AU(5L) SCCsS Aug 7 1978 AU(5L)

NAME
au - au or assembly unit file

DESCRIPTION
The au file is a compact packet of control information used to
accompany any preograms which are incorporated into an SCCS Gener-
ic. The information collected in an au file represents a pident.
The au file name is formed from a concatenation of the pident
name and the string, ".au". The au file is broken into five sec-
tions of the following names and functions:

#IDENTIFICATION
The IDENTIFICATION section contains identifying information
of the pident. See below.

#PROGRAM UNITS
The PROGRAM UNITS section contains the printable (i.e.
ascii) files associated with the pident. The entries in
this section are listed one per line with an opticnal title
following the file name separated by blanks or tabs. These
entries are picked up by the plistp command and printed.

#DATA
The DATA section contains nonprintable files associated with
the pident. The entries are listed one per line with an op-
tional title following the file name separated Dy tabs or
blanks. Patterns and libraries are typically listed in this
section.

#MAKE
The MAKE section contains information on how the pident's
source is made, i.e., compiled, assembled, loaded, archived,
etc., into an object module. This section consists of com-
mands that shell can execute.

#CCPY
The COPY section has shell commands which move the made ob-
ject module(s) to the final residing place on the produced
generic. Two commands, cpmv and move, have been written for
this purpose.

The ordering of the sections within the file is important to cer-
tain administrative programs and thus the above sequence is
recommended. The #IDENTIFICATION and #PROGRAM UNITS sections
must be part of every au file and ordered first and second,
respectively, within the file.

The IDENTIFICATION section is made up of subfields with the fol-
lowing names and functions:

NAME The name of the pident.
DoC The PR number the pident is associated with.
ISSUE The issue of the pident.

AU(5L) SCCS Aug 7 1978 AU(SL)

DATE The date the pident was last issued.
OWNER The programmer responsible for the pident (his
login id).

To assist the developer in the creation of the au file
a prompt procedure exists. To use it, the programmer
should perform the following UNIX commands:

chdir /pst/gadm/aumke
form au

The user will be prompted 8 times for the necessary information.
The user should be familiar with the program form before attempt-
ing this procedure.

FILES
SEE ALSO
cpmv(I), plistp(I), secprt(I), move(I)

CHLDATA(SL) SCCSs March 13, 1975 CHLDATA(5L)

NAME
chldata - Channel Data File

DESCRIPTION

The channel data file, chldata, describes certain informa-
tion about each channel on the SCCS. The file contains MAXCHL
fixed - size records, and it is intended that information be ex-
tracted from the file Dby reading the file into an array of
"CHL_B" structures, or by reading only a portion of the file into
one such structure. The subroutine idchl(III) will return the
information for a single channel.

All information in the file is in ascii; hence all elements are
defined to be character arrays. The file is initialized to con-
tain spaces in all elements, except the element "c_end", which is
initialized to contain the string 'x\n' (so the file may be
printed). It should be noted that all elements start on an even
byte boundary; this causes some elements to be longer than they
would have to be. 1In general, data is left - justified in each
element, and leading zeroes appear where necessary to insure the
required precision. Spaces are used to pad out unneeded charac-
ters in the elements c¢_name, C_act, c_gen, c_issue, and C_issno.

The element "c_act" is a special element; it is reserved for pos-
sible use by the recent change programs. It should be ignored by
all other programs.

The element "c_issno" is a conversion of the element "c_issue"
which allows the latter to always be represented as a number.
The conversion is performed by multiplying the numeric portion of
C_issue Dby decimal 10 and adding & number 1 through S to
represent the possible letter issues "a" through "i". 1If no
letter issue exists, nothing is added. For example, the following
c_issue elements convert to the following c_issno elements:

C_issue C_issno
01 010
05 050
10 100
10a 101

14c 143

' GEN_RNG(5L) SCCS Oct 15, 1980 GEN_RNG(5L)

NAME
gen_rng - Generic Range File

DESCRIPTION y
The generic range file, gen rng, resides in an appropriate
/type?? directory for each switching machine (SPCS) for which
any one of the following SCCS features are supported:

RC:BUILD

Scheduled Commen Analysis
Demand Common Analysis

3B Common Processor Features

The generic range file contains a number of entries that identify
one or more groups of routines to be executed for each of the
above features. Which group of routines should Dbe exXecuted 1is
determined by such things as the feature to be performed, the
feature function to be performed, and the series of SPCS generics
and issues that is pertinent to the office for which the request-
ed task is being performed.

Each generic range file entry has a fixed size and has the struc-
ture GEN_RNG, as defined in the header file, gen rng.h. All in-
formation in the entry is in ASCII; hence all elements are de-
fined as character strings. Each entry must be initialized to
contain blanks in all elements or unused portions of elements
that do not contain data. Data in an entry is left-justified in
each element.

The elements gr_fgen and gr_tgen specify the "from" and "to" gen-
eric ID's that are to be used for range checking. Gr_fgen speci-
fies the lower bound and must always contain either an entire
generic ID or the first few digits of the generic ID that identi-
fy the generic base. Gr_tgen specifies the upper bound and may
contain an entire generic ID or the first few digits of the gen-
eric ID that identify the generic base. Gr_tgen may also contain
a '-' to indicate that all generic ID's that are greater than or
equal to gr_fgen are to be accepted. Note that if the wvalue
specified for gr_fgen contains only a generic base, then the
value for gr_tgen must also contain only a generic base or a '-'.

The elements gr_fiss and gr_tiss specify the "from" and "to"
abstract issue numbers that are to be used for range checking.
These elements normally contain the value '-' except when it be-
comes necessary to perform range checking on an issue basis rath-
er than on a generic basis. In such cases, the element gr_fiss
identifies the "from" abstract issue number that specifies the
lower bound for the range checking and the element gr_tiss iden-
tifies the "to"™ abstract issue number that specifies the upper
bound. A '-' entry for gr_tiss means that all abstract issue
numpers for the indicated generic ID that are "greater than or
equal to" gr_fiss are to be accepted.

(RS

GEN_RNG(5L)

If it b
basis
must be

1.

2.

The fol

Thi
pre
rou

SCCs Oct 15, 1980 GEN_RNG(5L)

ecomes necessary to perform range checking on an issue
for a certain feature and function, the following steps
followed:

New entries must be inserted into the generic range file
for the affected feature, function, and generic ID.
These new entries must specify the appropriate range of
abstract issue numbers that are served by the routines
specified in the generic range file entry.

Be certain to remove old entries, that pertain to the af-
fected feature and function, from the generic range file.

lowing is a listing of the gen rng.g header file.

s header file defines the structure for the "gen_rng" file
sently used by RC:BUILD and COMMON ANALYSIS distributor
tines to determine which routines must be executed to per-

form the desired functions. The programs to be executed are

det
*/

/*
=/

Def

#define

/*
x/
#define

#define
#define

Def

/*
x/

#define
#define
#define
#define
#define
#define
#define

Def

ermined by the office generic and issue.

ine the name of the generic range file.

GEN_RNG_FIL "gen_rng"

ine supported features.

GR_RCBLD “rcb" /* RC:BUILD =/

GR_SCA "sca" /* Scheduled COMMON ANALYSIS Routines x/
GR_DCA "gca" /* Demand COMMON ANALYSIS Routines */
ine supported functions for the above features.

GR_SPA "spa" /* SPA - Switched Path Analysis =/
GR_ECA "eca" /* ECA - External Circuit Analysis =/
GR_TRK SRR /* TRK - TRK Analysis =/

GR_NCA "nca" /* NCA - Network Controller Analysis =/
GR_SDA "sda" /* SDA - Signal Distributor Analysis x/
GR_PPA "ppa" /* PPA - Pulse Path Analysis =*/

GR_AHA "aha" /* AHA - Audit History Analysis x/

GEN_RNG(5L) SCCs Oct 15, 1980 GEN_RNG(5L)

/*
*/

#define GRR_ERR -1 /*

Define return codes for library subroutine, GEN_RNG().

An error has been detected.
x/

#define GRR_ENF O /*

The requested record has not been
found in the generic range file.

x/
/=
*/

#define DONT_CARE '-'

Define "open bound" or "don't care" indicator.

/*
x/

#define GR_ENDSEQ "=*0

Specify ending sequence and size of each structure element.

#define GR_FEATSZ
#define GR_FUNCSZ
#define GR_GENSZ
#define GR_ISSNOSZ
#define GR_MXPGM
#define GR_MXNAMSZ
#define GR_ENDSZ

2

N B OV OV

/* Define a union for a record in the GEN_RNG_FIL file =/

union GR_REC

{
char =gr_recptr; /* Pointer to start of record =/
struct GEN_RNG *gr_rec; /* Pointer to generic range record */
};
/=
Define the structure of a "generic range" record.
*/
struct GEN_RNG
{

GEN_RNG(5L)

char

char

char

char

char

char

char

char

iy

SCCS Oct 15, 1980

gr_feat[GR_FEATSZ];
/*

GEN_RNG(5L)

Feature to which record applies. See

Note 1.
*/

gr_func{GR_FUNCSZ];
/x

Identifies which function of the
feature is to be performed. See

Note 2.
x/

gr_fgen[GR_GENSZ];
/*

Identifies the "from" generic ID
(eg 10, 100, 101). See Note 3.

*/

gr_fiSS[GR_ISSNOSZ};
/*

If needed, identifies the "from"
abstract issue number (eg -, 010, 081,

101). See Note 4.

*/
gr_tgen{GR_GENSZ];
/*
Identifies the "to" generic ID
(eg -, 10, 100, 101). See Note 3.
*/
gr_tiss[GR_ISSNCSZ];
/*
If needed, identifies the "to"
abstract issue number (eg -, 010, 081,
101). See Note 4.
x/
gr_pgms[GR_MXPGM][GR_MXNAMSZ];
/*

A list of up to GR_MXPGM routine names

that are to be executed.
and 6.
=/

gr_end[GR_ENDSZ];
/*

*/

Receord ending sequence.

LY

See Notes 5

GEN_RNG(5L)

/*

*/

sccs Oct 15, 1980 GEN_RNG(5L)

Declare the value returned by the subroutine, gen_rng().

char =gen_rng();

/*

Notes:

1.

Supported features are defined near the beginning of
this file.

Supported functions are defined near the beginning of
this file.

The elements gr_ fgen and gr_tgen specify the "from" and
"to" generic ID's that are to be used for range checking.
Gr_fgen specifies the lower bound and must always contain
either an entire generic ID or the first few digits of the
generic ID that identify the generic base. Gr_tgen speci-
fies the upper bound and may contain a '-' to indicate an
open upper bound or may contain an entire generic ID cor
the first few digits of the generic ID that identify the
generic base. If the value specified for gr_fgen con-
tains only a generic base, then the value for gr_tgen

must also contain only a generic pase or a '-'. The

value specified for either of these elements must be
left-justified in the appropriate field and padded on

the right with blanks.

The elements gr_fiss and gr_tiss specify the "from" and
"to" abstract issue numbers that are to be used for range
checking. These elements should contain the value '-'
except when it becomes necessary to perform range checking
on an issue basis rather than just on a generic basis.

When it does become necessary to perform range checking on
an issue basis, the element gr fiss must contain the "from"
abstract issue number (abstract issue numbers are defined
in the header file, chldata.h) which specifies the lower
bound for the range checking. The element gr_tiss must
contain the "to" abstract issue number which specifies the
upper bound for the range checking. Gr_tiss may contain
the value '-' as an indication that all abstract issue
numbers greater than or equal to gr_fiss are to be accepted.
The value specified for either of these elements must be
left-justified in the apprepriate field and padded on the
right with blanks.

Routine names should be of the form:

aaattbbbbbs

GEN_RNG(5L)

SCCs Oct 15, 1980 GEN_RNG(5L)

where
aaa contains two or three characters that identify
the feature to be performed, such as "rcb" for
RC:BUILD and "sca" or "sa" for SCHEDULED ANALYSIS.

tt is the office type, such as 01 for No. 1 ESS.

bbbbb contains up to five characters that identify
which major phase of the feature is to be
performed by this routine, such as v"gwrf" for
SPA reformatting.

S is a sequence or series code; eg. 'a’, ‘b, etc.,
that distinguishes this routine from other routines
performing a similiar function for other groups or
series of generics and issues.

The program name must be left-justified in the appropriate
field, ie. no leading blanks, and all unused characters to the
right of the routine name must be filled with blanks.

If less than GR_MXPGM routines are required for this feature,
then all unused elements of the array, gr_pgms, must Dbe filled
with GR_MXNAMSZ blanks. The elements of this array that are
needed for each of the supported features, however, must be
filled as follows:

FEATURE GR_PGM[O] GR_PGM[l] GR_PGM[Z] GR_PGM[3]
rcb RCB Main Unused Unused Unused
sca Analysis Reformatting Pre-Analysis Unused

Phase Phase Phase
dca Analysis Reformatting Pre-Analysis Unused
Phase Phase Phase
=/
FILES
/type??/gen_rng Data File

/usr/include/gen_rng.h

Header File

GU(5L) SCCs Aug 7 1978 GU(5L)

NAME
gufile - Generic Unit File for Generic Source

DESCRIPTION
The gu file is a control file to be used to reference dgeneric
source for generic makes and printing of PR listings.

A gu file defines & version of a PR. 1Its resident directory is
the PR directory with which it is associated. The gu file con-
tains the PR number together with its version number and a col-
lection o©f pident names. It is this collection of pidents which
defines the version of the PR.

The format ¢of a gu file is as follows:

Format Example
#PR #PR
<PR number> <title> PR-1P137-02 Administrative PR
#OWNER #OWNER
<PR administrator> jse
#INITIAL PIDENTS #INITIAL PIDENTS
<pident name> ADMINLIBOZ2
<pident name>
#PIDENTS #PIDENTS
<pident name> MAKEQ2
<pident name> SYSGENO1
TAPEGENQC?2
#FINAL PIDENTS #FINAL PIDENTS
<pident name> TRANSFORMOZ2

The section names, starting with a pound sign (#), begins in
column 1.

The INITIAL PIDENTS section contains zero or more pidents (not au
files), one per line. During a make of the PR, the pidents
specified here will be made in the order that they are listed and
before any of those in the PIDENTS section. For example, a local
library of subroutines used by other pidents within the PR would
be listed in the INITIAL PIDENTS section. The pidents listed
here are those which should be made before any subset of those
made in the PIDENTS section.

The PIDENTS section contains zero or more pidents (not au files),
cne per line. These pidents will be made after those in the INI-
TIAL PIDENTS section. The pidents listed here should be indepen-
dent of the order in which they are made.

The FINAL PIDENTS section contains zero or more pidents, one per

line. The pidents listed here are made after the INITIAL PIDENTS
and PIDENTS sections.

GU(5L

FILES

) sccs Aug 7 1978 GU(5L)

The name of the gu file is a concatenation of the PR numbers with
the version number and the string ".gu", eg., PR-1P137-02.gu.

The gu file is the responsiblity of the PR administrator who must
oversee all changes to the file including the original creation
of the file.

To assist the PR administrator in the creation of the gu file a
prompt procedure exists. To use it, the PR administrator should
perform the following UNIX commands:

chdir /pst/jse/aumke
form gu

The user will be prompted four times for the necessary informa-
tion. The user should be familiar with the program form before
attempting this procedure.

The gu file is a source file to be maintained like one, ie., a
new or changed gu file is placed on genupd with CU's and DU's.

SEE ALSO

form(I) au(Vv)

ISSUE(SL) sces Aug 28, 1979 ISSUE(5L)

NAME
issue - Issue File

DESCRIPTION
The issue file, issue, resides in an appropriate /type?? direc-
tory for each switching machine (SPCS) that the SCCS supports.
This file contains information for each SPCS generic and issue
that is supported.

The issue file contains one or more generic-issue messages. Each
generic-issue message begins with a message delimiting character
whose present value is defined in the header file, issfil.h. Ba-
sically, @& generic-issue message lists all of the SPCS issues
that are officially supported for a specific SPCS genreric. Thus,
each generic-issue message consists of one generic record fol-
lowed by one or more issue records that are supported for this
generic.

All generic records are fixed size and have the structure
IF_GENREC, as defined in the header file, issfil.h. All informa-
tion in a generic record is in ASCII; hence all elements are de-
fined as character strings. Each generic record must be initial-
ized to contain blanks in all elements or unused portions of ele~-
ments that do not contain data. In general, data in a generic
record is left-justified in each element and leading 2zeroes ap-
pear where necessary, such as the generic ID, to insure the re-
quired precision.

All issue records are fixed size and have the structure
IF_ISSREC, as defined in the header file, issfil.h. All informa-
tion in an issue record is in ASCII; hence all elements are de-
fined as character strings. Each issue record must be initial-
ized to contain blanks in all elements or unused portions of ele-
ments that do not contain data. In general, data in an issue
record is left-justified in each element.

The following is a listing of the issfil.h header file.

/*
Header file to define the layout of the issue file that resides
in the appropriate /type?? directory.

x/

/* Define name of issue file. =/

#define ISS_FIL "issue"

/*

Define valid return codes for the

ISSUE(5L) SCCs Aug 28, 1979 ISSUE(5L)

library subroutine GEN_LIST().

*/
#define GLR_NME O /* No more entries exist =/
#define GLR_ERR -1 /* Error detected =/
V4
Define valid function codes and return codes for the
library subroutine GEN_NAME().
*/
#define GNF_GNAM O /* Extract generic name x/
#define GNF_SLANG 1 /* Extract generic slang name =/
#define GNR_EF 1 /* Entry found =/
#define GNR_ENF O /* Requested entry does not exist x/
#define GNR_ERR -1 /* Error detected */
/*
Define valid function codes and return codes for the
library subroutine GET_GEN().
*/
#define GGF_GNAM O /*
Use generic name as the generic
search key.
*/
#define GGF_SLANG 1 /*
Use generic slang name as the
generic search key.
*/
#define GGF_GID 2 /=
Use generic ID as the generic
search key.
*/
#define GGR_ENF O /* Requested entry not found =/
#define GGR_ERR -1 /= Error detected =*/
/*
Define valid return code for the
library subroutine GET_ISS().
x/
#define GIR_ENF O /* Requested entry not found =/

ISSUE(5L) SCCs Aug 28, 1978 ISSUE(5L)

/*
Define valid return code for the
library subroutine ISS_LIST().
=/

#define ILR_NME 0 /* No more entries exist =/

/=

Declare types of values returned by library subroutines.
x/
char xgen_list();
char *get_gen(
char =get_iss(
char #*iss_list

N S N

-
’

/* Define array sizes for structures IF_GENREC and IF_ISSREC

*
~

#define IF_ENDSZ 2
#define IF GFILLSZ 2
#define IF_GNAMSZ 12
#define IF SLGSZ 8
#define IF_GIDSZ 6
#define IF IFILLSZ 6
#define IF INAMSZ 8
#define IF_IOPSYSZ 8

/* Define ending sequence for each entry in the ISS_FIL file */

#define IF_ENDSEQ "=0Q

/*
Define generic-issue message delimiter; this is
used by the GTMSG subroutine to extract generic-
issue messages from an "issue" file. A generic-
issue message consists of one generic record fol-
lowed by one or more issue records that are
associated with the generic record.

=/

#define IF_GIMSG_DLM 03 /* Generic-issue message delimiter =/

/* Define a union for an entry in the ISS_FIL file =/

unicn IF _REC

ISSUE(5L) SCCs Aug 28, 1979 ISSUE(5L)
{
char *if recptr; /* Pointer to start of record =/
struct IF_GENREC =*if genrec; /* Pointer to generic record %/
struct IF_ISSREC =*if_issrec; /* Pointer to issue record =/
bi

/* Define structure of a generic entry in the ISS_FIL file #/

struct IF_GENREC

{
char
char
char
char
char
t;

if_gfill[IF_GFILLSZ];
/*
Record type and white space.
See Note 1.
x/

if_gnam[IF_GNAMSZ];
/*
Generic name, see Note 2.

x/

if _gslang[IF_SLGSZ];
/*
Generic slang name, see Note 3.

=/

if_gid[IF_GIDSZ];
/x
Generic ID, see Note 4.

*/

if_gend[IF_ENDSZ];
/*
End sequence.

*/

/* Define structure of an issue entry in the ISS FIL file */

struct IF_ISSREC

{

char

char

if_ifill[IF_IFILLSZ];
/*
Record type and white space.
See Note 1.

*/

if_inam[IF_INAMSZ];
/*

ISSUE(5L) SCCS Aug 28, 197S ISSUE(5L)

Issue and peoint-issue name, see
Note 5.
74

char if_iopsys({IF_IOPSYSZ];
/*
Operating system generic issue and
point-issue, see Note 6.
*x/
char if_iend[IF_ENDSZ];
/*
End seguence.
=/
i

/* Define array sizes for structure GEN_ID (generic ID) =/
#define GID_BASESZ 2

#define GID_INFOSZ 4

/* Define structure of generic ID field =/

struct GEN_ID

{
char gid base[GID_BASESZ]; /* Generic base - see Note 4. =/
char gid_info[GID_INFOSZ];
/*
Generic information - see
Note 4.
=/
i
/*
NOTES:

The £ill field contains the generic-issue message delimiter
and/or white space. This white space must contain only
blank characters (040); tabs are not permitted. This
requirement exists so that all entries of the same record
type will be fixed length records.

[

The fill field for a generic record contains the generic-
issue message delimiter, which is a single-character code
that must be left-justified in the fill field. The value

cf this message delimiter is defined elsewhere in this
neader file. The remainder of the fill field must be padded
on the right with blanks.

ISSUE(5L) SCCS Aug 28, 1979 ISSUE(5L)

The fill field for an issue record contains the specified
number of blanks.

2. The generic name is the official generic name that has
been assigned by the appropriate SPCS development group;
this name is not necessarily the PG number. For example,
in ESS1A the official name for a generic might be 1AE(C2B4),
while in ESS101 the official name might be PG-1H002. The
generic name must be left-justified in this field and padded
on the right with blanks.

3. The generic slang name is an abbreviated name that is some-—
times used in place of the official generic name. Examples
are 1E3, 1AE4, etc. The generic slang name, if needed, must
be left-justified in this field and padded on the right with
planks. If the slang name is not needed, then this field
must be filled with IF_SLGSZ Dblanks.

4, The generic ID is a two-to-five digit decimal number that
uniquely identifies a particular SPCS generic. The format
of a generic ID is

bb(xyz]

where bb is a two-digit decimal number that identifies a
generic base. Examples are:

11 for ESS1, generic le3
12 for ESS1, generic le4

XyZ 1s an optional one-to~three digit decimal number
that provides additional information that is needed
for some SPCS types to uniquely identify a specific
generic. Examples are:

ESS1:

XyZ is a single-digit decimal number that iden-

tifies the central processor configuration. A
— value of 0 identifies those systems that have
only a CC; whereas, a value of 1 identifies
those systems that have both a CC and a SP.
Thus, the generic ID for a le3 system having
only a CC is 110 and the generic ID for a le4
system having both a CC and a SP is 121.

EPSCS, E911, TN, VSS:
XyZ is a three-digit number that identifies the
generic issue and point issue of the operating
system that is used in the auxiliary processor.

5. The issue name contains the official issue and point issue
that have been assigned by the appropriate development
group. Examples are 3.1, 6a.3, and 10c.l1l4, where all

ISSUE(5L)

FILES

*/

SCCs Aug 28, 197S ISSUE(5L)

characters to the left of the "." identify the issue and
those characters to the right of the "." identify the
point issue. The issue name must be left-justified in
this field and padded on the right with blanks.

The operating system generic issue and pcint-issue

are primarily used for the Auxillary Processor systems
that the SCCS supports. It identifies which issue and
point-issue of the auxillary processor operating system
is being used for the application, such as TN, ES11, and
VSs.

/type??/issue Data File
/usr/include/issfil.n Header File

~1

OPARM(5L) SCCs Mar 14 1975 OPARM(5L)

oparm - Office Parameter File

DESCRIPTION

The oparm file in each office directory describes information
pertaining to that office. The layout of the oparm file is
identical to that of the chldata(V) file with the exception that
the "c_name" element contains the "office.channel" name in the
chldata file, but only the office name in the oparm file.

<office directory>/oparm /compool/chldata.h

SEE ALSO

chldata(Vv)

PASSWD:0(5L) SCCS Jul 16 1976 PASSWD:0O(5L)

NAME
passwéd - password file

DESCRIPTION
Passwd contains for each user the following information: -

name (login name, contains no upper case)
encrypted password

numerical user ID

numerical group ID

initial working directory

program to use as Shell

This is an ASCII file. Each field within each user's entry is
separated from the next by a colon. The job and box numbers are
separated by a comma. Each user is separated from the next by a
new-line. If the password field is null, no password is demand-
ed; if the Shell field is null, the Shell itself is used.

This file resides in directory /etc. Because of the encrypted
passwords, it can and does have general read permission and can
be used, for example, to map numerical user ID's to names.

SEE ALSO
login(1), crypt(3), passwd(l)

PATTERN(5L) SCCS Septemper 5, 1973 PATTERN(5L)

NAME
<patname>.p or <patname>.0 - common pattern package pattern file

DESCRIPTION
The compiler creates a pattern in one of the following formats:

Standard Form: This form is found in <patname>.p files
created by the compiler. The pattern contains a header,
variablie argument information, a pattern and a copy of the
definition used to create the pattern (source part). The
header contains information as described in the <ppsubs.h>
header file. The variable argument information is present
only if the pattern is a variable pattern. This information
is used Dby Egmkgat(g&) when ever the pattern is used. The
source part allows standard format patterns to be verified
with source output.

Object Form: This form is found in <patname>.0 files creat-
ed by the compiler. The pattern contains a header, a pat-
tern, a relocation map and symbol table. The header con-
tains information as described in the <ppsubs.h> header file
which also corresponds to the header of an a.out(5) file.
This together with the relocation map and symbol table al-
lows the pattern to be loaded into a program by
1d(1) or cc(l) in the same manner as a .o (object) file.

Any time a program other than the compiler makes or modifies a
pattern, the pattern is considered to be a "modified form" pat-
tern. Modified form patterns require special information not
provided in this document before they can be used.

SEE ALSO
ppdpat(1L), ppmkpat(1iL), ppvpat(iL), 1d(1), strip(1), cc(1),
a.out(5) ppgetpat(3L), ppsccsgp(3L)

PIDENTLIST(5L) SCCs Dec 4 1975 PIDENTLIST(5L)

NAME

pidentlist -~ List of pidents of a generic

DESCRIPTION

FILES

This file is associated with a pr document and contains, for a
specific generic calling out the pr document, the list of pidents
associated with the generic.

The file is actually a shell file used in making a generic. The
first 1line contains "$1 $2 $3 $4 $5 $6 \". Each succeeding line
has a pident's au file name followed by a backslash (\). The
last 1line is a blank line. The format of the file is fixed by
the pgupd (VIII) program, which ignores the first line and reads
the succeeding lines, ignoring blank lines. The list of au file
must be in alphabetical corder for pgupd.

For example,
$1 $2 $3 %4 $5 $6 \
OPTRBL.au \
RCTRBL.au \
TRBLDATA.au \

pgupd(VIII)

SEE ALSO

PR(5L) SCCS Mar 23 1979 PR(5L)
NAME

PR - PR and PA documents for SCCS Generics
DESCRIPTION

The numbers 1P130-1P209, 5P100-5P101, 5P103-5P152, and 5P300-

5P339 are assigned to the No. 2 SCCS project for PG, PR, PD etc.
assignments.

Common PR and PA Documents
(1P130 - 1P194)

Gen 2/3 Doc. Gen 4 Doc.40/70 Gen 5 Doc.40/70

Gen 6 Doc.

PA-1P131-01

PR-1P131-02
Adminstrative
PR-1P132-02

PA-1P135-01
PR-1P131-03/04

PR-1P132-03/04

Emergency Change

PR-1P133-02
Common Programs
PR-1P134-01
PR-1P135-01
PR-1P136-01
PR-1P137-01

PR-1P133-03

PR-1P134-02/03
PR-1P135-02

v o o o e it e et

PR-1P137-02/03

PA-1P135-01
PR-1P131-03/04
PR-1P132-03/04
PR-1P133-03

PR-1P134-02/03
PR-1P135-02

PR-1P137-04/05

PR-1P138-01 PR-1P138-02 PR~-1P138-02
Installation and
PR-1P139-01 PR-1P139-02 PR-1P139-03

Common Patterns

PR-1P140-01/02
PR-1P141-01

PR-1P140-03/04
PR-1P141-01

Miscellaneous

PR-1P154-02 PR-1P154-03 PR~1P154-03
PR-1P155-02 PR-1P155-03/04 PR-1P155-03/04
PR-1P156-02 PR-1P156-03 PR-1P156-03
PR-1P157-02 PR-1P157-02 PR-1P157-02
----------- PR-1P158-01 PR-1P158-01
PR-1P162-02 PR-1P162-03 PR-1P162-03
Tape Handling

PR-1P163-02 PR-1P163-03/04 PR-1P163-03/04
PR-1P164-02 PR-1P164-03 PR-1P164-03
PR-1P165-02 PR-1P165-03 PR-1P165-03
PR-1P166-02 PR-1P166~03 PR-1P166-03
Report Generator

PR-1P170-02 PR-1P170-03 PR-1P170-03
Alerter Programs,

PR-1P171-01 PR-1P171-02 PR-1P171-02
PR-1P172-02 PR-1P172-03 PR-1P172-03
Command Inter-

PR-1P173-01 PR~-1P173-02/03 PR-1P173-02/03

Master Distribut-

PR-1P174-01

PR-1P174-02

PR-1P174-02

PR(5L) SCCS Mar 23 1979 PR(5L)

Measurement Pro-

PR-1P175-01 PR-1P175~02/03 PR-1P175-02/03
Schedule Process-—

PR-1P178-01 PR-1P178-02 PR-1P178-02
Trouble Reporting

PR-1P17S-01 PR-1P1795-01 PR-1P178-01
TTY Data Base

PR-1P180-01 PR-1P180-02 PR-1P180~-02
TRUMP - Trunk

- e PR-1P181-01

ESS 1 Application Programs
(1P195 thru 1P202)

PA-1P195-~01 PA-1P199-01 PA-1P199-01
ESS 1 Analysis

PR-1P195-01 PR-1P195=-02 PR-1P185-02
ESS 1 Build & Con-

PR-1P1396-01 PR-1P186-02 PR-1P19€~-02
ESS 1 Expansion

PR-1P197-01 PR-1P197-02 PR-1P197-02
PR-1P1398-01 PR-1P198~01 PR-1P1388~01
ESS 1 Data Base

PR-1P199-01 PR-1P199~02 PR-~1P189~02

ESS 101 Application Programs
(5P060, 5P100 thru 5P107 for ESS 101)
(PR-5P102 replaced by PR-5P105)

Gen 2/3 Doc. Gen 4 Doc.40/70 Gen 5 Doc.40/70
PA-5P060-01 PA-5P100-01 PA-5P100-01
ESS 101 Analysis

PR-5P100-01 PR-5P100-02 PR-5P100-02
ESS 101 Build &

PR-5P101=-01 PR-5P101~-02 PR~-5P101-02
PR-5P103-01 PR-5P103-02 PR-5P103-02
ESS 101 Data Base

PR-5P104~-01 PR-5P104~-02 PR~-5P104-02
ESS 101 Expansion

PR-5P105-01 PR-5P105-02 PR-5P105-02

ESS 2 Application Programs
(5P108 thru 5P114 for ESS2)

Gen 3 Doc. Gen 4 Doc.40/70 Gen 4 Doc.40/70
PA-1P186-01 PA-5P108-01 PA-5P108-01

ESS 2 Analysis

——————————— PR~-5P108-01 PR=5P108-01

B

PR(5L) SCCs Mar 23 1979
ESS 2 Build and
PR-5P10S-01 PR-5P109-02 PR-5P10S~-02
ESS 2 Expansion
PR-5P110~01 PR-5P110-02 PR-5P110-02
PR-5P111-01 PR-5P111-01 PR-5P111-01

ESS 2 Data Base

PR-5P112-01

Gen 2/3 Doc.

PR-5P112-02

TSPS Application Programs
(5P070, 5P115 thru 5P123 for TSPS)

Gen 4 Doc.40/70

PA-5P070~-01

TSPS Analysis

PR-5P115-01

PA-5P115-01

PR-5P115-02

TSPS Buils & Con-

PR-5P116-01
PR-5P117-01

TSPS Expansion

PR-5P118-01
PR-5P119-01

TSPS Data Base

PR-5P120-01

PR-5P116-02
PR-5P117-02

PR-5P118-02
PR-5P119-02

PR-5P120-02

PR-5P112-02

Gen 5 Doc. 40/70

PA-5P115-01

PR-5P115~02

PR-5P116-02
PR-5P117-02

PR-5P118-02
PR-5P119-02

PR-5P120-02

xincludes thresholding programs

Gen 3 Doc.

PA-1P197-01

ESS 2B Analysis

ESS 2B Appllcatlon Programs
(5P124 thru 5P130 for ESS2B)
Gen 5 Doc.40/70

Gen 4 Doc. 40/70

PA-5P124-01

PR~5P124-01

ESS 2B Build and

PR-5P125-01

PR-5P125-02

ESS 2B Expansion

PR-5P126-01
PR-5P127-01

PR-5P126-02
PR-5P127-01

ESS 2B Data Base

PR-5P128-01

Gen 3 Doc.

PR-1P198-01

PR-5P128~-02

ESS 3 Application Programs
(5P131 thru 5P137 for ESS3)

Gen 4 Doc. 40/70

PA-5P131-01

PA-5P124-01

PR-5P124-01

PR-5P125-02

PR-5P126-02
PR-5P127-01

PR-5P128-02

Gen 5 Doc. 40/70

PA-5P131-01

PR(5L)

PR(5L) Sccs

ESS 3 Build and

Mar 23 1979

PR-5P132-01 PR-5P132-01 PR-5P132-01
ESS 3 Expansion
PR-5P133-01 PR-5P133-01 PR-5P133~-01
PR-5P134~01 PR-5P134-02 PR~5P134~02
ESS 3 Data Base
PR-5P135-01 PR-5P135-02 PR~-5P135-02

AMARS Application Programs
(5P138 thru 5P144 for AMARS)

Gen 2/3 Doc. Gen 4 Doc.40/70

AMARS Data Base
PR-5P138~01
PR-5P139—-01

PA-5P138-01 PA-5P138-01

PR-5P138~02
PR-5p139-02

RRE SRS IS0
PR-5P139-02

ESS 1A Application Programs
(5P145 thru 5P151 for ESS 1A)

Gen 2/3 Doc. Gen 4 Doc.40/70

----------- PA-5P145-01 PA-5P145-01
ESS 1A Analysis

——————————— PR-5P145-01 PR-5P145-02
ESS 1A Build and

----------- PR-5P146-01 PR-5P146-01
ESS 1A Expansion

——————————— PR-5P147-01 PR-5P147-01
——————————— PR-5P148-01 PR-5P148~01
ESS 1A Data Base

----------- PR-5P149-01 PR~5P149-01
ESS 1A Display

——————————— PR-5P150-01 PR-5P150-01

ESS 4 Application Programs
(1P203 thru 1P209 for ESS 4)

Gen 2/3 Doc. Gen 4 Doc.40/70 Gen 5 Doc.40/70

L T T —— B kLT e —

PA-1P203-01

ESS 4 Build and

ESS 4 EXpansion

PR-1P203~-01 PR-1P203-01

PR-1P204-01 PR-1P204-01

PR-1P205-01
PR-1P206-01

PR-1P205-01
PR-1P206-01

PR(5L)

PR(5L)

ESS 4 Data Base

SCCS

PR-1P207-01

Ess4 and 1A Common

Gen 2/3 Doc.

PR-1P208-01

TN Application Program
(5P300~5P305)

Gen 4 Doc.40/70

TN Build and

TN Data Base Pgms

PDSP (EPSCS/E911) Application Program
(EPSCS typell) (E911 typel5s)

(5P3

Gen 2/3 Doc.

06-5P311)

Gen 4 Doc.40/70

e s o e e e i e it

PDSP Build and

PDSP Expansion

PDSP Data Base

Gen 2/3 Doc.

VSS Application Program
(5P312-5P317)

Gen 4 Doc. 40/70

—_— ———

VSS Build and

VSS Expansion

VSS Data Base

Mar 23 1879

PR-1P207-01

PR-1P208-02

Gen 5 Doc. 40/70

PA-5P300-01
PR-5P300-01

PR-5P301-01
PR-5P302-01
PR-5P303-01

PR-5P304-01

Gen 5 Doc. 40/70

PA-5P306-01
PA-5P307-01
PR-5P306-01
PR-5P307-01

PR-5P308-01
PR-5P30S-01

PR-5P310~-01

Gen 5 Doc. 40/70

PA-5P312-01
PR-5P312-01

PR-5P313-01

PR-5P314-01
PR-5P315-01

PR-5P316-01

(typelO)

(typel2)

PR(5L)

PR(5L) sSccs Mar 23 1979 PR(5L)

ACS Application Program
(5P318-5P323)

Gen 4 Doc.40/70

e e e e e o e e e

ACS Expansion

ACS Data Base

(typel3)

PA-5P318-01
PR-5P318-01

PR-5P319-01

PR-5P320-01
RAR=E1DE 20,01

EREDEE RSO

AIS Application Program

(5P324-5P329)

Gen 4 Doc.40/70

B

AIS Build and

s ot s . v s e e e

AIS Expansion

e o s e e e

AIS Data Base

Gen 2/3 Doc.

(typel4d)

PA-5P324-01
PR-5P324-01

PR-5P325-01

PR-5P326-01
PR-5P327-01

PR-5P328-01

EOS Application Program

Gen 4 Doc.40/70

PA Manual
EOS Build and

o e e e

v . v e e s s

(5P330-~5P334)

PR-5P330-01

BRESESBHIE Gl
PR-5P332-01

EIR=ERE S P00

SCCS Application Program
(5P335-5P33S) (type 00)

PR(5L)

SCCS Data Base

SCCs

Mar 23 1979

PR-5P335-01
PR-5P336-01
PR-5P337-01
PR-5P338-01
PR-5P33S5-01

PR(5L)

The following pr documents are for UNIX commands, liba, libc,
and the UNIX operating system.

Gen 2/3 Doc.

Gen 4 Doc.40/70 Gen 5 Doc.40/70

PR-1C304~11
PR-1C306-01
Desk Calculator
PR-1C307-01
PR-1C310-11

PR-1C304-12

PR-1C306-12/13

PR-1C307-11
PR-1C310-12

Dec/mag Tape Man-

PR-1C311-11
Floating Point
PR-1C312-11
PR-1C313-11
PR-1C314-11
PR-1C315-11
PR-1C316-11
PR-1C317-11
PR-1C318-11
UNIX Assembler
PR-1C319-11
UNIX Assembler
PR-1C320~-11
UNIX C Subrouti
PR-1C321-11
UNIX C Subrouti
PR-1C322-11
UNIX C Subrouti
PR-1C323-11
UNIX C Subrouti
PR-1C324-11
UNIX C Subrouti
PR-1C325-11
UNIX C Subrouti
PR-1C326-11
UNIX C Subrouti
PR-1C327-11
PR-1C328-11
UNIX - Definiti
PR-1P143-02
UNIX - System
PR-1P144-02
PR-1P145-02

PR-1C311-12

PR-1C312~11
PR-1C313-12
PR-1C314-12
PR-1C315-~12
PR-1C316-12
PR-1C317-12
PR-1C318-12

PR-1C319-12

PR-1C320-12
nes

PR-1C321-12/13

nes
PR-1C322-12
nes

PR-1C323-12/13

nes
PR-1C324-12
nes
PR-1C325-12
nes
PR-1C326-12
nes

PR-1C327-12/13

PR-1C328-12
ons

PR-1P143-03/04

PR~-1P144-03/04
PR-1P145-03/04

PR-1C304-12
PR-1C307~11
PR-1C310-12
PR-1C311-12
PR-1C312-11
PR-1C313-12
PR-1C314-12
PR-1C315-12
PR-1C316-12
PR-1C317-12
PR-1C318-12
PR-1C318-12

PR-1C320-12

PR-1C322-12

PR-1C324-12

PR-1C325-12

PR-1C326-12

PR-1C328-12

PR-1C306-12/13

PR-1C321-12/13

PR-1C323-12/13

PR-1C327~12/13

PR-1P143-03/05

PR-1P144-03/04
PR-1P145-03/04

PR(5L)

FILES
SEE ALSO

SCCs

Mar 23 1879

PR(SL)

PRINDEX(5L) SCCS Dec 9 1975 PRINDEX(5L)

NAME
prindex - PR document index page

DESCRIPTION F
The prindex file contains information about a PR document associ-
ated with a PG - generic. The prindex file is divided into three
ordered sections. They are:

#PRDOC
The #PRDOC section contains the PR document number and its
title. The version, shown below in the example, is option-
al.

#PIDENT

The #PIDENT section contains the pidents associated with the
PR document. There is one pident per line; the name of the
pident is listed first followed by the issue sequence of the
pident and then the title of the pident. The issue sequence
is a string of issues of the pident, each issue separated by
commas. If the first character of a line in this section is
an asterisk (x) then the pident associated with the line no
longer exists. This way a record of all pidents (deleted or
existing) associated with a pr document can be kept.

#PRINT
The #PRINT section is an optional section which contains pi-
dent names. This field can be used to list changed pidents
of a generic. The command, plistp can then be used to print
only the changed pidents for a letter issue release of a
generic. The pidents are listed one per line.

An example of a prindex file:

#PRDOC

PR-1P177-01 Lp@p3 Trouble Reporting Programs
#PIDENT

OPTRBL 1,1

RCTRBL L, &
* TRBLDATA 1,1
#PRINT

RCTRBL

' 1 Qutput Trouble Program
e Recent Change Trouble Program
Trouble Reporting Data Base

FILES
SEE ALSO
plistp(I), au file(V), secprt(I)

