standard UNIX file systems.

Sector 1 contains the LFS header which contains all of the parameters input to mklfs plus a
"magic" number used for detection of major disk overwrites, the starting sector of the free
list (see below), and the last 1fn created automatically by the LFS.

The next area contains a file definition entry for each Ifn. Each entry contains some flags
for the Ifn (e.g. allocated or not), the starting LFS block, the number of LFS blocks in the
file, and arbitrary user information about the file. A LFS block is defined to be a contiguous
area blkf sectors long where blkf is the LFS block size specified in the mklfs(1) command.
Since a file is allocated by the user in terms of sectors, the size in sectors is also stored. If
the number of file definition entries fitting in a sector is nfde, and nlfn is the maximum
number of files defined by mkifs, then the entries take (nlfn + (nfde — 1))/nfde sectors to
store.

The next area is a freelist (one sector long) containing the starting address and size (both in
LFS blocks) of unallocated disk space. It is updated when files are created and deleted.
After mkifs configures the disk, all "overhead" LFS blocks (e.g., header, file definition
entries, and the freelist) have been allocated. The first unallocated area thus starts at the
first LFS block after the last overhead block and has a size equal to the remaining space on
the disk area.

A bit map is stored next which records the allocated/unallocated status of each LFS block in
the system. It is used primarily for checking the sanity of the LFS in case of system
crashes. Since there is one bit per LFS block, the bitmap takes

((disksize+7)/8 + 511)/512
sectors where

disksize = (ncyl * trkf * secf + (blkf—1))/blkf.
(See the mklfs(1) command for definitions of these quantities).

The last area of the disk contains the files themselves and comprises the remainder of the
disk area. As implied above, this area may be subdivided into any number of files from 1 to
nlfn. The only limit is that the size of a file cannot exceed 32,767 LFS blocks.

Just/include/sys/1fsh.h

SEE ALSO
mkifs(1), Ifs(3C)

May 15, 1981 Page 1 May 15, 1981

LINES(S) CB—UNIX 2.3 LINES(S)

NAME
No longer used. See inittab(5).

February 24, 1980 Page 1 February 24, 1980

LINES (5) CB-UNIX 2.1 LINES (5)

NAME
lines — script for the init process

DESCRIPTION
The lines file supplies the script to inif's role as a general process dispatcher. The process that
constitutes the majority of inifs process dispatching activities is the line process /etc/getty
which initiates individual terminal lines. Other processes typically dispatched by init are dae-
mons and the shell.

The lines file is composed of entries that are position dependent and have the following format:
id:rstate:action:shellcm:process

Each entry is delimited by a newline, however a backslash (\) preceding a newline indicates a
continuation of the entry. Up to 512 characters per entry are permitted and comments may be
inserted before or after an entry by using the C comment convention (i.e. /* comment */).
(Comments are not included in the 512 character limit.) There are no limits (other than max-
imum entry size) imposed on the number of entries within the lines file. The entry fields are:

id This is one or two characters (other than xx, /B, RL, OT, NT) used to uniquely
identify an entry. For compactness of syntax, however, when spawning terminal
processes these characters must be the name of the line the terminal process is to
open (e.g., aa causes /dev/Inaa to be the line on which a terminal process is
spawned). If a line monitor other than /etc/getty is spawned this convention should
also be observed in order to produce consistent line accounting.

rstate This defines the run state in which this entry is to be processed. Run states
effectively correspond to a configuration of processes in the system. That is, each
process spawned by init is assigned a run state or run states in which it is allowed to
exist. The run states are represented by a number ranging from O through 6. There
is a run swate 7, however, this is predefined as single-user mode and init does not
scan the lines file in single-user mode so that a process with run state 7 in the lines
file is meaningless. As an example, if the system is in run state 1, only those entries
having a 1 in the run state field will be processed. When init is requested to change
run states, all processes which do not have an entry in the rszare field for the target
run state will be sent the warning signal and allowed a 20 second grace period before
being forcibly terminated by a kill signal. The rstate field can define multiple run
states for a process by selecting more than one run state in any combination from 0
through 6. The run states must appear as an unbroken string (i.e. ‘024, <3526, ‘0125,
etc.) in the rstate field. If no run state is specified (no blanks or tabs may appear in
the rstate field); then the process is assumed to be valid at all run states. There are
three other values a, b, and ¢ which can appear in the rstare field even though they
are not true run states. Entries which have these characters in the rstate field are pro-
cessed only when the tefinit process requests them to be run (regardless of the
current run state of the system). They differ from run states in that init can never
enter run state a, b or c. Also, a request for the execution of any of these processes
does not change the current run statre.

action Key words in this field tell init how to treat the process specified in the process field.
The actions recognized by init are as follows:

respawn If the process does not exist then start the process, do not wait for its ter-
mination (continue scanning the lines file), and when it dies restart the
process. If the process currently exists then do nothing and continue
scanning the lines file.

wait Upon init’s entering the run state that matches the entry’s rstare, start
the process and wait for its termination. All subsequent reads of the lines

Page 1 November 1979

_— P

MANMAC (5) CB-UNIX 2.1 MANMAC (5)

The following number registers are available; they are given default values by .TH:

IN Left margin indent relative to subheads (default is 0.51).
LL Line length including IN (default is 6.51).
CAVEAT

In addition to the macros, strings, and number registers mentioned above, there are defined a
number of internal macros, strings, and number registers. Except for names predefined by
troff(1) and number registers d, m, and y, all such internal names are of the form X4, where X
is one of), |, and }, and A4 stands for any alphanumeric character.

FILES
/usr/lib/macros/an

SEE ALSO
man(1), nroff(1)

November 1979 Page 2

* MOUNTPTS(S) CB—UNIX 2.3 MOUNTPTS(5)

NAME
mountpts — general user mount point table

DESCRIPTION
Mountpts resides in directory /etc and contains a table of directories where the general
unprivileged user can legally mount file systems.

Each entry is an ASCII line with the full pathname of a directory on it. Whenever an
unprivileged user tries to mount a filesystem, the mount command reads this file to see whether
they are allowed to mount on the directory they have specified.

If /etc/mountpts does not exist, then the general unprivileged user will not be allowed to
mount any file systems.

SEE ALSO
mount(1)

March 13, 1981 Page 1 March 13, 1981

MPXIO (5) CB—-UNIX 2.1 MPXIO (5)

NAME

mpxio — multiplexed /O

DESCRIPTION

Data transfers on mpx files (see mpx(2)) are multiplexed by impesing a record structure on the
[/0 stream. Each record represents data from/to a particular channel or a control or status
message associated with a particular channel.

The prototypical data record read from an mpx file is as follows

struct input_record {
short index;
short count,
short ccount;
} char datall;
where index identifies the channel, and count specifies the number of characters in dara. If count
is zero, ccount gives the size of data, and the record is a control or status message. Although
count or ccount might be odd, the operating system aligns records on short (i.e. 16-bit) boun-
daries by skipping bytes when necessary.

Data written to an mpx file must be formatted as an array of record structures defined as fol-
lows:

struct output_record |
short index;
short count:
short ccount;
char *data;

1.
fu

where the data portion of the record is referred to indirectly and the other cells have the same
interpretation as in /input_record.

The control messages listed below may be read from a multiplexed file descriptor. They are
presented as two 16-bit integers: the first number is the message code (defined in
<sysix.h>), the second is an optional parameter meaningful only with M_WATCH.

M_WATCH a process ‘wants to attach’ on this channel. The second parameter is the
16-bit user-id of the process that executed the open.

M _CLOSE the channet is closed. This message is generated when the last file
descriptor referencing a channe! is closed. The derach command (see
mpx (2) should be used in response to this message.

M _EOT indicates logical end of file on a channel. If the channe!l is joined to a
typewriter, EOT (control-d) will cause the M_EOT message under the
conditions specified in 71y{4) for end of file. [f the channel is attached 0
a process, M_EOT will be generated whenever the process writes zero
bytes on the channel.

M_UBLK s generated for a channel when the internal queues have drained below a
threshold.

M SIG is generated instead of a normal asynchronous signal on channels that are
joined to typewriters. The parameter is the signal number.

Two other messages may be generated by the kernel. As with other messages. the first 16-bit
quantity is the message code.

November 1979 Page | November 1979

MPXIO (5)

M_OPEN

M_IOCTL

CB—~UNIX 2.1 MPXIO (5)

is generated in conjunction with ‘listener’ mode (see mpx (2)). The uid of
the calling process follows the message code as with M_WATCH. This is
followed by a null-terminated string which is the name of the file being
opened.

is generated for a channel connected 10 a process when that process executes
the ioal fd, cmd, &vec) call on the channel file descriptor. The M_IOCTL
code is followed by the cmd argument given to ioal followed by the contents
of the structure vec. It is assumed, not needing a betier compromise at this
lime, that the length of vec is determined by sizeof Gtruct sgrtyb) as declared
in <ioctl.h> .

Two control messages are understood by the operating system. M_EOT may be sent through
an mpx file 10 a channel. It is equivalent 10 propagating a zero-length record through the chan-
nel; i.e. the channel is allowed to drain and the process or device at the other end receives a
zero-length transfer before data starts flowing through the channel again. M_IOCTL can also
be sent through a channel. The format is identical to that described above.

FILES

/usr/include/sys/ioctl.h
/usr/include/sys/mx.h

SEE ALSO

ioct](2). mpx(2), tty(4)

November 1979

Page 2 November 1979

MTAB(5) CB—UNIX 2.3 MTAB(S5)

NAME
mtab — mounted file system table

DESCRIPTION
Mtab resides in directory /etc and contains a table of devices mounted by the mount command.
Umount removes entries.
Each entry is an ASCII line saying what file system was mounted, where it was mounted, who
mounted it, at what time it was mounted, and whether the file system is restricted to read-only
access and/or whether set user/group ids will take place if something is executed from the
mounted file system.
This table is present only so people can look at it. It does not matter to mount if there are
duplicated entries nor to umount if a name cannot be found.

FILES
/etc/mtab

SEE ALSO
mount(1), umount(1)

March 13, 1981 Page 1 March 13, 1981

NAME

DESCRIFTION

From;

Toz
Newsgroups!
Article-I.0.
Subect:

Title:

osteds
Receivedl

Explirest

From:
Newsgroups
Title:
Article-I.0.3
Fosteds

NEWS (5

NEWS (S £

FExpires:
Received:

I A S i A R
DL OF &L LA

SEE ALSO

1R

wineEws L e

-~

NEWSRE C5)

NEWSRE (5]

NAME

Py

ad AR e e L d

oy b

options —s 3811 !fa.sf-lovers (fa.human—mnets -r

oy
Lt

options —c —-s deneral all.deneral fa.unix-wizards btl.splfe

generall 1-78:80:85-90
fa.info-cemi 1-7
net.newsd 1

. NAR(S) CB—UNIX 2.3 NAR(S)

NAME

nar — archive (library) file format

SYNOPSIS

#include <nar.h>

DESCRIPTION

The archive command nar is used to combine several files into one with printable ASCII format
headers. This command is provided for compatibility with UNIX 4.0 commands, and is not
compatible with the link-editor /d.

A file produced by nar has a magic string at the start, followed by the constituent files, each
preceded by a file header. The magic number and header layout as described in the include file
are:

/* @(#)nar.h3.1*/

#define ARMAG "!'<<arch>\n"

#define SARMAG 8

#define ARFMAG "\n"

struct ar_hdr {

char ar_name[16];
char ar_date[12];
char ar_uid[6];
char ar_gid[6];
char ar_mode[8];
char ar_size[10];
char ar_fmag[2];

8
The name is a blank-padded string. The ar_finag field contains ARFMAG to help verify the
presence of a header. The other fields are left-adjusted, blank-padded numbers. They are
decimal except for ar_mode, which is octal. The date is the modification date of the file at the
time of its insertion into the archive.

Each file begins on a even (0 mod 2) boundary; a new-line is inserted between files if neces-
sary. Nevertheless the size given reflects the actual size of the file exclusive of padding.

There is no provision for empty areas in an archive file.

The encoding of the header is portable across machines. If an archive contains printable files,
the archive itself is printable.

SEE ALSO

BUGS

arcv(1), nar(1), nm(1)

File names lose trailing blanks. Most software dealing with archives takes even an included
blank as a name terminator.

April 27, 1981 Page 1 April 27, 1981

PASSWD(5) CB—UNIX 2.1 PASSWD (5)

NAME
passwd — password file

DESCRIPTION
Passwd contains for each user the following information:

login name

encrypted password

numerical user ID

numerical group ID

GCOS job number, box number, priority, optional GCOS user-id
initial working directory

program to use as Shell

This is an ASCII file. Each field within each user’s entry is separated from the next by a colon.
The GCOS field is used only when communicating with that system, and in other installations
can contain any desired information. The priority is also included in this field as pri=x where x
is an integer corresponding to the initial shell priority(pri=0 is the default). Each user is
separated from the next by a new-line. If the password field is nuil, no password is demanded;
if the Shell field is null, /bin/sh is used.

This file resides in directory /etc. Because of the encrypted passwords, it can and does have
general read permission and can be used, for example, to map numerical user ID’s to names.

The encrypted password consists of 13 characters chosen from a 64 character alphabet (., /,
0—9, A—Z, a—z), except when the password is null in which case the encrypted password is
also null. Password aging is effected for a particular user if his encrypted password in the pass-
word file is followed by a comma and a non-null string of characters from the above alphabet.
(Such a string must be introduced in the first instance by the super-user.) The first character of
the age, M say, is not used on the CB-UNIX Release 2.0. (It is used on UNIX/TS to require
changing the password after a period of weeks.) The next character, m say, denotes the
minimum period in weeks which must expire before the password may be changed. The
remaining characiers define the week (counted from the beginning of 1970) when the password
was last changed. (A null string is equivalent to zero.) M and m have numerical values in the
range 0—63. If If m > M (signified e.g. by the string "./") only the super-user will be able to
change the password.

FILES
/etc/passwd

SEE ALSO
login (1), passwd (1), crypt (3C), getpwent (3C), group(5)

Page 1 November 1579

PLOT(5) CB—-UNIX 2.1 PLOT(5)

NAME

plot — graphics interface

DESCRIPTION

Files of this format are produced by routines described in plot(3X) and are interpreted for vari-
ous devices by commands described in plot(1G). A graphics file is a stream of plotting instruc-
tions. Each instruction consists of an ASCII letter usually followed by bytes of binary informa-
tion. The instructions are executed in order. A point is designated by four bytes representing
the x and y values; each value is a signed integer. - The last designated point in an 1, m, n, or p
instruction becomes the ‘‘current point’’ for the next instruction.

Each of the following descriptions begins with the name of the corresponding routine in
plot (3X).

m move: The next four bytes give a new current point.

n cont: Draw a line from the current point to the point given by the next four bytes. See
plot (1G).

p point: Plot the point given by the next four bytes.

1 line: Draw a line from the point given by the next four bytes to the point given by the fol-
lowing four bytes.

t label: Place the following ASCII string so that its first character falls on the current point.
The string is terminated by a new-line.

e erase: Start another frame of output.

linemod: Take the following string, up to a new-line, as the style for drawing further lines.
The styles are ‘‘dotted’, ‘‘solid’’, ‘longdashed”, ‘‘shortdashed’’, and ‘‘dotdashed”.
Effective only for the —T4014 and =—Tver options of plor(1G) (Tektronix 4014 terminal
and Versatec plotter).

s space: The next four bytes give the lower left corner of the plotting area; the following four
give the upper right comer. The plot will be magnified or reduced to fit the device as
closely as possible.

Space settings that exactly fill the plotting area with unity scaling appear below for devices sup-
ported by the filters of plor(1G). The upper limit is just outside the plotting area. In every case
the piotting area is taken to be square; points outside may be displayable on devices whose face
is not square.

Tektronix 4014 space(0, 3120, 0, 3120);
Versatec plotter space(0, 2048, 0, 2048);

DASI 300 space(0, 4096, 0, 4096);
DASI 450 space (0, 4096, 0,4096)
SEE ALSO

Page 1

plot(1G), plot(3X), graph (1G).

November 1979

POWERFAIL (5) CB—UNIX 2.1 POWERFAIL (5)

NAME
powerfail — commands to be executed following powerfail

DESCRIPTION
Following every powerfail sequence, the file /etc/pewerfail is read and executed as shell script.
Shell commands may be provided in this file to perform any user required functions at that
point.

The execution of /etc/powerfail is under the control of inir(1M).

FILES
/etc/powerfail

SEE ALSO
init(IM), signal(2), lines(5)

Page 1) November 1979

PRINTERS (5) CB—-UNIX 2.1 PRINTERS (5)

NAME
printers — defines printer options to /etc/lpd

DESCRIPTION
Printers defines for lpd the name, group, device, type, and speed of all legal priaters in the
spooling system. The file is similar to the lines file in format (i.e., colon separated fields). The
format is thus:

name:group:device[:type] [:speed]

Name is the name of the printer which may be from 1 to NAMSIZ characters long (defined in
Ipss.h). Group defines the group to which the printer belongs; it must be identical to the group
field in qmap for the queue to which the printer is assigned. Device is the location in the file
system where the printer lives (i.e., /dev/In32). Typeis one of a number of supported printer
types. The list currently is terminet, ds40, ti700 Ipl11, and versatec. Speed is the baud rate of the
printer, if applicable.

FILES
/usr/1pd/ .printers

Page 1 . November 1979

PROFILE (5) CB—-UNIX 2.1 PROFILE (5)

NAME
profile — setting up an environment at login time

DESCRIPTION
If a file named /etc/profile exists or if your login directory contains a file named .profile, the
shell commands in both files will be executed (via the shell's exec .profile) before your session
begins. These files are handy for setting up both common functions to be executed by all users
who log on (via /etc/profile commands) and commands to be executed on a individual basis (.
profile commands). The following example is typical (except for the comments):

: "Make some environment variables global’

export MAIL PATH TERM

: "Set file creation mask’

umask 22

: "Tell me when new mail comes in’

MAIL =/usr/mail/myname

: "Add my /bin directory to the shell search sequence’
PATH=38PATH:SHOME/bin

: 'Set terminal type’

echo "terminal: \c¢"

read TERM
case STERM in
300) stty cr2 nl0 tabs; tabs;;
300s) stty cr2 nl0 tabs; tabs:;
450) stty cr2 ni0 tabs; tabs;;
hp) stty cr0 ni0 tabs; tabs;;
7451735) stty crl nll —tabs; TERM=745;;
43) stty crl nl0 —tabs;;
4014)tek) stty crO nl0 —tabs ff1; TERM =4014; echo "\33;";;
*) echo "$STERM unknown";;
esac '

SEE ALSO
env(l), mail(1), sh(1), stty(1), environ(7)

FILES
/etc/profile
$(HOME)/ .profile

Page 1 November 1979

QMAP(5) CB—UNIX 2.1 QMAP(5)

NAME
gmap — queue to printers map

DESCRIPTION
Qmap contains information vital to the line printer spooling system. It is a file similar in format
to the fines file. Each line of the file indicates various data about one queue (in colon separated
fields). The format is thus:

name:group:bandef:pl[:p2]
Name is the name of the queue. Group is the group name to which the queue is assigned. If
this field is null or has a group id of ANYGID (defined in /usr/include/lpss.h), then users
from any group may use the queue. Bandefis a single letter (either ’q’, 'b’, °Q’, or 'B’) indi-
cating the following.

q -- normal queue, no banner
b -- normal queue, banner page before every job
Q -- default queue, no banner
B -- default queue, banner page before every job

A default queue may accessed from Ipr without specifying queue on the command line. Only
one default queue is permissable per group. p/ and the following optional fields specify the
name of a printer in the printers(5) file which is also assigned to this group. Several printers
may be specified, however no printer may be specified on more than one line.

FILES
/usr/lpd/.qmap

Page 1 November 1979

— e e e i e it e S et
— e —— —e e e e TR it et e

SCCSFILE (5) CB—-UNIX 2.1 SCCSFILE(3)

NAME
scesfile — format of SCCS file

DESCRIPTION
An SCCS file is an ASCII file. It consists of six logical parts: the checksum, ihe delta table (con-
tains information about each delta), user names (contains login names of users who may add
deltas), fbgs (contains definitions of internal keywords), comments (contains arbitrary descrip-
tive information about the file), and the body (contains the actual text lines intermixed with
control lines).

Throughout an SCCS file there are lines which begin with the ASCII SOH (start of heading)
character (octal 001). This character is hereafter referred to as ‘‘the control character’ and will
be represented graphically as ““@”’. Any line described below which is not depicted as begin-
ning with the control character is prevented from beginning with the control character.

Entries of the form “DDDDD" represent a five digit string (a number between 00000 and
99999).

Each logical part of an SCCS file is described in detail below.

Crecksum. The checksum is the first line of an SCCS file. The form of the line is:

@uDDDDD
The value of the checksum is the sum of all characters, except those of the first line. The
“@h’ provides a ‘‘magic number’’ of (octal) 064001.

Defta table. The delta table consists of a variable number of entries of the form:
@s DDDDD/DDDDD/DDDDD

@d <type> <SCCS ID> yr/mo/da hrimicse <pgmr> DDDDD DDDDD
@i DDDDD ...

@x DDDDD ...

@g DDDDD ...

@m <MR number>

. @c <comments> ...

. @e
The first line (@s) contains the number of lines inserted/deleted/unchanged respectively. The
second line (@d) contains the type of the delta (currently, normatl: *D’, and removed: ‘R’), the
SCCS ID of the delta, the date and time of creation of the defta, the login name corresponding

to the real user ID at the time the delta was created, and the serial numbers of the delta and its
predecessor, respectively.

The @i, @x, and @g lines contain the serial numbers of deltas included, excluded, and
ignored, respectively. These lines are optional.

The @m lines {(optional) each contain one MR number associated with the delta; the @c lines
{optional) contain comments associated with the delta.

The @e line ends the delta table entry.

User names. The login names of users who may add deltas to the file, separated by newlines.
The lines containing these login names are surrounded by the bracketing lines **@u’ and
“@U”. An empty list of user names allows anyone to make a delta.

HAags. Keywords used internally (see admin (1S) for more information on their use). Each flag
line takes the form:
@f <flag> < optional text>

November 1979 Page 1 November 1979

SCCSFILE (5) CB—UNIX 2.1 SCCSFILE (5)

The following flags are defined:
@ft <type of program>
@fv <program name>

@f i

@f b

@fm <module name> g
@ff <floor>

@f ¢ <ceiling>

@f d <default-sid>

@f n
The ‘1 flag defines the replacement for the %Y% identification keyword. The *‘v’" flag con-
trols prompting for MR numbers in addition to comments; if the optional text is present it
defines an MR number validity checking program. The ‘‘i"" flag controls the warning/error
aspect of the ‘““No id keywords’ message. When the ‘‘i"” flag is not present, this message is
only a warning: when the “‘i’" flag is present, this message will cause a ‘‘fatal” error (the file
will not be gotten, or the delta will not be made). When the “b” flag is present the — b
keyletter may be used on the ger command to cause a branch in the delta tree. The *‘m™ flag
defines the first choice for the replacement text of the %M% identification keyword. The *‘f’
flag defines the “‘floor’ release; the release below which no deitas may be added. The *‘¢”’ flag
defines the ‘“‘ceiling’’ release; the release above which no deitas may be added. The “*d™ flag
defines the default SID to be used when none is specified on a g&# command. The ‘‘n” flag
causes delta to insert a “‘null”’ delta (a delta that applies 70 changes) in those releases that are
skipped when a delta is made in a new rejease (e.g., when delta 5.1 is made after delta 2.7,
releases 3 and 4 are skipped). The absence of the ‘‘n’’ flag causes skipped releases to be com-
pletely empty.

Comments. Arbitrary text surrounded by the bracketing lines @t and “@T"". The comments
section typically will contain a description of the file’s purpose.

Body. The body consists of text lines and control lines. Text lines don’t begin with the control
character. control lines do. There are three kinds of control lines: insert, delere. and end,
represented by:

@I DDDDD
@D DDDDD
@E DDDDD
respectively. The digit string is the serial number corresponding to the deita for the control
line.
SEE ALSO

get(1S), delta(1S), admin(1S), prt(1S)
SCCSPWB User’'s Manual by L. E. Bonanni and A. L. Glasser.

November 1979 Page 2 November 1979

TP(5) | CB—-UNIX 2.1 TP (5)

NAME
tp — magnetic tape format

DESCRIPTION
The command p (1) dumps files to and extracts files from magtape. Block zero contains a copy
of a stand-alone bootstrap program.

Blocks | through 62 contain a directory of the tape. There are 496 entries in the directory: 8
entries per block; 64 bytes per entry. Each entry has the following format:

struct tpent |
char pathnam{32];

short uid;
char uid;
char gid;

char spare;
char size(;
. short size2;

long time;

short tapea; /= tape address =/
short unused[8];

short cksum; /» check sum =/

}

The path name entry is the path name of the file when put on the tape. If the pathname starts
with a zero word, the entry is empty. It is at most 32 bytes long and ends in a null byte.
Mode, uid, gid, size and time modified are the same as described under i-nodes (fs{3)). The
tape address is the tape block number of the start of the contents of the file. Every file starts
on a block boundary. The file occupies (size +3511)/512 blocks of continuous tape. The check-
sum entry has a value such that the sum of the 32 words of the directory entry is zero.

Blocks 63 on are available for file storage.
A fake entry has a size of zero. See p(1).

SEE ALSO
tp(1), fs(5)

Page 1 November 1979

- UTMP(5) CB—UNIX 2.3 UTMP(5)

NAME
utmp, wimp — utmp and wtmp entry formats

DESCRIPTION
These files, which hold user and accounting information for such commands as who(1),

wall(1), write(1), getry(1M), and login(1), have the following structure as defined by

<utmp.h>:
/* @(#)utmp.h 3.2 */
/® <sys/types.h> must be included. */
#define UTMP_FILE "/etc/utmp”
#define WTMP_FILE "/etc/wtmp”
struct utmp
{

char ut_user(8] ; /* User login name */

char ut_id[2] ; /* Jewc/lines id(usually line #) %/

char ut_line[12] ; /* device name (console, Inxx) */

short ut_pid ; /* process id */

struct exit_status

{
char e_termination ; /* Process termination status */
char e_exit ; /* Process exit status */
}
ut_exit ; /* The exit status of a process
* marked as DEAD_PROCESS.
*/
short ut_type ; /* type of entry */
time_t ut_time ; /* time entry was made */
I
/* Definitions for ut_type */
#define EMPTY 0
#define RUN_LVL 1
#define BOOT_TIME 2
#define OLD_TIME 3
#define NEW_TIME 4
#define INIT_PROCESS 5 /* Process spawned by "init" */
#define LOGIN_PROCESS 6 /* A "getty” process waiting for login */
#define USER_PROCESS 7 /* A user process */
#define DEAD_PROCESS 8
#define UTMAXTYPE DEAD_PROCESS /* Largest legal value of ut_type */
Vhs Special strings or formats used in the "ut_line" field when b/
Ve accounting for something other than a process. =
/* ** Note ** each message is such that is takes exactly 11 =/l
/* spaces + a null, so that it fills the "ut_line" array. =
#define RUNLVL_MSG "run_level_%c"
#define BOOT_MSG "system_boot"
#define OTIME_MSG "old_time "
#define NTIME_MSG "new_time
FILES

Jusr/include/utmp.h
/etc/utmp
/ete/wimp

July 25, 1980 Page 1 July 25, 1980

. UTMP(5) CB—UNIX 2.3 UTMP(S)

SEE ALSO
login(1), who(1), write(1), getut(3C)

July 25, 1980 Page 2 July 25, 1980

St

