INTRO(7) CB—UNIX 2.1 INTRO(7)

NAME

DESCRIPTION

Page |

intro — introduction to miscellany

This section describes miscellaneous facilities such as macro packages, character set tables, etc.

November 1979

ASCII(7) CB—UNIX 2.1 ASCII(7)

NAME
ascii — map of ASCII character set

SYNOPSIS
cat /usr/pub/ascii

DESCRIPTION
Ascii is 2 map of the ASCII character set, to be printed as needed. [t contains:
000 nul|001 soh|002 stx|003 etx|004 eot|005 eng 006 ack|007 bel |
010 bs [011 ht [012 nl |013 vt |014 np |015 cr [016 so [017 si |
020 die|021 dc1]022 dc2|023 dc3|024 dc4|025 nak[026 syn|027 etb| <
030 can|031 em [032 sub|033 esc|034 fs [035 gs [036 rs 037 us |
040 sp [041 ! |042 " |043 # {044 S [045 % 046 & |047 |
050 ({os1) |052 * |053 + [054 , [055 — [056 . |057 / |
060 0 061 1 |062 2 063 3 [064 4 [065 5 (066 6 |067 7 |
070 8 {071 9 |072 : [073 ; [074 < [075 = {076 > |077 7 |
[100 @ [101 A [102 B [103 C [104 D |105 E |106 F [107 G |
110 H {111 1 112 J 113 K [114 L |115 M |116 N [117 O |
(20 P |121 Q |122 R |123 S 124 T [125 U |126 V |127 W |
130 X 131 Y [132 Z [133 [134 \ [135] [136 " {137 _ |
140 " [141 a |142 b {143 ¢ |144 d [145 e 146 f [147 g |
IS0 n 1S i |152 j [153 &k [154 1 155 m [156 n |1S7 o |
160 p [161 q [162 r [163 s [164 t [165 u |166 v |[167 w |
170 x {171 y [172 z {173 { [174 | [175) {176 = |177 del|

FILES

/usr/pub/ascii

Page | November 1979

CENVIRON(T) CB—UNIX 2.3 ENVIRON(7)

NAME
environ — user environment

DESCRIPTION
An array of strings called the “environment’® is made available by exec(2) when a process
begins. By convention, these strings have the form “‘name=value’’. The following names are
used by various commands:

PATH The sequence of directory prefixes that sh(1), time(1), nice(1), nohup(1), etc., apply in
searching for a file known by an incomplete path name. The prefixes are separated by
colons (:). Login(1) sets PATH=:/bin:/usr/bin.

SHELL
The name of the shell which is executed upon escaping from some interactive com-

mands (such as ed(1) and mail(1)) and used by the execvp(3C) and system(3S) library
routines.

HOME
Name of the user’s login directory, set by login(1) from the password file passwd(5).

TERM
The kind of terminal for which output is to be prepared. This information is used by
commands, such as mm(1) or plot(1G), which may exploit special capabilities of that
terminal.

Further names may be placed in the environment by the export command and ‘“‘name=value”
arguments in sh(1), or by exec(2). It is unwise to conflict with certain shell variables that are
frequently exported by .profile files: MAIL, PS1, PS2, IFS.

SEE ALSO
env(1), login(1), sh(1), exec(2), getenv(3C), profile(5)

February 6, 1980 Page 1 February 6, 1980

GREEK (7)

NAME

CB-UNIX 2.1

greek — graphics for extended TTY-37 type-box
SYNOPSIS

cat /usr/pub/greek [| greek —Tterminal]

DESCRIPTION
Greek gives the mapping from ASCII to the “‘shift out” graphics in effect between SO and SI on
TELETYPE® Model 37 terminals equipped with a 128-character type-box. These are the default

greek characters produced by nroff(1). The filters of greek(1) attempt to print them on various
other terminals. The file contains:

alpha
GAMMA
epsilon
THETA
LAMBDA
Xi

rho

tau

psi
OMEGA
partial

D E VOS> OM IR

SEE ALSO

Page 1

greek (1), nroff(1).

TNCTRXTmHQ

beta
delta
zeta
theta
mu

pi
sigma
phi
PSI
nabla
integral

TTImOK*"ZO0oO0ogw

Qe Q AT Do

gamma
DELTA
eta
lambda
nu

Pl
SIGMA
PHI
omega
not

GREEK (7)

18 gMOx »3 B
OmMmU@CrZg—

November 1979

REGEXP(7)

NAME

CB—-UNIX 2.1 REGEXP (7)

regexp — regular expression compile and match routines

SYNOPSIS

#define INIT <declarations>

#define GETC() <getc code>

#define PEEKC() <peekc code>

#define UNGETC(c) <ungetc code>
#define RETURN (pointer) <return code>
#define ERROR (val) <error code>

#include <regexp.h>

char scompile(instring, expbuf, endbuf, eof)
char sinstring, =expbuf, =endbuf;

int step(string, expbuf)
char sstring, *expbuf;

DESCRIPTION

This page describes general purpose regular expression matching routines in the form of ed(1),
defined in /usr/include/regexp.h. Programs such as ed(1), sed(1), grep(1), bs(1), expr(1),
etc., which perform regular expression matching use this source file. In this way, only this file
need be changed to maintain regular expression compatibility.

The interface to this file is unpleasantly complex. Programs that include this file must have the
following five macros declared before the ‘‘#include <regexp.h>’’ statement. These macros
are used by the compile routine.

GETC()

PEEKC()

UNGETC(¢)

RETURN (pointer)

ERROR (va/)

Page 1 -

Return the value of the next character in the regular expression pattern.
Successive calls to GETC() should return successive characters of the
regular expression.

Return the next character in the regular expression. Successive calls to
PEEKC() should return the same character (which should also be the
next character returned by GETC()).

Cause the argument ¢ to be returned by the next call to GETC() (and
PEEKC()). No more that one character of pushback is ever needed and
this character is guaranteed to be the last character read by GETC(). The
value of the macro UNGETC(c) is always ignored.

This macro is used on normal exit of the compile routine. The value of
the argument pointer is a pointer to the character after the last character
of the compiled regular expression. This is useful to programs which
have memory allocation to manage.

This is the abnormal return from the compile routine. The argument va/
is an error number (see table below for meanings). This call should
never return.

November 1979

REGEXP(7) CB-UNIX 2.1 REGEXP(7)

ERROR MEANING
11 Range endpoint too large.
16 Bad number.
25 “\digit™ out of range.
36 Illegal or missing delimiter.
41 No remembered search string.
42 \('\) imbalance.
43 Too many \ (.
44 More than 2 numbers given in \{ \}.
45 } expected after \.
46 First number exceeds second in \{ \}.
49 [| imbalance.
50 Regular expression overflow.

The syntax of the compile routine is as follows:
compile (instring, expbuf, endbuf, eof)

The first parameter “‘instring’’ is never used explicitly by the compile routine but is useful for
programs that pass down different pointers to input characters. It is sometimes used in the INIT
declaration (see below). Programs which call functions to input characters or have characters in
an external array can pass down a value of ((char *) 0) for this parameter.

The next parameter ‘““expbuf’’ is a character pointer. [t points to the place where the compiled
regular expression wiil be placed.

The parameter “‘endbuf’ is one more that the highest address that the compiled regular expres-
sion may be placed. If the compiled expression cannot fit in (endbuf —expbuf) bytes. a call to
ERROR(50) is made.

The parameter ‘“‘eof” is the character which marks the end of the regular expression. For
example, in ed(1), this character is usually a /.

Each programs that includes this file must have a #define statement for INIT. This definition
will be placed right after the declaration for the function compile and the opening curly brace
({). It is used for dependent declarations and initializations. Most often it is used to set a
register variable to point the beginning of the regular expression so that this register variable
can be used in the declarations for GETC(), PEE() and UNGETC(). Otherwise it can be used

to declare external variables that might be used by GETC(), PEEKC() and UNGETC(). See
the example below of the declarations taken from grep(1).

There are other functions in this file which perform actual regular expression matching, one of
which is the function siep. The call to swep is as follows:

step(string, expbuf)

The first parameter to swep is a pointer to a string of characters to be checked for a match. This
string should be nuil terminated.

The second parameter ‘“‘expbuf’’ is the compiled regular expression which was obtained by a
call of the function compile.

The function swep returns one, if the given string matches the regular expression, and zero if
the expressions do not match. If there is a match, two external character pointers are set as a
side effect to the call to srep. The variable set in step is “‘locl™. This is a pointer to the first
character that matched the reguiar expression. The variable “loc2’’, which is set by the func-
tion advance, points the character after the last character that matches the regular expression.
Thus if the regular expression matches the entire line. locl will point to the first character of

November 1979 Page 2 - ., «

REGEXP(7) CB—UNIX 2.1 REGEXP (7)

“‘string”” and *‘loc2”" will point to the null at the end of *‘string™.

Step uses the external variable ‘‘circf”’ which is set by compile if the regular expression begins
with ~. If this is set then siep will only try to match the regular expression to the beginning of
the string. If more than one regular expression is to be compiled before the the first is exe-
cuted the value of “‘circf”’ should be saved for each compiled expression and *‘circf”” should be
set to that saved value before each call to srep.

The function advance is called from step with the same arguments as siep. The purpose of siep
is to step through the ‘‘string’’ argument and call advance until advance returns a one indicating
a match or until the end of ‘‘string’’ is reached. If one wants to constrain ‘‘string’ to the
beginning of the line in all cases, siep need not be called, simply call advance.

When advance encounters a * or \{ \} sequence in the regular expression it will advance its
pointer to the string to be matched as far as possible and will recursively call itself trying to
match the rest of the string to the rest of the regular expression. As long as there is no match,
advance will back up along the string until it finds a match or reaches the point in the string
that initially matched the * or \{ \}. It is sometimes desirable to stop this backing up before
the initial point in the string is reached. If the external character pointer “‘locs’ is equal to the
point in the string at sometime during the backing up process, advance will break out of the
loop that backs up and will return zero. This is used be ed(1) and sed(1) for substitutions done
globally (not just the first occurrence, but the whole line) so, for example, expressions like
**s/y=*//g’" do not loop forever.

The routines ecmp and gewrange are trivial and are called by the routines previously mentioned.

EXAMPLES

FILES

The following is an example of how the regular expression macros and calls look from grep(1):
#define INIT register char *sp = instring, /* First arg points to RE string */
#define GETC() (xsp+ +)

#define PEEKC() (*sp)

#define UNGETC(¢) (~—sp)
#define RETURN(c¢) return;
#define ERROR(¢) regerr()

#include <regexp.h>
compile(=argv, expbuf, &epruf[ESIZE], \0);

.if(step(linebuf, expbuf))
succeed();

/usr/include/regexp.h

SEE ALSO

BUGS

Page 3

ed(1), grep(1), sed(1).

The handling of *‘circf™ is kludgy.

The routine ecmp is equivalent to the Standard 1/0 routine sirncmp and should be replaced by
that routine.

The actual code is probably easier to understand than this manual page.

November 1979

STAT(T) CB-UNIX 2.1 STAT(7)

NAME
stat — data returned by stat system call
SYNOPSIS
#include <types.h>
#include <stat.h>
DESCRIPTION
The system calls swar and fswar(2) return data whose structure is defined by this include file.
The encoding of the field sz_mode is defined in this file also.

/* @ (#)stat.h3.1 */
struct stat

dev_t st_dev;

ino_t st_ino;

int st_mode;

int st_nlink;

int st_uid;

int st_gid;

dev_t st_rdev;

off _t st_size;

time_t st_atime;

time_t st_mtime;

time _t st_ctime;
R
#define S_I[FMT 0170000 /* type of file */
#define S_IFDIR 0040000 /* directory */
#define S_IFCHR 0020000 /* character special */
#define S_IFBLK 0060000 /* block special */
#define S_IFREG 0100000 /* regular */
#define S_IFMPC 0030000 /* multiplexed char special */
#define S_IFMPB 0070000 /* multiplexed block special */
#define S_ISUID 0004000 /* set user id on execution */
#define S_ISGID 0002000 ; /* set group id on execution */
#define S_ISVTX 0001000 /* save swapped text even after use */
#define S_IREAD 0000400 /* read permission, owner */
#define S_[WRITE 0000200 /* write permission, owner */
#define S_[EXEC 0000100 /™ execute/search permission, owner */

FILES
/usr/include/sys/stat.h
SEE ALSO

stat(2)

Page | November 1979~ ».u*

TYPES(7) CB—UNIX 2.1 TYPES(7)

NAME
types — primitive system data types

SYNOPSIS
#include <sys/types.h>

DESCRIPTION
The data types defined in the include file are used in UNIX system code. some data of these
types are accessible 1o user code:

/™ @ (#)/usr/src/ucb/sys/types.h 3.1 %/

/*

* Typedefs

*/

typedef struct { int r{1]; } * physadr;
typedef unsigned daddr_t;
typedef char * caddr_t;
typedef unsigned int ino_t;
typedef long time_t;
typedef int label_t[6];
typedef int dev_t;
typedef long off _t;
typedef long paddr_t;
typedef unsigned int spent_t;

The form daddr_1 is used for disk addresses except in an i-node on disk, see f5(5). Times are
encoded in seconds since 00:00:00 GMT, January 1, 1970. The major and minor parts of a dev-
ice code specify kind and unit number of a device and are installation-dependent. Offsets are
measured in bytes from the beginning of a file. The /abel_r variables are used to save the pro-
cessor state while another process is running.

. SEE ALSO
fs(5)

Page 1 [November 1979

